
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Automating Information Security with Python (Security 573)"
at http://www.giac.org/registration/gpyc

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gpyc

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

PDF Metadata Extraction with Python

GIAC (GPYC) Gold Certification

Author: Christopher A. Plaisance, nxl4@protonmail.com
Advisor: Rob VandenBrink
Accepted: 5 February 2019

Abstract

This paper explores techniques for programmatically extracting metadata from PDF files
using Python. It begins by detailing the internal structure of PDF documents, focusing on
the internal system of indirect references and objects within the PDF binary, the document
information dictionary metadata type, and the XMP metadata type contained in the file’s
metadata streams. Next, the paper explores the most common means of accessing PDF
metadata with Python, the high-level PyPDF and PyPDF2 libraries. This examination
discovers deficiencies in the methodologies used by these modules, making them
inappropriate for use in digital forensics investigations. An alternative low-level technique
of carving the PDF binary directly with Python, using the re module from the standard
library is described, and found to accurately and completely extract all of the pertinent
metadata from the PDF file with a degree of completeness suitable for digital forensics use
cases. These low-level techniques are built into a stand-alone open source Linux utility,
pdf-metadata, which is discussed in the paper’s final section.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

PDF Metadata Extraction with Python	 2

1. Introduction

Since the introduction of the standard in 1993 (Adobe Systems Incorporated, 2001,

p. xix), Adobe’s Portable Document Format (PDF) has become one of the most widely

adopted and commonly used file formats for creating and storing documents. Contrasted

against plain text document formats, the PDF file type is intrinsically rich in metadata

artifacts, which can be valuable to recover during a digital forensic investigation. While

there are a number of ways to extract these metadata from a PDF file, these techniques

typically have two features in common: they are manual processes which do not natively

lend themselves to automation, and they do not encompass all of the metadata artifacts

which can be hidden within the file’s binary structure.

For example, in Larry Pesce’s paper on Document Metadata (Pesce, 2008), he

provides instructions on extracting PDF metadata using either the Adobe Acrobat viewer’s

Document Properties window, or the Linux strings command line operation (pp. 11–15).

In the case of using a graphical tool like Adobe Acrobat, the forensic analyst is immediately

faced with a challenge to automation, as this is a process which is designed to be manual.

Moreover, the metadata presented in a graphic user interface (GUI) tool may not be

exhaustive of the artifacts contained within the file’s binary structure. The command-line

interface (CLI) option has the benefit of delving more directly into the file’s internal data

structures, yielding a more complete picture of the file’s metadata; however, the

unstructured format of the data returned by the command does not lend itself either to

analysis or automation.

In his book, Violent Python, T.J. O’Connor (O’Connor, 2013) presents a Python-

based approach to the challenge that has the possibilities for both exhausting the file’s

metadata structures and lending itself to automation. However, O’Connor’s utility

presented in the book (pp. 93–95), only extracts one of the two metadata structures

concealed within PDF files, and is written as a utility for use on a single file, without the

native flexibility to be used on large collections of PDFs. Moreover, although the library

O’Connor uses for his script, PyPDF, is capable of interfacing with both metadata structures

(as is its Python 3 port, PyPDF2), it does not handle these artifacts with the rigor needed

for a digital forensics investigation. As will be discussed in detail below, the metadata

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

PDF Metadata Extraction with Python	 3

extraction capabilities of this library do not deal appropriately with PDFs containing

multiple metadata artifacts of either type, or with artifacts whose elements do not exactly

match certain predetermined dictionaries.

This gap in the forensic analyst’s toolkit needs to be closed, and Python lends itself

easily to engineer a solution. In this paper, we will examine the different metadata

structures that are embedded within PDF files: looking in detail at both the Document

Information Dictionary and the Extensible Metadata Platform. Once these structural

elements have been examined, we will address the ways in which these metadata can be

accessed with Python. This treatment will include both higher-level techniques which

involve the use of PDF-specific libraries, as well as lower-level techniques for carving the

binary directly. These techniques of metadata extraction will also be discussed within the

context of automation, to address situations where a forensic analyst may be faced with

thousands of files to analyze. And, all of these strains are tied together in an open source

Python utility, pdf-metadata.py, which facilitates the bulk extraction of metadata from

PDF documents. The presented solution aims to exhaust all available metadata structures

contained within the PDF, provide functionalities to decrypt the metadata of encrypted

PDFs, and facilitate the batch extraction of any number of PDF files in sequence.

2. PDF Metadata Structures

2.1. What is a PDF?

There are three primary entity types that are included under the PDF aegis: the PDF

file format, PDF documents, and PDF files (Adobe Systems Incorporated, 2001, p. 9). At

its core, PDF is a file format which is designed to reliably and consistently represent

documents in a way that is agnostic to both the software, hardware, and operating system

of the document’s creator as well as those of the viewer or printer. In this vein, a PDF

document is composed of objects which define the appearance of pages, using the PDF

syntax. Within this context, a PDF file can then be defined as the self-contained binary

container of all the objects and structural elements which constitute the PDF document.

The PDF language was based on, and remains similar to, the PostScript page description

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

PDF Metadata Extraction with Python	 4

language; however, the similarities between the two does not result in straightforward

conversion (Adobe Systems Incorporated, 2001, p. 21; Adobe Systems Incorporated, 1999,

p. 9). Since 2008, the PDF format has been standardized as an open format, under ISO

32000 (International Organization for Standardization, 2017).

2.2. What is Metadata?

At its essence, metadata itself is near universally defined as “data about data” (Gill,

2008, p. 20; Pittman and Shaver, 2010, p. 232; Sammons, 2012, p. 72; Plaisance, 2016, p.

48). The metadata of digital objects can generally be divided into two categories: file

system metadata, and application metadata (Gilliland, 2008, p. 10; Pittman and Shaver,

2010, p. 232; Sammons, 2012, p. 72; Plaisance, 2016, p. 49). File system metadata include

those data elements which are extrinsic to the file itself, and do not participate in the byte-

sequence that constitutes the file’s binary structure. Conversely, application metadata

includes those elements which are intrinsic to the file, and do participate in the binary’s

byte-sequence. In distinguishing between the two metadata types, the difference comes

down to what primary source is being interrogated to retrieve the metadata.

File system metadata is retrieved by interrogating the file system itself, typically

through a command line shell. For example, the stat command in most UNIX and Unix-

like shells will display all of the available file system metadata belonging to a given file

(see Figure 1).1 While the specific file system metadata elements available are file system

1 All of the examples given in sections 2 through 3 demonstrate the forensic techniques on the PDF file for
my article, Methods of Web Philology, cited here as Plaisance 2016.

Figure 1: Linux NTFS File System Metadata.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

PDF Metadata Extraction with Python	 5

and operating system specific (i.e. the file system metadata available in Windows for a file

on a NTFS formatted disk will differ from the file system metadata available in Linux for

the same file stored on a FAT32 formatted disk (for a Windows NTFS example, see Figure

2, which retrieves file system metadata using PowerShell’s Get-Item and Format-List

commands).

2.3. Accessing PDF Application Metadata

From a layman’s perspective, the question of accessing the application metadata of

a PDF file may seem as trivial as accessing the Properties window of one’s chosen PDF

viewer application (see Figure 3). Indeed, this is undoubtedly the most common technique

for accessing a PDF file’s application metadata. However, as it will become readily

apparent as individual files are analyzed during the course of this paper, the metadata

presented through this technique are far from exhaustive, making this completely

unsuitable for any serious forensic investigation.

Figure 2: Windows FAT32 file system metadata.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

PDF Metadata Extraction with Python	 6

In order to understand how we can programmatically extract application metadata

from a PDF file in a way that is suitable for forensics work, the first step is to investigate

the general structure of the PDF file format. PDF files are typically large, and can contain

thousands of constituent objects, which makes imperative for a forensic investigator to

know what objects within a PDF file contain application metadata and how to locate these

objects within a given PDF file. In addressing the first question, Adobe’s documentation

proves a useful starting point, identifying two different ways in which application metadata

are stored within a PDF file, as either a document information dictionary object, or a

metadata stream object (Adobe Systems Incorporated, 2008, p. 548).

Within the binary structure of a PDF file, the document information dictionary is a

special class of a general type, the indirect object. All indirect objects are labeled with a

two-part identifier, consisting of an object number and a generation number. The indirect

Figure 3: PDF Metadata Visible in Properties Window of Xreader

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

PDF Metadata Extraction with Python	 7

object is thus defined by a structure consisting of its object and generation number,

followed by two bracketing keywords—obj and endobj—with the object itself occurring

between the brackets (Adobe Systems Incorporated, 2001, p. 39). A minimal example of

this can be given as:

11 0 obj

 (Hello world)

endobj

While this structural description of the indirect object does give us a pattern that could be

used to programmatically locate objects within a PDF file, it does not tell us anything about

what kind of object is being located. To address this exact concern, and to enable

applications to parse PDF documents, each indirect object contains an indirect reference

which—for many types of indirect objects, including document information dictionaries—

will identify the object type. The indirect reference will contain the object and generation

number which identify the specific object followed by the keyword R and preceded by the

keyword (always beginning with a forward-slash) identifying the object type (Adobe

Systems Incorporated, 2001, p. 40). For example, the above minimal example could be

identified as:

/Hello 11 0 R

Figure 4: Document Information Dictionary Reference in PDF File

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

PDF Metadata Extraction with Python	 8

This combination of the indirect object and its reference provides the key to locating any

object those referential keyword is known.

2.4. Document Information Dictionary

The keyword for the document information dictionary reference is /Info, and this

reference is typically contained within a special object called the trailer—which is itself

a collection of keywords bracketed between the trailer and end-of-file marker, %%EOF

(Adobe Systems Incorporated, 2001, pp.67–78). On an ad hoc basis, by opening the PDF

file in question with Vim, and using the text editor’s search function to locate the /Info

reference (see Figure 4). This reference, in this case /Info 280 0 R, can be used to

search in Vim for the corresponding object by replacing the R keyword with an obj

keyword, 280 0 obj (see Figure 5). The object that this query will return will contain an

additional pair of << and >> brackets within the obj and endobj brackets. Within those

inner angle brackets will be an array of key value pairs. A minimal example of this can be

given as:

11 0 obj

 << /Title (Document Title)

 /Author (Document Author)

 >>

endobj

Figure 5: Document Information Dictionary Object in PDF File.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

PDF Metadata Extraction with Python	 9

There are a total of nine approved keywords detailed for use with document information

dictionary objects in the documentation (Adobe Systems Incorporated, 2001, p. 576):

Key Name Data Type Value Description
/Title Text String Title of the Document
/Author Text String Author of the Document
/Subject Text String Subject of the Document
/Keywords Text String Keywords Associated with the Document
/Creator Text String Application Used to Create the Original

Document (Pre-PDF Conversion)
/Producer Text String Application Used to Convert Original (Pre-PDF)

Document to PDF
/CreationDate Date Date and Time of Document’s Creation
/ModDate Date Date and Time of Document’s Last Modification
/Trapped Name Object Indicated if Document Had Been Modified to

Include Trapping Information

2.5. Metadata Streams

The keyword for the metadata streams reference is /Metadata, with this reference

generally being located in the document catalog—another special object which consists of

an angle bracketed array of referential keywords (Adobe Systems Incorporated, 2001, p.

578). As with the document information dictionary reference, this reference can be located

on an ad hoc basis by querying the /Metadata reference with the PDF file open in Vim

(see Figure 6). In this case, the reference /Metadata 279 0 R can be used to locate the

Figure 6: XMP Metadata Reference in PDF File.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

PDF Metadata Extraction with Python	 10

corresponding metadata streams object, by searching the same open Vim document for 279

0 obj (see Figure 7).

The resulting object is represented in a subset of the Extensible Markup Language

(XML) framework called the Extensible Metadata Platform (XMP), which provides a

highly customizable and adaptable structure into which metadata can be added to a PDF

file (Adobe Systems Incorporated, 2001, p. 578). The XMP framework is too mutable and

complex to provide a minimal example; however, the full format specification can be found

in Adobe Systems Incorporated 2012, 2014, and 2016.

3. Metadata Extraction with PyPDF2

While it has been shown now that it is possible to locate both types of application

metadata contained in a PDF file by first locating the reference for the respective keywords,

and then locating the objects those object and generation numbers match the previously

located references. However, this is a highly manual and time-consuming process that

Figure 7: XMP Metadata Object in PDF File.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

PDF Metadata Extraction with Python	 11

leaves plenty of room for human error, and does not scale. What is required, then, is an

automated utility that can replicate the above manual parsing and extraction techniques. To

begin, we will explore techniques for extracting these metadata types using the most

common Python modules, PyPDF and PyPDF2.2

3.1. Extracting Document Information Dictionary Metadata

To extract the Document Information Dictionary metadata from a given PDF file,

with the PyPDF2 technique, the first step will be to import two libraries: the PyPDF2

module which will facilitate the interface with the PDF file, and the pprint module will

beautify the output dictionary when printed to the CLI (see Figure 8). Following the module

imports, the next step is to define a function that will call two of the module’s core methods.

First, the PdfFileReader() method accepts the PDF file path as an argument, which

“initializes a PdfFileReader object” (Fenniak, 2016c). This object should be

variablized, for use with subsequent methods. Second, the getDocumentInfo() method

can then be used on the newly initialized PdfFileReader object. This creates a new

DocumentInformation object, which is structured as a Python dictionary. These

constituent dictionary will contain a number of key:value pairs, with the value returning as

a TextStringObject if PyPDF2 is able to decode the string’s encoding, or returning as

2 At the time the afore referenced works on doing PDF forensics with Python were written, Python 2 was the
standard, making PyPDF the module of choice. However, as Python 3 is now the de facto standard (with
Python 2’s deprecation on this horizon), PyPDF’s Python 3 successor, PyPDF2 has superseded it in terms
of utility and popularity. In terms of functionality, however, the two modules are all but identical.

Figure 8: PyPDF2 Module Import.

Figure 9: PyPDF2 Function to Extract PDF's Document Information Dictionary.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

PDF Metadata Extraction with Python	 12

a ByteStringObject if PyPDF2 is unable to decode the string (Fenniak, 2016b). Putting

these two methods together yields a custom function that can be used to extract document

information dictionary metadata from PDF files (see Figure 9). The resulting

DocumentInformation object which generated by the custom get_doc_info()

function contains a dictionary with five key:value pairs (see Figure 10). This extracted data

matches the raw metadata located in the Document Information Dictionary object located

at 208 0 obj in the file (see Figure 5).

Figure 10: Example Extraction of Document Information Dictionary.

Figure 11: PyPDF2 Function to Extract PDF's XMP Metadata.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

PDF Metadata Extraction with Python	 13

3.2. Extracting XMP Metadata

Using the same previously imported libraries, PyPDF2 and pprint, XMP metadata

can be extracted from a given PDF file by invoking one additional method from the core

PyPDF2 library. After creating a PdfFileReader object with the eponymous method, the

getXmpMetadata() method can be used on this object. This will create a new

XmpInformation object, which will contain any XMP metadata that the PyPDF2 module

was able to extract. To access these extracted metadata, we will define a custom list of

string variables which represent the exhaustive collection of methods which can be used

on the newly created XmpInformation object. As outlined in the module’s

documentation, there are a total of twenty-five XMP metadata values which have defined

methods associated (Fenniak, 2016d). By iterating over the string representation of these

Figure 12: Example Extraction of XMP Metadata.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

PDF Metadata Extraction with Python	 14

methods contained in the xmp_methods list, and inserting the iterator into a getattr()

function, thus calling the method from the XmpInformation object, the contents of this

object can be easily exported into a dictionary—which can itself then be printed. We can

define a custom get_xmp_info() function which combines all of these methods, to print

the XMP metadata which PyPDF2 is able to extract from a given PDF file (see Figure 11).

This extracted data (see Figure 12) matches the raw metadata located in the Document

Information Dictionary object located at 279 0 obj in the file (see Figure 7). The twenty-

five possible metadata values yielded by the custom get_xmp_info() function are given

in the following table:

Key Name Data Type Value Description
custom_properties Dictionary Custom Metadata Properties
dc_contributor List Non-Authorial Contributors to the

Document
dc_coverage List Describes the Scope or Extent of the

Document
dc_creator List Names of Document’s Authors
dc_date List Datetime Object of Significance to the

Document
dc_description Dictionary Descriptions of the Document’s Contents
dc_format String Document’s MIME-Type
dc_identifier String Document’s Unique Identifier
dc_language List Languages Used in the Document
dc_publisher List Publisher of the Document
dc_relation List Relationships to Other Documents
dc_rights Dictionary User’s Rights to the Document
dc_source String Unique Identifier of the Document’s

Source
dc_subject List Keywords Indicating Document’s Subject
dc_title Dictionary Document’s Title
dc_type List Description of Document’s Type
pdf_keywords String Additional Listing of Document’s

Keywords
pdf_pdfversion String PDF’s Version
pdf_producer String Tool that Created PDF Document
xmp_createDate String Date the Document was Created
xmp_creatorTool String First Tool Used to Create the Document’s

Source
xmp_metadataDate Datetime Object Most Recent Change Date of Meatdata
xmp_modifyDate Datetime Object Most Recent Change Date of Document
xmpmm_documentId String Common Identifier for All Versions of the

Document

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

PDF Metadata Extraction with Python	 15

xmpmm_instanceId String Unique Identifier for this Particular
Document

4. Problems with PyPDF2

With the two custom functions defined above, get_doc_info() and

get_xmp_info(), it would be a relatively simple matter to build a script that could ingest

either a single PDF file or iterate through a collection of PDFs and export the metadata into

some structured format like CSV, JSON, etc. Indeed, in the initial draft of this present

project that is exactly what I did. However, after running several hundred PDF files through

this PyPDF2 based application, I discovered two serious problems with the module. These

issues led to a complete re-thinking of this project’s programming methodology—as the

deficiencies inherit in the initial PyPDF2 approach would render the resulting application

useless for serious forensic investigations. Both of these problems manifest when analyzing

a PDF copy of Justin Seitz’s book, Black Hat Python (2014). So, this PDF file will serve

as this section’s focus of examination in demonstrating the problems PyPDF2 poses for the

forensic investigator.

4.1. Inability to Extract Multiple Metadata Objects

When the PyPDF2-based get_doc_info() function is used to extract the

document information dictionary from the Black Hat Python PDF document, bhp.pdf, it

locates a single object (see Figure 13). However, manual searches for the document

information dictionary references and their corresponding objects done manually through

Figure 13: Document Information Dictionary Extracted with PyPDF2 from Black Hat Python.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

PDF Metadata Extraction with Python	 16

Vim (see Figure 14) reveal not one, but two different pairs of references (/Info 610 0

R and /Info 1969 0 R) and objects (610 0 obj and 1969 0 obj). The data extracted

via PyPDF2 matches 1969 0 obj, and the reason for this is simple: of the two document

information dictionary reference-object pairs embedded in the PDF file, 610 0 represents

the original object, while 1969 0 is a subsequent modification. This is by design, as the

document information dictionary located at 1969 0 obj represents the authoritative

version of the document’s metadata. This is the metadata object that is intended to be

Figure 14: Document Information Dictionary References and Objects in Black Hat Python PDF.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

PDF Metadata Extraction with Python	 17

identified by PDF viewers when they parse the document, as is evidenced by the fact that

the metadata seen in the Properties window of this file as opened in Xreader contain all of

these metadata elements culled from the 1969 0 obj object. There is one additional

element in the Properties window, Created, which maps to the /CreationDate keyword

in the 610 0 obj object; this is included because the 1969 0 obj object is a modification

of the 610 0 obj object, and only contains a modification date, not a creation date. Each

change that the document’s creator makes to the document information dictionary results

in the creation of a new reference-object pair in the file. However, it is only the most recent

object that will be extracted by the PyPDF2 module. This selection of the most recent object

out of an historical sequence is not limited to the document information dictionary

reference-object pairs, but also includes the XMP reference-object pairs that constitute the

metadata streams category discussed above.

Figure 15: Metadata Presented in the Properties Window of Black Hat Python as Viewed in Xreader.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

PDF Metadata Extraction with Python	 18

This parsing technique, where the document information dictionary object that the

file’s creator intended to be extracted is the one that the parser extracts is fine for general

use cases involving the classification and organization of files (e.g. PDF document library

software). However, for digital forensics use cases, this selection of one metadata object to

the exclusion of any others is an unacceptable omission. For example, in this bhp.pdf file

the metadata elements that are omitted in the PyPDF2 extraction would certainly be

important for a forensic investigation. The original document information dictionary object

contains /Creator and /Producer elements, which identify the technical means used to

create the PDF document itself. Additionally, the /Keyword and /Title elements in the

original object differ significantly from the modified object—which can also be important

information for an investigation. Outside of this particular example, it should become clear

that there can be any number of discrepancies between the terminal object, and its

Figure 16: XMP Metadata Extracted with PyPDF2 from Black Hat Python.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

PDF Metadata Extraction with Python	 19

preceding counterparts. And, in situations where an investigator suspects that the

document’s creator may have tried to conceal his identity, this historical chain of metadata

objects becomes a critical priority.

4.2. Reporting False Negatives

Moving on to the PyPDF2-based get_xmp_info() function that is used to extract

the XMP metadata from the Black Hat Python PDF document, we see that it located no

Figure 17: XMP Metadata References and Objects in Black Hat Python PDF.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

PDF Metadata Extraction with Python	 20

metadata elements (see Figure 16). However, when the file’s binary is interrogated

manually in Vim, then an XMP metadata reference-object pair is located (see Figure 17).

The absence of the XMP object in the extract yielded by PyPDF2 is explained in part by

the warning that is thrown when the get_xmp_info() function is used on the bhp.pdf

file:

PdfReadWarning: Xref table not zero-indexed. ID numbers for

objects will be corrected. [pdf.py:1736]

According to the comments in the PyPDF2 source code, this warning is generated “if [the]

table [is] not zero indexed, [which] could be due to [an] error from when [the] PDF was

created […] which will lead to mismatched indices later on” (Stamy 2015). The Cross-

Reference table (i.e. Xref) is an object within the PDF file that theoretically enables

applications to access any indirect object in the file without having to first read and parse

the entire document (Adobe Systems Incorporated, 2001, p. 64). In the case of this file,

however, the /Metadata 3 0 R reference which maps to the 3 0 obj object is not

mapped in the Xref table—which makes it functionally invisible to the PyPDF2 module’s

parsing methodology. Again, while this may not be a deal-breaking issue for non-security

related use-cases, this is highly problematic for anyone thinking to use the PyPDF2 module

for digital forensics work. As we saw with the prior examinations of the metadata streams

(see Sections 2.5 and 3.2), these objects are incredibly rich in metadata, all of which is

potentially critical for a forensic investigation. Moreover, this issue with the PyPDF2

module being unable to handle metadata objects that are not properly cross referenced in

the Xref table is inclusive of document information dictionary objects as well.

Figure 18: Preliminary Code for Low-Level Carving.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

PDF Metadata Extraction with Python	 21

5. Low-Level Python Solution

Given these fundamental and critical issues with the PyPDF2 module’s ability to

reliably extract all of a document’s metadata, a different method is required to solve this

problem with Python. In contrast with the module-based, high-level approach explored in

the prior section, the proposed solution requires no modules outside of the standard library,

and approaches the problem from a much lower level, carving the PDF document’s binary

structure directly with regular expressions (regex). Both the techniques to extract document

information dictionary and XMP metadata require only two preliminary steps. The first is

to import Python’s regex module, and the second is to define a simple custom function,

de_dupe_list(), that take a list as input and returns a new version of the list with any

duplicated elements removed (see Figure 18).

5.1. Document Information Dictionary

Once the regex library has been imported and the de_dupe_list() function

created, the next step will be to create a new custom function, get_info_ref(), that will

replicate the manual search process, to locate any document information dictionary

references, regardless of whether or not they are cross-referenced in the Xref table (see

Figure 19 for the full function). This function begins by opening and reading the PDF file

as a binary stream object. A regex pattern is then defined that will locate any binary strings

Figure 19: Function to Extract Any Document Information Dictionary References.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

PDF Metadata Extraction with Python	 22

which (1) begin with the /Info keyword, (2) contain an object and generation number,

and (3) terminate with the R keyword. This regex pattern is compiled—using the

re.DOTALL option to ensure that multi-line binary strings are captured—using the

re.compile() method from the re module, and the compiled version is then passed

through the module’s re.findall() method to locate any instances of the pattern in the

PDF’s binary stream. The collection of located references is passed through the

de_dupe_list() function to remove any duplicate elements. Conditional logic is then

applied to test whether or not any references were located. The function completes by

returning a tuple composed of two elements: a Boolean value indicating whether or not it

successfully located any references, and a list of any located references—with the reference

Figure 20: Printed Tuple Containing List of Document Information Dictionary References.

Figure 21: Function to Extract Any Document Information Dictionary Objects.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

PDF Metadata Extraction with Python	 23

being given as a binary string (see Figure 20). The Boolean value is added to the return

value so that tests can easily be run before trying to iterate over a non-existent list.

Utilizing this custom get_info_ref() function, the next step is to create another

custom function, get_info_obj(), that will take the indirect references located in the

prior function and replicate the manual process, to locate each reference’s respective object

(see Figure 21 for the full function). The function begins by reading in the target PDF file

as before. Then, the get_info_ref() function is called, to store the indirect references

for any document information dictionaries as a variable, and a new dictionary variable is

created to store any located object matching these references. The function then begins a

for loop, that iterates over each reference located by the get_info_ref() function. Each

reference value is passed through a decode() method, and then the /Info and R keyword

Figure 22: Printed Version of the PDF's Document Information Dictionary References and Objects.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

PDF Metadata Extraction with Python	 24

substrings are stripped, leaving only the reference’s object and generation number. This

substring is then passed through a binary encoding method, and used to form the

centerpiece of a regex pattern that matches binary strings containing the reference number,

followed by the obj keyword, and terminating with the first occurrence of the endobj

keyword. As with the prior function the regex pattern is passed through a compile()

method, which is subsequently passed through the findall() method, and is finally

passed through the previously defined de_dupe_list() function—generating a list

containing any document information dictionary objects from the PDF file. Each of these

list elements is paired with its matching reference, the pair of which are added to the

dictionary created previously. Conditional logic is also used to create a Boolean value

based on the presence of any such pairs in the dictionary. And finally, the Boolean value

and the dictionary are returned by the function. By decoding each of the binary strings

constituting the dictionary’s key-value pairs in the tuple returned by passing the bhp.pdf

file through this function, we can see that the get_info_obj() function located both of

Figure 23: Printed Version of the PDF's XMP Metadata References and Objects.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

PDF Metadata Extraction with Python	 25

the dictionary information dictionary objects that were seen in the manual interrogation of

the PDF earlier in Vim (see Figure 22).

5.2. XMP Metadata

As we saw with the manual investigations, the general methodology for locating

objects based on indirect references is the same regardless of the reference’s keyword.

Therefore, adapting the previously defined get_info_ref() and get_info_obj()

functions to locate the respective XMP metadata references and object can easily be done

by replacing the /Info keyword in each function with a /Metadata keyword. This results

in a get_xmp_ref() function that will locate any indirect references to XMP metadata,

as well as a get_xmp_object() function that will locate any matching XMP metadata

objects in the input PDF file, regardless of the presence or integrity of an Xref table in the

file. As the only differences between these two sets of functions are a single keyword, it

would be redundant to include the XMP metadata functions in their entirety. However, see

Figure 23 for an example of the XMP metadata references and objects contained in the

bhp.pdf file being printed to the console.

6. Putting It All Together: The PDF Metadata Utility

While the explorations of the Black Hat Python PDF in the prior sections served to

demonstrate the clear superiority of low-level binary parsing methods over high-level

PyPDF library approaches for interrogating PDF files from a digital forensics perspective

with Python, the method of demonstration (i.e. running individual functions through

Jupyter Notebook) is less than ideal. To resolve these problems, I reworked the exploratory

functions described above into a standalone command-line utility: pdf-metadata

(Plaisance, 2018a). While a full examination of the utility’s source code is outside the scope

of this present paper, the following provides a high-level overview of its code structure and

functionality. For reference, the utility’s full user guide can be found in the README.md

file within the repository (Plaisance, 2018b), and the source code in the collocated pdf-

metadata.py file (Plaisance, 2018c).

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

PDF Metadata Extraction with Python	 26

6.1. Structural Elements

As opposed to using separate functions to parse through the PDF file’s binary and

extract metadata, the pdf-metadata.py utility makes use of an object-oriented

programming framework, where the functions described in the sections above are

transformed into methods within a new BinaryPdfForensics class. This class’s

namespace contains four attributes:

Attribute Name Attribute Description
file_path The path (full or truncated) of a given PDF file.
temp_path The hard-coded truncated path of the temporary PDF file used for

decryption and metadata extraction.
output_path The path (full or truncated) of the output file.
password The password used to decrypt an encrypted PDF file. This value

defaults to None if no input is provided.

The class’s essential functionality is defined by its thirteen methods:

Method Name Method Description
__init__ This method initiates an instance of the class object with the

provided attributes.
pdf_magic This method reads the input file as a binary stream, and interrogates

the first four bytes to determine if they decode to the PDF magic
number (i.e. %PDF). This is used to determine whether or not a given
file, regardless of its extension, is a PDF. It returns a tuple containing
two values:

1. A Boolean value identifying whether or not the input path is
a PDF file

2. A string description of the magic assessment. For PDF files,
this string value will contain the version of the PDF (e.g.
%PDF-1.4)

get_crypt_ref This method reads the input file as a binary stream, and then
performs a regex search to determine if the trailer object in the PDF
contains a reference to an encryption object (e.g. /Encrypt 15 R).
It returns a tuple containing two values:

1. A Boolean value identifying whether or not the file contains
an /Encrypt reference

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

PDF Metadata Extraction with Python	 27

2. A list of any located /Encrypt references
copy_file This method copies an un-encrypted PDF file to a new temporary

directory for metadata extraction. It begins by removing any existing
temporary directories or files, and creates a new temporary directory
to copy the PDF file under examination. Once created, a copy
function is executed to create a copy of the file in the directory. It
returns a Boolean value based on the success of the copy function.

decrypt_file This method decrypts encrypted PDF files with the given password
attribute. It begins by testing the password value. If no password is
provided, then the default password is stored. A temporary directory
is created to store the decrypted version of the PDF file, and any
previously existing temporary directories and files are removed. The
qpdf Linux command3 is then invoked to decrypt the file, saving
the decrypted file in the temporary directory. If the qpdf command
fails, then the original file is copied into the temporary directory for
use with subsequent methods. It returns a tuple with four elements:

1. The return code generated by the qpdf command
2. The password used in the command to decrypt the file
3. Any output (i.e. stdout) generated by the command
4. Any error messages (i.e. stderr) generated by the

command
temp_clean This method is used to remove any temporary directories that were

created by the script. It returns a Boolean value based on the success
or failure of the cleaning operation.

get_info_ref This method reads the input file as a binary stream, and then
performs a regex search, to determine if it contains an /Info
reference. It returns a tuple containing two values:

1. A Boolean value identifying whether or not the PDF
contains the /Info reference

2. A list of any located binary /Info references
get_xmp_ref This method reads the input file as a binary stream, and then

performs a regex search, to determine if it contains a /Metadata
reference. It returns a tuple containing two values:

1. A Boolean value identifying whether or not the PDF
contains the /Metadata reference

3 For more information on qpdf, see the utility’s source code and documentation on the Github repository
(Berkenbilt, 2019).

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

PDF Metadata Extraction with Python	 28

2. A list of any located binary /Metadata references
get_info_obj This method reads the input file as a binary stream, and then calls

the get_info_ref method to get any /Info references in the file.
Any located /Info references are then used to locate any matching
/Info objects in the file. It returns a tuple containing the following
elements:

1. A Boolean value identifying whether or not an /Info object
was found in the file

2. A dictionary which maps the /Info references with the
corresponding string decoded /Info objects

get_xmp_obj This method reads the input file as a binary stream, and then calls
the get_xmp_ref method to get any /Info references in the file.
Any located /Metadata references are then used to locate any
matching /Metadata objects in the file. It returns a tuple
containing the following elements:

1. A Boolean value identifying whether or not an /Metadata
object was found in the file

2. A dictionary which maps the /Metadata references with
the corresponding string decoded /Metadata objects

file_stats This method calculates the statistics which constitute the PDF’s file
system metadata. It uses Python’s built-in os.stat method from
the standard library to retrieve these file system metadata. It returns
a list containing five string elements:

1. The file’s absolute path
2. Its human readable size
3. The most recent access time
4. The most recent modification time
5. The most recent change time

file_hashes This method reads the input file as a binary stream, and then
calculates file hash digests of the file for each of the hashing
algorithms supported by Python’s built-in hashlib module. It
returns a list of string values for the respective digests of the file’s
hash for each algorithm:

1. MD5
2. SHA1
3. SHA224
4. SHA256

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

PDF Metadata Extraction with Python	 29

5. SHA384
6. SHA512

gen_report This method generates an HTML formatted report, detailing the file
system, document information dictionary, and XMP metadata
contained within the inspected PDF file. It functions by invoking all
of the previously defined methods within the class, capturing their
return values as variables, and inserting these variables into an
HTML structure, parts of which are defined as global constants, and
other parts of which are variably defined based on factors such as
the file’s encryption status, the success or failure of decryption
efforts, and the presence and numbers of any /Info or /Metadata
references and objects in the PDF file.

Outside of the BinaryPdfForensics class, the bulk of the program’s logic is

contained within the arg_parser function that uses Python’s built-in argparse module

to accept, parse, and interpret a variety of command-line arguments for the main program.

There are, additionally, a variety of helper functions which control aspects of the utility

like input validation, list de-duplication, etc. These helper functions are not particularly

pertinent to this paper’s focus, and do not require description here. However, they are fully

documented in the application source code. At its core, the BinaryPdfForensics class’s

attendant methods, and the helper functions serve to ingest a given PDF file, and conduct

the same kinds of low-level metadata extraction detailed in-depth in the above sections.

The extracted metadata are then collected into an HTML formatted report which contains

all of the PDF file’s application and file system metadata.

6.2. User Interface

By means of the arg_parser function described above, the utility has an argument

based command-line user interface (UI). In accord with the eighth tenet of the Unix

philosophy (Gancarz, 2003, pp. 91-101), this UI avoids the perils of being a captive user

interface, and in adherence with the ninth tenet (Ibid., pp. 102-106) functions as a filter,

converting data from one form into another via an argumented command.

6.2.1. Input Modes

The UI has two input modes, which are respectively defined by the following

subcommands:

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

PDF Metadata Extraction with Python	 30

Subcommand Description
single This subcommand engages the single input mode of the utility, which

enables it to ingest a single PDF file.
batch This subcommand engages the batch input mode of the utility, which

enables it to handle a CSV containing any number of properly
structured input parameters.

The mode subcommand is non-optional; there is no default parameter. This is due to the

fact that in the arg_parser function, the subcommands are initialized as required

subparsers:

subparsers = parser.add_subparsers(

 title = ‘modes’,

 dest = ‘mode’,

 help = ‘input mode options’,

)

subparsers.required = True

Following this definition, each of the respective modes is added to the now required

subparsers object using the add_parser and add_argument methods.

6.2.2. General Arguments

There are two optional arguments for the utility that can be used without error

irrespective of the chosen mode:

Argument Description
-h, --help This argument will print the help documentation to the console.
-q, --quiet This argument suppresses the utility’s title information from being

printed to the console.

The help argument can be used in absence of any mode subcommand, and if used in

concert with any subcommands or arguments, will override them. The quiet argument

does require a subcommand and its respective required arguments in order to function.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

PDF Metadata Extraction with Python	 31

6.2.3. Single Mode Arguments

There are three specific arguments within the single subcommand mode, two of

which are required with the remaining argument being optional:

Argument Description
-i, --input This argument defines the path of the PDF that will be analyzed

for metadata extraction. It can be given either as a relative or
absolute path. This argument is required.

-o, --output This argument indicates that output will be written to an external
file. If followed by a value, it will be interpreted as the name of a
new file which the utility will create (provided that there is a
validly structured PDF file passed to the input argument). If no
value is provided, the default output value, output.html, will
be used for the new file. As with the input, either relative or
absolute paths can be used to define this element. This argument
is also required.

-p, --password This argument defines a password that will be used in the
decryption attempts of the PDF file input into the utility via the
input argument. If no value is provided, the default value of a
null string will be passed. Use of this option requires the prior
installation of the qpdf utility in order to decrypt the encrypted
files. This is an optional argument.

If no valid input parameters are provided, but single mode is indicated, the generic error

splash screen with the usage instructions is provided to the user.

6.2.4. Batch Mode Arguments and Input Parameters

There is only one specific argument within the batch subcommand mode, which

is required:

Argument Description
-f, --file This argument defines the CSV file that will be parsed for input

parameters. It can be given either as a relative or absolute path.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

PDF Metadata Extraction with Python	 32

The CSV file that is passed as the file parameter in batch mode must adhere to the

following structure in order to be properly interpreted by the utility’s CSV parser and not

result in an error message being thrown. First, each row in the CSV file must have either

two or three columns. Any input files with rows containing column counts outside of these

parameters will be unreadable by the utility. Second, the first column of the CSV file must

contain the paths of the PDF files to be read by the utility. As with the single mode, these

paths can be given either as relative or absolute. Third, the second column must contain

the specific paths used to create the output file for each input PDF. These output files must

be distinct, or output results may be overwritten when new PDF files are analyzed. Again,

these paths can be given as relative or absolute values. Finally, the third column may

optionally contain password values to be used in the decryption of the specific PDF file

given in the first column of that row. As an optional value, this can be present or absent on

a per row basis (i.e. row one may have a password value given in column three, but row

two may not; this would be a validly structured input file).

Figure 24: An example of single mode.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

PDF Metadata Extraction with Python	 33

6.3. Usage

As a Linux utility, pdf-metadata can be run with the following general argument

structure:

pdf-metadata.py [-h] [-q] {single, batch} ...

The general command-line structure for single mode is:

pdf-metadata.py single [-h] [-q] -i INPUT_NAME -o

OUTPUT_NAME [-p PASSWORD]

And, the general command-line structure for batch mode is:

pdf-metadata.py batch [-h] [-q] –f INPUT_FILE

For illustrations of the two modes in action please refer to Figures 24 and 25 respectively,

for examples of single and batch modes processes.

6.4. Output

The output provided by the pdf-metadata utility for each analyzed PDF file is

an HTML formatted report, which contains the following contents:

Figure 25: An example of batch mode.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

PDF Metadata Extraction with Python	 34

• File System Metadata

o File Statistics

§ Absolute Path

§ Human Readable Size

§ Most Recent Access Timestamp

§ Most Recent Modification Timestamp

§ Most Recent Change Timestamp

o File Hashes

§ MD5

§ SHA1

§ SHA224

§ SHA256

§ SHA384

§ SHA512

• Application Metadata

o PDF Version

o Encryption Status

o Document Information Dictionary

§ References

§ Objects

o XMP Metadata

§ References

§ Objects

For an illustration of the respective sections of the report generated for the Black Hat

Python PDF examined throughout the course of this paper, please refer to Figures 26

through 31 in the Appendix.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

PDF Metadata Extraction with Python	 35

7. Conclusion

In conclusion, this paper has served to demonstrate that the PyPDF and PyPDF2

modules in Python are ill-equipped for use in digital forensics investigative contexts, owing

to the fact that metadata extraction attempts using these modules can often result in a

critically incomplete reporting of a PDF file’s metadata. However, it was further

demonstrated that a complete and accurate reporting of such can be obtained through

manual investigation, and that the manual technique and processes can be successfully

replicated in Python, resulting in a low-level technique operating directly on the PDF’s

binary structure that results in a complete extraction of any document information

dictionary and XMP metadata references and objects contained therein. However, while

the functions detailed herein do succeed in resolving this problem, the functions alone do

not constitute a complete framework for reliably extracting PDF metadata for digital

forensics investigations, the pdf-metadata application does.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

PDF Metadata Extraction with Python	 36

Appendix

Figure 26: Report title and table of contents.

Figure 27: File statistics section of file system metadata.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

PDF Metadata Extraction with Python	 37

Figure 28: Computed file hashes section of file system metadata.

Figure 29: PDF version and encryption status sections of application metadata.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

PDF Metadata Extraction with Python	 38

Figure 30: Document Information Dictionary section of application metadata.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

PDF Metadata Extraction with Python	 39

Figure 31: XMP Metadata section of application metadata.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

PDF Metadata Extraction with Python	 40

Bibliography

Adobe Systems Incorporated (1999). PostScript Language Reference (3rd ed.). Reading:

Addison-Wesley.

Adobe Systems Incorporated (2001). PDF Reference: Adobe Portable Document Format,

Version 1.4 (3rd ed.). Boston: Addison-Wesley.

Adobe Systems Incorporated (2008). Document Management: Portable Document

Format (1st ed.). Retrieved 12 August 2018, from

https://www.adobe.com/content/dam/acom/en/devnet/pdf/pdfs/PDF32000_2008.p

df.

Adobe Systems Incorporated (2012). XMP Specification, Part 1: Data Model,

Serialization, and Core Properties. Retrieved 12 August 2018, from

https://wwwimages2.adobe.com/content/dam/acom/en/devnet/xmp/pdfs/XMP%2

0SDK%20Release%20cc-2016-08/XMPSpecificationPart1.pdf.

Adobe Systems Incorporated (2014). XMP Specification, Part 2: Additional Properties.

Retrieved 12 August 2018, from

http://wwwimages.adobe.com/www.adobe.com/content/dam/acom/en/devnet/xmp

/pdfs/XMP%20SDK%20Release%20cc-2014-12/XMPSpecificationPart2.pdf.

Adobe Systems Incorporated (2016). XMP Specification, Part 3: Storage in Files.

Retrieved 12 August 2018, from

https://wwwimages2.adobe.com/content/dam/acom/en/devnet/xmp/pdfs/XMP%2

0SDK%20Release%20cc-2016-08/XMPSpecificationPart3.pdf.

Berkenbilt, Jay (2019). QPDF. Retrieved 20 January 2019, from

https://github.com/qpdf/qpdf.

Fenniak, Mathieu (2016a). PyPDF2 Documentation. Retrieved 26 November 2018, from

https://pythonhosted.org/PyPDF2/index.html.

Fenniak, Mathieu (2016b). The DocumentInformation Class. Retrieved 26 November

2018, from https://pythonhosted.org/PyPDF2/DocumentInformation.html.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

PDF Metadata Extraction with Python	 41

Fenniak, Mathieu (2016c). The PdfFileReader Class. Retrieved 26 November 2018, from

https://pythonhosted.org/PyPDF2/PdfFileReader.html.

Fenniak, Mathieu (2016d). The XmpInformation Class. Retrieved 26 November 2018,

from https://pythonhosted.org/PyPDF2/XmpInformation.html.

Gancarz, Mike (2003). Linux and the Unix Philosophy. Amsterdam: Digital Press.

Gill, Tony (2008). Metadata and the Web. In Introduction to Metadata, edited by Murtha

Baca, 20–37. 2nd edition. Los Angeles: The Getty Research Institute.

Gilliland, Anne J (2008). Setting the Stage. In Introduction to Metadata, edited by

Murtha Baca, 1–19. 2nd edition. Los Angeles: The Getty Research Institute.

International Organization for Standardization (2017). ISO 32000-2:2017: Document

Management—Portable Document Format—Part 2: PDF 2.0. Retrieved 26

November 2018, from https://www.iso.org/standard/63534.html.

O’Connor, T.J. (2010, April 1). Grow Your Own Forensic Tools: A Taxonomy of Python

Libraries Helpful for Forensic Analysis [White paper]. Retrieved 12 August 2018,

from SANS Institute: https://digital-

forensics.sans.org/community/papers/gcfa/grow-forensic-tools-taxonomy-python-

libraries-helpful-forensic-analysis_6879.

O’Connor, T.J. (2013). Violent Python: A Cookbook for Hackers, Forensic Analysts,

Penetration Testers and Security Engineers. Boston: Elsevier.

Pittman, Ryan D. and Dave Shaver (2010). Windows Forensic Analysis. In Handbook of

Digital Forensics and Investigation, edited by Eoghan Casey, 209–300. London:

Elsevier Academic Press.

Pesce, Larry (2008). Document Metadata, the Silent Killer… [White paper]. Retrieved 22

August 2018, from SANS Institute: https://www.sans.org/reading-

room/whitepapers/privacy/document-metadata-the-silent-killer--32974.

Plaisance, Christopher (2016). Methods of Web Philology: Computer Metadata and Web

Archiving in the Primary Source Documents of Contemporary Esotericism.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

PDF Metadata Extraction with Python	 42

International Journal for the Study of New Religions, 7(1), 43–68.

doi:10.1558/ijsnr.v7i1.26074.

Plaisance, Christopher (2018a). pdf-metadata. Retrieved 30 November 2018 from

https://gitlab.com/nxl4/pdf-metadata/.

Plaisance, Christopher (2018b). pdf-metadata/README.md. Retrieved 20 January 2019

from https://gitlab.com/nxl4/pdf-metadata/blob/master/README.md.

Plaisance, Christopher (2018c). pdf-metadata/pdf-metadata.py. Retrieved 20 January

2010 from https://gitlab.com/nxl4/pdf-metadata/blob/master/pdf-metadata.py.

Sammons, John (2012). The Basics of Digital Forensics: The Primer for Getting Started

in Digital Forensics. Waltham: Elsevier.

Seitz, Justin (2014). Black Hat Python: Python Programming for Hackers and

Pentesters. San Francisco: No Starch Press.

Stamy, Matthew (2015). PyPDF2/pdf.py. Retrieved 30 November 2018, from

https://github.com/mstamy2/PyPDF2/blob/master/PyPDF2/pdf.py.

