
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Reverse-Engineering Malware: Malware Analysis Tools and Techniques (Forensics 610)"
at http://www.giac.org/registration/grem

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/grem

!!
[VERSION!1,!May!2014]!

!
! !

An Opportunity In Crisis

GIAC (GREM) Gold Certification

!
!

Author:!Harshit!Nayyar,!hanayyar@cisco.com!
Advisor:!Richard!Carbone!

!

Accepted:!May!28,!2014!!
!

Abstract!

This!paper!discusses!reverse!engineering!of!a!Mac!OS!X!malware!commonly!known!
as!Crisis!or!DaVinci.!It!shows!that!sophisticated!Mac!OS!X!malware,!having!features!
that!rival!those!usually!seen!only!in!Windows!threats!so!far,!are!now!a!reality.!It!
highlights!techniques!that!Crisis!uses!for!implementing!offensive!code!such!as!
debugger!detection,!code!obfuscation,!process!injection,!and!rootkits.!Tips!that!help!
in!analysis!of!such!code!are!also!discussed.!!
!
!

An Opportunity In Crisis! 2
!

Harshit!Nayyar,!hanayyar@cisco.com!! ! !

Table of Contents

Introduction!...!8!
1.! Analysis!Environment!...!9!
1.1.! Target!Virtual!Machine!..!9!
1.2.! Analysis!Virtual!Machine!..!10!
1.3.! Router!Virtual!Machine!...!10!

2.! Initial!Infection!..!10!
3.! Dropper:!Bootstrapping!Crisis!..!11!
4.! ObjectiveWC:!Elephant!in!the!room!..!30!
5.! Crisis!Core!Backdoor:!Installation!And!Persistence!..!34!
6.! Kext:!Kernel!Rootkit!..!39!
7.! Crisis!Core!Backdoor:!Code!Injection!..!50!
8.! Crisis!Backdoor!Agents:!Hooking!And!Swizzling!..!54!
9.! Core!Backdoor:!Configuration!..!58!
10.! Core!Backdoor:!Network!Command!And!Control!..!58!
11.! Summary!..!64!
11.1.! Techniques!...!65!
11.2.! Tips!..!66!

12.! Conclusion!...!67!
References!..!68!
13.! Appendix!..!71!
13.1.! Appendix!A1!–!IDA!Scripts!...!71!
13.1.1.! Script!to!comment!INT80!calls!...!71!
13.1.2.! Script!to!convert!Dropper!hash!to!import!name!..!72!
13.1.3.! Objective!C!Cleanup:!...!74!
13.1.4.! Rootkit!Kext!Hash!To!Function!..!77!
13.1.5.! Get!Cryptographic!Keys!From!Crisis!Backdoor!..!78!

13.2.! Appendix!A2!W!Other!Scripts!And!Tools!...!79!
13.2.1.! ObjectiveWC!tool!to!detect!presence!of!Crisis!Backdoor!............................!79!
Listing 12: Objective-C tool for Crisis Backdoor Detection!..!79!
13.2.2.! Crisis!Configuration!Decode!..!80!
13.2.3.! Crisis!Fake!CnC!and!Uninstaller!...!81!

13.3.! Appendix!B!W!Crisis!Diffs/Patches!...!83!
13.3.1.! Backdoor!(AntiDebug)!...!83!
13.3.2.! Backdoor!(Kext!Install)!...!83!

13.4.! Kext!(Fix!kmod_info!location!changed!in!OSX!Lion)!..!84!
13.4.1.! Kext!(Fix!for!struct!proc!changes!in!OSX!Lion)!...!84!

13.5.! Appendix!C!W!Property!List!Files!And!Resources!...!84!
13.5.1.! Launchd!Agent!Property!List!..!84!
13.5.2.! Crisis!Bundle!Property!List!..!85!
13.5.3.! Rootkit!Kext!Property!List:!..!85!
13.5.4.! OSAX!Script!Addition!Property!List!...!86!
13.5.5.! OSAX!Resource!File!For!New!Event!...!87!

An Opportunity In Crisis! 3
!

Harshit!Nayyar,!hanayyar@cisco.com!! ! !

13.5.6.! Configuration!JSON!...!88!
!
!

An Opportunity In Crisis! 4
!

Harshit!Nayyar,!hanayyar@cisco.com!! ! !

List of Figures

Figure!1:!Analysis!Environment!..!9!
Figure!2:!Main!Function!...!11!
Figure!3:!MachOView!Showing!UNIXTHREAD!Load!Command.!EIP!is!to!0x409C!

(Actual!Entry!Point)!...!12!
Figure!4:!MachOView!Showing!INIT_STUB!Custom!Segment!That!Has!The!Actual!

Entry!Point!...!13!
Figure!5:!IDA!Pro!Does!Not!Recognize!INIT_STUB!Segment!As!Code!..............................!14!
Figure!6:!Actual!Entry!Point!in!INIT_STUB!Interpreted!as!Code!..!14!
Figure!7:!MachOView!Showing!MH_PIE!Flag!Set!In!Binary!Header!..................................!15!
Figure!8:!MachOView!Allows!Editing!The!Binary!To!Remove!MH_PIE!Flag!.................!16!
Figure!9:!Code!Obfuscation!By!Making!System!Calls!Directly!Instead!of!C!functions!16!
Figure!10:!Output!of!IDAPython!Script!To!Cleanup!Code!Using!INT!80s!.......................!17!
Figure!11:!Code!Trying!To!Locate!/usr/lib/dyld!In!Memory!Starting!From!

0x8FE00000!..!18!
Figure!12:!Code!Showing!Use!Of!DLL!Export!Name!Hashing!For!Code!Obfuscation!.!20!
Figure!13:!Code!Used!To!Compute!Hash!From!Function!Names!.......................................!21!
Figure!14:!Crisis!Hashing!Algorithm!In!Python!...!21!
Figure!15:!Malware!Code!Before!Running!DeWobfuscation!Script!.....................................!22!
Figure!16:!Malware!Code!After!Running!Deobfuscation!Script!..!23!
Figure!17:!DeWobfuscated!Code!W!Explicit!Variable!Names!Such!As!var_ptr$_open,!

var_ptr$_write!And!var_ptr$_close!..!24!
Figure!18:!Examples!Showing!Payload!Structures!In!Dropper!Binary!Data!.................!26!
Figure!19:!Code!to!Compute!The!Directory!For!Dropping!Payloads!And!Creating!

That!Directory!...!27!
Figure!20:!A!File!Being!Created!For!A!Dropped!Component!...!27!
Figure!21:!Increment!Pointer!To!Move!To!Next!Payload!struct!...!28!
Figure!22:!An!Overview!Of!Crisis!Components!And!Their!Intercommunication!........!29!
Figure!23:!Dropper!Forking!To!Create!Core!Backdoor!Process!...!30!
Figure!24:!Raw!Objective!C!Is!Hard!To!Follow!In!IDA!Pro!6.0!...!31!
Figure!25:!ObjectiveWC!Cleanup!Script!Renames!Variables,!Adds!Comments!And!Data!

Cross!References!...!33!
Figure!26:!Use!of!Mach!Override!To!Replace!Implementation!of!_asl_send!With!

asl_send_replacement!Function!..!34!
Figure!27:!The!Replacement!Function!For!asl_send!..!34!
Figure!28:!xfrth!(debugger!detection)!Method!Being!Called.!..!35!
Figure!29:!Debugger!Detection!Function!..!35!
Figure!30:!Named!Port!Being!Used!To!Ensure!Single!Instance.!...!37!
Figure!31:!New!Character!Device!/dev/pfCPU!Being!Created!..!40!
Figure!32:!IOCTL!Handler!Function!..!41!
Figure!33:!Use!Of!Hashes!Instead!Of!Symbol!Names!...!43!
Figure!34:!Handling!of!IOCTL!807AEEBF!Stores!The!Address!Of!_kmod!Into!_i_kmod!

Within!The!Driver!...!43!

An Opportunity In Crisis! 5
!

Harshit!Nayyar,!hanayyar@cisco.com!! ! !

Figure!35:!lookupKextWithLoadTag!Disassembly!Showing!Reference!to!
sLoadedKexts!..!45!

Figure!36:!Crisis!Kext!Parsing!Code!Of!OSKext::lookupKextWithTag!To!Locate!
sLoadedKext!Address!..!46!

Figure!37:!Incorrect!Offset!Of!kmod_info!Member!Causing!A!Kernel!Panic!..................!47!
Figure!38:!System!Entry!Table!Hooking!...!48!
Figure!39:!Comments!Showing!Offsets!To!Be!Changed!For!Process!Hiding.!................!49!
Figure!40:!InjectEventHandler!Function!Saving!Backdoor!PID!in!Global!Variable!....!52!
Figure!41:!The!Code!to!Hide!Backdoor!Process!From!Activity!Monitor!.........................!53!
Figure!42:!Mach_Override!Function!Hooking.!..!55!
Figure!43:!Code!Showing!Replacement!Of!_AudioDeviceAddIOProc!...............................!55!
Figure!44:!Replacing!filteredProcess!Method!With!filteredProcessHook!Method!

Using!Method!swizzling!..!57!
Figure!45:!Packet!Capture!Showing!Initial!POST!Request!..!59!
Figure!46:!Hardcoded!UserWAgent!String!...!60!
Figure!47:!Decoding!Of!Fields!In!A!Decrypted!AUTH!Request!..!61!
Figure!48:!Code!Checking!For!Response!Length!of!0x40!..!62!
Figure!49:!Logical!View!of!AUTH!Response!..!63!
Figure!50:!Code!processing!AUTH!Response!Making!Checks!For!Authentication!.....!64!

An Opportunity In Crisis! 6
!

Harshit!Nayyar,!hanayyar@cisco.com!! ! !

List of Code Listings

Listing!1:!__sigaction!Structure!As!Defined!In!/usr/include/sys/signal.h!.....................!18!
Listing!2:!Snippet!Of!extern_proc!Structure!Showing!p_flag!..!36!
Listing!3:!Crisis!Launch!Agent!Plist!File!..!38!
Listing!4:!Start!Of!IOCTL!Handler!...!41!
Listing!5:!struct!proc!Showing!Process!Id!..!48!
Listing!6:!Changes!In!proc!struct!Between!OSX!10.6!To!10.7!..!49!
Listing!7:!IDAPython!Script!For!Crisis!Dropper!INT80!Cleanup!..!71!
Listing!8:!IDAPython!Script!To!Convert!Hash!to!Import!Name!..!74!
Listing!9:!IDAPython!Script!For!ObjectiveWC!Cleanup!...!77!
Listing!10:!IDAPython!Script!to!Convert!Crisis!Rootkit!Kext's!Hash!To!Function!......!78!
Listing!11:!IDAPython!Script!To!Get!AES!Keys!From!Unstripped!Sample!.....................!79!
Listing 12: Objective-C tool for Crisis Backdoor Detection!..!79!
Listing!13:!Python!Script!To!Decode!Crisis!Configuration!File!...!80!
Listing!14:!Fake!CnC!Server!Python!Script!..!83!

!

An Opportunity In Crisis! 7
!

Harshit!Nayyar,!hanayyar@cisco.com!! ! !

List of Tables

Table!1:!Embedded!Payload!List!Node!Structure!...!25!
Table!2:!Table!Of!Dropped!Components!...!28!
Table!3:!List!Of!IOCTL!Values!And!Their!Purposes.!...!42!
Table!4:!Showing!Operations/Commands!Supported!By!Crisis!Backdoor!....................!60!
Table!5:!Crisis!Auth!Request!Packet!Format!...!61!

An Opportunity In Crisis! 8
!

Harshit!Nayyar,!hanayyar@cisco.com!! ! !

Introduction!
! !

As the clichéd saying goes, “The Chinese word for Crisis contains a symbol for

Opportunity”. While the truth of that saying may be debatable, at times, a crisis does in

fact present an opportunity. In this case, the “crisis” refers to the malware colloquially

known as Crisis (OSX/Crisis or OSX/DaVinci), which presents an opportunity to explore

techniques that malicious software may use on Mac OS X and how its behavior can be

analyzed, unmasked and defended against.

There is, seemingly, no dearth of literature written on techniques both offensive

and defensive, for Malware targeting Windows. This is likely due to vast preponderance

of such malware. In numbers, Windows malware far outweighs all other platforms put

together. Ostensibly it does so in complexity as well given that malware like Sality,

Zeus/Zbot, ZeroAccess/Sirefef, Tidserv/Alureon and many more have managed to

survive in the wild for many years adapting to, evading and bypassing defenses. Targeted

threats such as Stuxnet, Duqu, Flamer, Operation Aurora remained hidden for several

months before giving their presence away. Malware of such complexity is seldom seen

on other platforms.

However, as the popularity of Mac OS X has increased, malware targeting it is

becoming increasingly prevalent. Based on game theory, it was initially predicted that

mass infections of Mac Malware would start once Mac OS X reaches a 16% market share

(Greenberg, 2012). Factors such as improving accuracy of Windows Antivirus products

are believed to have spurred a premature growth in Mac malware. OSX/Crisis may well

be the harbinger of a new wave of complex Mac threats, which can lead to a thriving

malware threat scene.

Although, OSX/Crisis has now been found to be a targeted remote control tool

(Citizen Lab, 2012), which was possibly designed for surveillance, any techniques used

in such tools are likely to be studied and copied by other malware. It was therefore a good

choice of analysis to get a view of state of the art in Mac malware tools and techniques.

An Opportunity In Crisis! 9
!

Harshit!Nayyar,!hanayyar@cisco.com!! ! !

This paper is structured as an analysis of different components of OSX/Crisis, and

the author has highlighted techniques and tips in the body, which are summarized at the

end of the paper.

1. Analysis Environment

The analysis environment consists of three VMs (virtual machines) running under

VMware Fusion 5 on a Mac Mini host as shown below:

Figure 1: Analysis Environment

1.1. Target Virtual Machine

This is an x86_64 Mac OS X Lion VM with IDA Pro 6.0 mac_server installed.

The mac_server is a standalone debugger server for Mac OS X, which listens by default

on port 23946/TCP. IDA GUI can be configured to connect to the mac_server running on

An Opportunity In Crisis! 1
0 !

Harshit!Nayyar,!hanayyar@cisco.com!! ! !

local host or a remote machine. The mac_server allows password-based authentication

for local and remote debugging sessions.

This VM is used to perform dynamic analysis on Crisis. The malware sample was

run in a debugger in this VM. Snapshots at important stages and states were taken

frequently and were restored as needed.

1.2. Analysis Virtual Machine

This is an x86_64 Mac OS X Mountain Lion VM with IDA Pro 6.0 installed. It is

used to perform static analysis and develop IDA scripts. Snapshots are not needed for this

VM. This task can be done on the host as well, though it is best to restrict all malware

research activity to VMs to avoid any chance of accidental infection.

1.3. Router Virtual Machine

A minimal Ubuntu VM, which acts as a gateway for the local VMware network

on which the target VM lives. This VM helps in analyzing network traffic from the

malware. It allows fine-grained control on network traffic from the analysis VMs. For

example using IPTables rules, traffic on certain ports from the target VM can be

redirected to a fake server process running on the same host, giving processes on the

target VM an illusion of talking to a command and control server.

2. Initial Infection

Crisis is reported to have used a Java Applet to drop and execute the initial

dropper. The applet did not exploit a Java-vulnerability. Instead, when run, Java showed

a dialog box asking the users’ permission before the applet, which has a self-signed

certificate, is allowed to access functionality commonly restricted by the sandbox

(Katsuki, 2012).

An Opportunity In Crisis! 1
1 !

Harshit!Nayyar,!hanayyar@cisco.com!! ! !

The applet detects that the platform being infected is Mac OS X and drops the

Mac OS X dropper. A Windows version of the malware exists as well and is detected

with names such as W32.Crisis and Win32/Boychi.A.

For this report, the Applet was not analyzed, since it is only the attack vector,

which is not an integral part of malware, and can change for different attacks.

3. Dropper: Bootstrapping Crisis

The sample under analysis was located on the Contagiodump website (Parkour,

2012). Its vital stats are:

MD5: 6f055150861d8d6e145e9aca65f92822

File Size: 993440

When analyzed in IDA Pro, the main function of the binary seems to do very little

as shown in Figure 2.

Figure 2: Main Function

An Opportunity In Crisis! 1
2 !

Harshit!Nayyar,!hanayyar@cisco.com!! ! !

The _main function is the usual entry point of most programs. In this case, it is

simply setting two local variables to 0 and returning 0. This is because unlike most

binaries, the real entry point of the Crisis dropper is not the _main function. The actual

entry point can be identified from the binary using the MachOView tool (Saghelyi,

2004).

To find the actual entry point, the EIP register in UNIXTHREAD load command

(LC_UNIXTHREAD) of the Mach-O file header may be checked. As shown by the

following two screenshot, the initial context of LC_UNIXTHREAD sets EIP to 0x409C,

which is in __INIT_STUB segment:

Figure 3: MachOView Showing UNIXTHREAD Load Command. EIP is to 0x409C

(Actual Entry Point)

!

An Opportunity In Crisis! 1
3 !

Harshit!Nayyar,!hanayyar@cisco.com!! ! !

Figure 4: MachOView Showing INIT_STUB Custom Segment That Has The Actual

Entry Point

Technique: Mac malware can have an entry point in a custom segment. This throws off

some debuggers and analysis tools.

Tip: Tools like MachOView can be used to quickly understand the structure of a Mac OS

X malware binary and perform tasks such as determining the real entry point.

Since IDA Pro does not recognize __INIT_STUB as a code segment, likely

because it is not standard, it does not create any functions for it.

An Opportunity In Crisis! 1
4 !

Harshit!Nayyar,!hanayyar@cisco.com!! ! !

Figure 5: IDA Pro Does Not Recognize INIT_STUB Segment As Code

It can be undefined and going into 0x409C and converting the hex into code (‘c’

in IDA), and then defining a function (‘p’), the function shown in Figure 6 can be seen.

Figure 6: Actual Entry Point in INIT_STUB Interpreted as Code

Kaiti Marcella� 6/5/14 12:36 PM
Deleted: Figure 6

An Opportunity In Crisis! 1
5 !

Harshit!Nayyar,!hanayyar@cisco.com!! ! !

This function makes a call to 0x49C3, which in the end leads to calling of

0x4B09, which contains the meat of the dropper and has several obfuscation tricks up its

sleeve.

Before proceeding with the analysis, this is a good time to describe a problem that

can be a source of much frustration. If using IDA Pro 6.0 for dynamic analysis or

debugging, due to ASLR, the binary will get loaded in a different address in memory

each time and breakpoints set in IDA will not get hit. It is possible that this behavior has

been fixed in newer version of IDA Pro.

A simple solution for this problem is to remove the MH_PIE flag from the binary.

Figure 7 shows MH_PIE flag in the Mach-O file header of the Crisis dropper.

Figure 7: MachOView Showing MH_PIE Flag Set In Binary Header

MachOView provides as easy interface to edit the binary removing the MH_PEI

flag as shown in Figure 8.

Kaiti Marcella� 6/5/14 12:36 PM
Deleted: Figure 7

Kaiti Marcella� 6/5/14 12:36 PM
Deleted: Figure 8

An Opportunity In Crisis! 1
6 !

Harshit!Nayyar,!hanayyar@cisco.com!! ! !

Figure 8: MachOView Allows Editing The Binary To Remove MH_PIE Flag

Tip: ASLR in Mach-O file can be easily removed by removing the MH_PIE flag from the

binary header.

Returning to malware analysis, the malware code is found to contain many INT

80 instructions. INT 80 is the syscall (system call) interrupt on Mac OS X. The malware

calls system calls directly instead of using library functions as shown in Figure 9.

Figure 9: Code Obfuscation By Making System Calls Directly Instead of C functions

Such code can be analyzed by finding the system call service numbers, which is

placed into EAX before the INT 80 instruction. In the above figure, the service number

0x2E is used. Mac OS X system call service numbers can be obtained from the following

file. In this case, system call corresponding to 0x2E, i.e. SYS_sigaction, is used.

/usr/include/sys/syscall.h

Since similar code is used in several places, it can be quite tedious to manually

check the system call number being called. To get around this issue, an IDAPython script

Kaiti Marcella� 6/5/14 12:36 PM
Deleted: Figure 9

An Opportunity In Crisis! 1
7 !

Harshit!Nayyar,!hanayyar@cisco.com!! ! !

was written to find such code and add comments giving information of which function

call is being called. This script is given in the Appendix A-1 in Section 13.1.1.

The following figures show some examples of de-obfuscated code:

Figure 10: Output of IDAPython Script To Cleanup Code Using INT 80s

Technique: Instead of calling API methods, malware may use INT 80 directly to

obfuscate code.

Tip: Use IDAPython or IDC scripts to deobfuscate code that uses INT 80 directly.

The first example above shows SYS_sigaction system call being made - the

dropper is setting a fake signal handler to avoid showing errors to users when the dropper

crashes. As per the definition of sigaction from (/usr/include/sys/signal.h), the signal

An Opportunity In Crisis! 1
8 !

Harshit!Nayyar,!hanayyar@cisco.com!! ! !

mask being applied is 0x0B, which is SIGSEGV. This code is masking crashes due to

segmentation violations.

Listing 1: __sigaction Structure As Defined In /usr/include/sys/signal.h

This is likely because Crisis dropper crashes often on OSX Lion trying to locate

the /usr/lib/dyld mapped in memory:

Figure 11: Code Trying To Locate /usr/lib/dyld In Memory Starting From

0x8FE00000

An Opportunity In Crisis! 1
9 !

Harshit!Nayyar,!hanayyar@cisco.com!! ! !

As shown above, the code starts at base address 0x8FE00000 and tries to locate

the MH_MAGIC (0xfeedface - from /usr/include/mach-o/loader.h) incrementing 0x1000

at a time. However, this code is unstable since 0x8FE00000 may not even be allocated,

let alone contain dyld, due to ASLR in Lion and higher versions. As a result, the code can

cause a segmentation violation trying to read from that address, leading to user-visible

crashes. It is likely that this forced the malware’s developer(s) to mask SIGSEGV.

To bypass such crashes while running in a debugger, the author patched the

binary in memory, assigning it the actual location of dyld. This can be achieved by

editing the hex instructions directly in hex-view of IDA Pro. In this case, since the library

is loaded at a different address each time the dropper is executed, patching in memory is

the best approach. Another more convenient method for larger static patches is to edit the

disassembly by enabling the patch menu in IDA’s GUI configuration file i.e. by setting

DISPLAY_PATCH_SUBMENU to YES in idagui.cfg. Details of this process can be

found in the blog entitled “How to Patch Binary with IDA Pro” (Ramilli, 2011).

Having disabled ASLR, dynamic analysis of the dropper can continue. The

dropper opens “/System/Library/CoreServices/SystemVersion.plist” and parses it to find

the system version which it compares with 10.6 (Leopard) and 10.7 (Lion). It does this

because libraries are randomized due to ASLR in 10.7; as a result library functions have

to be resolved in memory in 10.7. The code calls functions like __dyld_image_count,

__dyld_image_name etc. to walk through the list of loaded libraries to find

‘libsystem_kernel.dylib’ and ‘libsystem_c.dylib’ which contain the set of functions

needed for the dropper.

However, the code doesn’t directly compare strings with library or function

names - it uses an obfuscation technique often seen in Windows malware and exploit

shell code. This technique requires having a hashing function through which all library

exports or other strings such as library names are passed until a match is found for the

hash of the desired string.

An Opportunity In Crisis! 2
0 !

Harshit!Nayyar,!hanayyar@cisco.com!! ! !

For example consider the following code:

Figure 12: Code Showing Use Of DLL Export Name Hashing For Code Obfuscation

Hash values like 0x9100A119 and 0x1327D26A are being passed to a function,

which returns function addresses that are then saved on the stack. This code appears

meaningless without the translation of hash values to strings. The hashing code used by

the binary is given in Figure 13.

Kaiti Marcella� 6/5/14 12:36 PM
Deleted: Figure 13

An Opportunity In Crisis! 2
1 !

Harshit!Nayyar,!hanayyar@cisco.com!! ! !

Figure 13: Code Used To Compute Hash From Function Names

This code can be translated to the following python:

Figure 14: Crisis Hashing Algorithm In Python

To clean up the code, the author wrote an IDAPython script that finds all such

hash values, adds comments for the corresponding string. This script is given in

Appendix A-1 in Section 13.1.2.

An Opportunity In Crisis! 2
2 !

Harshit!Nayyar,!hanayyar@cisco.com!! ! !

In cases where functions are resolved, the script changes the variable name where

the address of the resolved function is stored to match the function name (for example

var_ptr$__dyld_image_count). Figure 15 show what the function looks before the code is

de-obfuscated, whereas Figure 16 shows the same function after the script has de-

obfuscated the code.

Figure 15: Malware Code Before Running De-obfuscation Script

Kaiti Marcella� 6/5/14 12:36 PM
Deleted: Figure 15

Kaiti Marcella� 6/5/14 12:36 PM
Deleted: Figure 16

An Opportunity In Crisis! 2
3 !

Harshit!Nayyar,!hanayyar@cisco.com!! ! !

!

Figure 16: Malware Code After Running Deobfuscation Script

Technique: Malware can obfuscate its code by replacing all library import function

names with a hashing function. All functions exported by a library are then hashed and

the hash compared to determine the actual function name to be called.

An Opportunity In Crisis! 2
4 !

Harshit!Nayyar,!hanayyar@cisco.com!! ! !

Tip: If hiding function names through a hashing function obfuscates malware code, the

hashing function can be analyzed and an IDC/IDAPythond script can be written to de-

obfuscate the binary.

Due to renaming of functions, the code becomes a lot more readable. For

example, it is clear that the following code is responsible for opening, writing-to and

closing a file based on calls to var_ptr$_open, var_ptr$_write and var_ptr_$close

function pointers.

Figure 17: De-obfuscated Code - Explicit Variable Names Such As var_ptr$_open,

var_ptr$_write And var_ptr$_close

Having de-obfuscated the code, it is easy to see that the malware creates a

An Opportunity In Crisis! 2
5 !

Harshit!Nayyar,!hanayyar@cisco.com!! ! !

function pointer table on the local stack for the functions it will use subsequently.

After finding all functions it needs to operate, the dropper is ready to drop its

payload(s). The payloads to be dropped are in the form of an Array of structures whose

members are shown below:

Table

1: Embedded

Payload List

Node

Structure

Some

examples of

this structure

are shown

below:

OFFSET NAME Size

0x00 Unkown DWORD

0x04 Payload_File_Name *

0x24 Dropped_Dir_Name *

0x44 Payload_Size (Bytes) DWORD

0x48 Payload_Bytes UCHAR[Payload_Size]

An Opportunity In Crisis! 2
6 !

Harshit!Nayyar,!hanayyar@cisco.com!! ! !

Figure 18: Examples Showing Payload Structures In Dropper Binary Data

To drop the payload files, the malware loops through the list of these structures

dropping the contents in the file with the name as specified in each structure. As the

following code shows, the dropper creates a directory to drop a payload file by calling

‘mkdir’ function with $HOME/Library/Preferences/<Payload_Dir_Name>, where

<Payload_Dir_Name> is at an offset of 0x24 from the base of the payload structure given

in Table 1.

Kaiti Marcella� 6/5/14 12:36 PM
Deleted: Table 1

An Opportunity In Crisis! 2
7 !

Harshit!Nayyar,!hanayyar@cisco.com!! ! !

Figure 19: Code to Compute The Directory For Dropping Payloads And Creating

That Directory

Note that the dropper can create different directories for each payload file.

However, in the sample analyzed, the target directory was the same for all payload

structures.

Figure 20: A File Being Created For A Dropped Component

Referring to the names used in Table 1, the code snippet above shows the dropper

opening a file with name <Payload_File_Name> and writing the <Payload> of size

<Payload_Size> bytes in that file. This is done in a loop for each payload structure.

At the end of the iteration, the code increments the current pointer to the next

Payload to be dropped and continues to the next iteration as shown in Figure 21.

Kaiti Marcella� 6/5/14 12:36 PM
Deleted: Table 1

Kaiti Marcella� 6/5/14 12:36 PM
Deleted: Figure 21

An Opportunity In Crisis! 2
8 !

Harshit!Nayyar,!hanayyar@cisco.com!! ! !

Figure 21: Increment Pointer To Move To Next Payload struct

In all, seven files are dropped. The following table describes the payloads dropped

and their file types.

Dropped File Name File Type Purpose

IZsROY7X.-MP Mach-O executable i386,
ObjectiveC

Core backdoor module

6EaqyFfo.zIK Mach-O 64-bit kext bundle
x86_64

64 Bit Kernel Rootkit

WeP1xpBU.wA Mach-O object i386 32 Bit Kernet Rootkit

lUnsA3Ci.Bz7 Mach-O universal binary Backdoor Agent – Infostealer
and Userland rootkit

mWgpX-al.8Vq Mach-O universal binary XPC Service Executable

eiYNz1gd.Cfp Data AES128 Encoded JSON
configuration file

q45tyh TIFF Image Data Image shown during Demo
mode of the malware.

Table 2: Table Of Dropped Components

The following figure gives an overview of these components and how they

communicate. It show the dropper drop several components such as core-backdoor

responsible for communication with CnC server, reading in configuration, maintaining

logs and communicating with Kernel Rootkit and several backdoor agents. Backdoor

agents are able to steal data from browsers, communication tools, contacts etc. They can

communicate with the core backdoor through shared memory or XPC depending upon

the OS version.

An Opportunity In Crisis! 2
9 !

Harshit!Nayyar,!hanayyar@cisco.com!! ! !

Figure 22: An Overview Of Crisis Components And Their Intercommunication

Having dropped its payloads, the dropper forks a child process in which it starts

the core backdoor process as shown in the following code snippet:

An Opportunity In Crisis! 3
0 !

Harshit!Nayyar,!hanayyar@cisco.com!! ! !

Figure 23: Dropper Forking To Create Core Backdoor Process

Tip: To debug forks, that execute child processes, the code may be patched to NOP out

the execution and the child process can be started in another debugger.

The parent and child processes both exit out, having completed the drop-execute

functionality.

The dropper is only a preview of things to come. The dropped binaries hide many

interesting secrets, which are discussed in the following sections.

!

4. Objective-C: Elephant in the room
!

Before we move on to the actual analysis of the dropped components, it is

appropriate to address an important issue at this stage - the issue of Objective-C code.

An Opportunity In Crisis! 3
1 !

Harshit!Nayyar,!hanayyar@cisco.com!! ! !

Both the core backdoor and the backdoor agents are implemented using Objective-C.

Moreover, Objective-C is used to create many other Mac OS X malwares.

Objective-C is a C language derivative that adds object oriented programming and

message passing semantics to C. It is the main language in which many core components,

of the Mac OS X operating system, are written. Major frameworks like Cocoa are written

in Objective-C. Applications such as Finder, Activity Monitor etc., which use Cocoa, are

also written in Objective-C.

Disassemblers like IDA are not designed to handle Objective-C very well. For

example, in the following disassembly, most calls appear to be made to the

_objc_msgSend function:

Figure 24: Raw Objective C Is Hard To Follow In IDA Pro 6.0

Objective-C code uses the _objc_msgSend function to call methods or member

An Opportunity In Crisis! 3
2 !

Harshit!Nayyar,!hanayyar@cisco.com!! ! !

functions belonging to a class. The class whose method is being called and the name of

the method to be called (Selector) are passed in as the first two arguments to the

_objc_msgSend. Other arguments pushed on the stack are passed into the method being

called and after the call, the code returns to the instruction following the call to

_objc_msgSend. This makes reading Objective-C disassembly, cumbersome and hard to

follow.

Instead of doing a deep dive into the intricacies of compiled Objective-C code, the

author has provided an IDAPython script that does cleanup of Objective-C code to make

it more readable in Appendix A1, Section 13.1.3.

It is very similar to the IDC script called fixobjc.idc and other such scripts online

(Hengeveld, 2003). Some Objective C cleanup techniques are also discussed in The Mac

Hacker’s Handbook (Miller & Zovi, 2009).

Aside from writing it in IDAPython, a key enhancement in our script is that it

adds a data cross reference from the point at which a class method is being called to the

implementation of that method. This makes going from the caller to callee easier. The

same process would otherwise take several steps:

1. Going from caller to the Selector name

2. From the name to the list of methods for the class where the name is

related to the implementation

3. Then to the actual implementation.

Adding a data-cross reference reduces this process into a single step to go from

caller to callee.

The code in Figure 25 is same as the screenshot in Figure 24 after the python

script to cleanup Objective-C has been run. Now, not only is it clear that the message

being sent is called “msg_makeBackdoorResident”, there is also a data cross reference

Kaiti Marcella� 6/5/14 12:36 PM
Deleted: Figure 25

Kaiti Marcella� 6/5/14 12:36 PM
Deleted: Figure 24

An Opportunity In Crisis! 3
3 !

Harshit!Nayyar,!hanayyar@cisco.com!! ! !

(highlighted), double clicking which will take the analyst to the implementation of the

makeBackdoorResident method of the RCSMCore class.

Figure 25: Objective-C Cleanup Script Renames Variables, Adds Comments And

Data Cross References

Note that the script is by no means comprehensive and can miss several such

references. However, attempting to make the script cover all cases of method calls would

be a rather long effort that would distract from our current task at hand.

Technique: Code written in Objective-C requires specialized knowledge to reverse and

can be harder to disassemble.

Tip: An IDA script maybe written to clean up Objective-C code to make it more readable.

The analysis of dropped malware components can now continue.

An Opportunity In Crisis! 3
4 !

Harshit!Nayyar,!hanayyar@cisco.com!! ! !

5. Crisis Core Backdoor: Installation And Persistence
!

The core backdoor module is the first component to be executed by the dropper. It

is responsible, among other things, for making the malware resident/persistent, and

installing itself and all other components required for the malware to do its job.

The core backdoor module starts by overriding asl_send function using

mach_override package:

Figure 26: Use of Mach Override To Replace Implementation of _asl_send With

asl_send_replacement Function

As shown in Figure 27 below, asl_send_replacement function simply returns 1

Figure 27: The Replacement Function For asl_send

The use of mach_override package is discussed in section 8 on hooking

techniques. The malware replaces the asl_send function so that errors or events due to the

backdoor do not show up on the system log.

This is followed by a check to see if the binary was started with a “-p” command

line argument. The meaning of this argument and the functionality it invokes is discussed

in a Section 7. For now, it suffices to know that this functionality can only work after the

backdoor module has installed some essential components.

An Opportunity In Crisis! 3
5 !

Harshit!Nayyar,!hanayyar@cisco.com!! ! !

The code then calls a function called “xfrth”

Figure 28: xfrth (debugger detection) Method Being Called.

While the name of the method is not descriptive, this function is responsible for

debugger detection.

Figure 29: Debugger Detection Function

The technique used requires making a sysctl call to obtain process properties and

checking if P_TRACED flag is set.

The sysctl function is a general-purpose function whose output depends upon the

type of request made. The function prototype is given below:

!
sysctl(const int *name, u_int namelen, void *oldp,size_t *oldlenp,
const void *newp, size_t newlen);
!

As highlighted below, the name array consists of the following:

!
name = [0x01, 0x0E, 0x01, PID]
namelen = 4

!

An Opportunity In Crisis! 3
6 !

Harshit!Nayyar,!hanayyar@cisco.com!! ! !

This! translates! to! the! following! values! as! per! the! definitions! in!

/usr/include/sys/sysctl.h:!

!
CTL_KERN, KERN_PROC, KERN_PROC_PID, <PID>
!

!
!

!
!

The returned struct is defined as:

!

"
Listing 2: Snippet Of extern_proc Structure Showing p_flag

!
The code then checks p_flags for P_TRACED.

This technique is very similar to checking “BeingDebugged” flag in the PEB of a

Windows process (Falliere, 2007). It is easy to bypass by patching the binary. A diff for

the sample under analysis is provided in Appendix B, Section 13.3.1. It can be applied to

the dropper binary using any one of the several IDA Dif patching tools available online.

We used a simple python script (Ramilli, 2011).

Technique: Malware can detect the presence of a debugger by checking the P_TRACED

flag in the extern_proc struct returned by the appropriate sysctl call.

Tip: The malware binary can be patched to NOP out the call to the debugger detection

function.

An Opportunity In Crisis! 3
7 !

Harshit!Nayyar,!hanayyar@cisco.com!! ! !

Next, the code checks if any other instances of the core backdoor are running. It

registers a named port called “com.apple.mdworker.executed”:

!
Figure 30: Named Port Being Used To Ensure Single Instance.

If the port registration fails, it indicates that another instance is already running.

Windows Malware tends to create a named Mutex and check for its presence to ensure

that only a single malware process runs at a time. Such checks can often be used to detect

if a system is infected. The script provided in section 13.2.1 of Appendix 1-B tries to

register the same named port as Crisis, failing which, the system can be considered

infected with OSX/Crisis.

Technique: Mac malware can ensure that only a single malware process runs at a time

by registering a named port.

Tip: Some Mac malware can be detected by checking for a named port they register.

An Opportunity In Crisis! 3
8 !

Harshit!Nayyar,!hanayyar@cisco.com!! ! !

To ensure that the backdoor process runs after restart, Crisis creates a launchd

launch agent. Launchd is a system-wide per-user daemon/agent manager. A launch agent

is a process tied to a single user and runs when the user is logged in.

This is achieved by placing a property list (plist) file pointing to the process to be

launched in the $HOME/Library/LaunchAgents folder of the user.

The property list file for the Crisis launch agent is given in Appendix C Section

13.5.1. A snippet is given in Listing 3 below.

...
 <key>Label</key>
 <string>com.apple.mdworker</string>
 <key>LimitLoadToSessionType</key>
 <string>Aqua</string>
...
 <key>ProgramArguments</key>
 <array>
 <string>/Users/$USER/Library/Preferences/jlc3V7we.app/IZsROY7X.-
MP</string>
 </array>
….

Listing 3: Crisis Launch Agent Plist File

As shown above, a launch agent is being created that points to the dropped

backdoor binary (IZsROY7x.-MP) and only executes when the target user logs in via the

GUI interface (Aqua).

Also, the dropped directory jlc3V7we.app is made into a “real” bundle by

dropping a bundle property list file. The contents of this file are given in the Appendix C.

A Mac OS X bundle is a logical concept - It is a directory containing an application and

its resources and is displayed to the user as a single entity. It ensures ease of use, and

deters users from inadvertently modifying important files of an application. It is also an

easy, system compliant way for a malware to keep its components together like an

installed application.!

An Opportunity In Crisis! 3
9 !

Harshit!Nayyar,!hanayyar@cisco.com!! ! !

6. Kext: Kernel Rootkit

After installing itself as a launch daemon and an installed bundle, the backdoor

attempts to drop a kext file. Kext files are kernel extensions similar to Windows device

drivers or Linux kernel modules.

Crisis needs specific conditions to be met before it drops the kernel extension.

The code can be patched to avoid specific checks and ensure that the kernel extension is

installed. The following changes need to be made:

1. There is a check to ensure that the uid of the user is not 0 but effective uid (euid)

is 0. The dropper can be run as root and the code modified to bypass that check.

2. If running on OSX Lion, as is the case here, a check has to be by passed. This

check avoids kext installation on Lion because some rootkit functionality causes

Kernel panic on Lion.

The patch to implement these changes is provided in Appendix B, Section 13.3.2.

Crisis starts by creating a kext bundle and installing a property list file given in

Appendix C, Section 13.5.3. The backdoor calls the kextload system command to load

the kext. The kext is loaded under the name “com.apple.mdworker”.

The author used hardware debugging provided by VMware (snare, 2012) for

dynamic analysis. The kext starts by adding a character device, which can handle open,

close and IOCTL messages. The name of the character device is “/dev/pfCPU”.

An Opportunity In Crisis! 4
0 !

Harshit!Nayyar,!hanayyar@cisco.com!! ! !

Figure 31: New Character Device /dev/pfCPU Being Created

The backdoor can now open the device and send IOCTLs to the driver. As shown

in Figure!31, the kext defines functions to be called when the character device is opened,

closed etc. - most interesting function amongst these is the “_cdev_ioctl”, which handles

IOCTLs.

The debugger command “showallkexts” can be issued to find where the rootkit

kext is loaded as shown below:

(gdb) showallkexts
kmod_info address size id refs version name
0x010556c0 0x01053000 0x00005000 102 0 2.0 com.apple.mdworker
0x00ed3960 0x00ecf000 0x00007000 98 0 0089.36.83 com.VMware.kext.vmmemctl
0x64674900 0x6466b000 0x0000c000 97 0 0089.36.83 com.VMware.kext.vmhgfs
0x01558620 0x01550000 0x0000b000 95 0 3.0 com.apple.filesystems.autofs
0x0154ea20 0x0154b000 0x00005000 94 1 1.0 com.apple.kext.triggers

The rootkit kext is loaded at 0x01053000, and the function of interest is the

IOCTL handler starting at 0xB44 within the text segment as highlighted in Figure!32.

Kaiti Marcella� 6/5/14 12:36 PM
Deleted: Figure!31

Kaiti Marcella� 6/5/14 12:36 PM
Deleted: Figure!32

An Opportunity In Crisis! 4
1 !

Harshit!Nayyar,!hanayyar@cisco.com!! ! !

Figure 32: IOCTL Handler Function

Hence, a breakpoint at the offset 0x01053000 + 0x1000 (start of text segment) +

0xB44 (start of function), is appropriate. To confirm that the breakpoint was added in the

right pace, the disassembly at the address of the breakpoint can be compared to the

“cdev_ioctl” function code:

(gdb) x/16i (0x01053000 + 0x1000 + 0xB44)
0x1054b44: push ebp
0x1054b45: mov ebp,esp
0x1054b47: push edi
0x1054b48: push esi
0x1054b49: sub esp,0x50
0x1054b4c: mov eax,ds:0xb19d00
0x1054b51: mov DWORD PTR [ebp-0xc],eax
0x1054b54: mov eax,DWORD PTR [ebp+0xc]
0x1054b57: cmp eax,0x407e6b22
0x1054b5c: mov esi,DWORD PTR [ebp+0x10]
0x1054b5f: jg 0x1054ccf
0x1054b65: cmp eax,0x207bee79
0x1054b6a: jg 0x1054d33
0x1054b70: cmp eax,0x807e7fc1
0x1054b75: jg 0x1054bb5
0x1054b77: cmp eax,0x807aeebf

Listing 4: Start Of IOCTL Handler

Having established a way to do dynamic analysis, the functionality of the kext can be

studied

An Opportunity In Crisis! 4
2 !

Harshit!Nayyar,!hanayyar@cisco.com!! ! !

The list of IOCTLs supported by the kext and their details are summarized in

Table!3.

IOCTL Value Arguments Purposes

807F6B0A OS Version Major, OS Version
Minor

Find sysent (system call entry table)

807AEEBF Symbol Name Hash, Address in
memory

Symbol resolved

80FF6FDC Backdoor Name (user-name) Hide Process (pid is extracted from
IOCTL parameters)

807FFB23 Backdoor Name (user-name) Unhide Process And Remove hooks

80FF6B26 Backdoor Name (user-name) Register a backdoor in list

207BEE7A None Hide Kext In OSArray

807E7FC2 Directory Name Hide Directory

407E6B23 None Get Number Of
Registered/Connected Backdoors

Table 3: List Of IOCTL Values And Their Purposes.

The backdoor, connects to the kext sending it the IOCTL 80FF6B26, along with

the user-name to register itself with the kext. Only registered backdoors can interact with

the kext and send any other IOCTLs.

One of the most interesting features of OSX/Crisis is the technique it uses to

obtain the address of certain symbols in the kernel memory. This is called symbol

resolution and is done in user-land by the core backdoor and passed to the kernel root kit

in an IOCTL. The IOCTL number 807AEEBF carries this information. The backdoor

uses obfuscation just like the dropper to avoid using actual symbol names. It uses hashes,

which are compared to the hashes of the full list of symbols in the kernel. The symbol

address of a matched hash is then passed down in the IOCTL to the kext.

The function ‘solveKernelSymbolsForKext’ finds the address corresponding to

Kaiti Marcella� 6/5/14 12:36 PM
Deleted: Table!3

An Opportunity In Crisis! 4
3 !

Harshit!Nayyar,!hanayyar@cisco.com!! ! !

the hash of a symbol name. For a list of hashed symbol names, the function hashes each

symbol in /mach_kernel and compares the requisite hash to this list. When a hash

matches, it sends the IOCTL 807AEEBF down to the kext giving the hash and the

address of the resolved symbol in memory. An IDAPython script to de-obfuscate this

code by converting the hash to its corresponding symbol name is given in the Appendix

A1, Section 13.1.4. The script adds a comment to the code to show what symbol is

resolved as shown below:

Figure 33: Use Of Hashes Instead Of Symbol Names

Figure!33 shows the backdoor finding the address of _kmod (hash DD2C36D6)

in /mach_kernel and then sending it down to the kext with IOCTL 807AEEBF. The

comment “_kmod”, added by the de-obfuscation script makes this clear.

The following screenshot shows the kext, processing the IOCTL, and storing the

address of _kmod in the _i_kmod global variable:

Figure 34: Handling of IOCTL 807AEEBF Stores The Address Of _kmod Into

_i_kmod Within The Driver

The following symbols are resolved and passed to the kext:

_IORecursiveLockLock
__ZN6OSKext21lookupKextWithLoadTagEj

Kaiti Marcella� 6/5/14 12:36 PM
Deleted: Figure!33

An Opportunity In Crisis! 4
4 !

Harshit!Nayyar,!hanayyar@cisco.com!! ! !

_allproc
_kmod
_nprocs
_nsysent
_proc_list_lock
_proc_list_unlock
_proc_lock
_proc_unlock
_tasks
_tasks_count
_tasks_threads_lock

Technique: To bypass the problem of finding symbol addresses when running in kernel

space, symbols can be resolved in user-land and sent down to the a rootkit kext in

IOCTLs.

Note that not all of these symbols are actually used in the kext. This shows that

either some functionality was to be implemented and was not, or some has been removed.

One case is that of the _kmod symbol which points to the start of the kmod_info_t linked

list of loaded kernel extensions. The function where this is used is called

“_hide_kext_leopard” but it is not called by any code.

The actual code used to hide the kext is in a function called _hide_kext_osarray,

which is called when the IOCTL 207BEE7A is received. This function uses a trick to

locate the sLoadedKexts OSArray in memory. Crisis kext has to resort to this trick

because the symbol is no longer exported and cannot be discovered directly in user mode

and passed down to the kext in an IOCTL like other symbols. Hence it has to be found in

kernel memory by the kext itself.

To determine the address of sLoadedKexts, Crisis parses the code of the function

OSKext::lookupKextWithLoadTag, exported as the symbol

__ZN6OSKext21lookupKextWithLoadTagEj. This function references the sLoadedKexts

OSArray in code, and hence it contains the address of that array in code.

An Opportunity In Crisis! 4
5 !

Harshit!Nayyar,!hanayyar@cisco.com!! ! !

The relevant disassembly of the function OSKext::lookupKextWithLoadTag is

given in Figure! 35. Clearly, the sLoadedKexts OSArray comes next to the first call

instruction (0xE8). The rootkit code, looks for the first 0xE8 in code, ensures that this is a

call to a method (starts with 0x55), and then treats the DWORD 6 bytes from the start of

the call instruction as the sLoadedKexts OSArray.

Figure 35: lookupKextWithLoadTag Disassembly Showing Reference to

sLoadedKexts

Kaiti Marcella� 6/5/14 12:36 PM
Deleted: Figure!35

An Opportunity In Crisis! 4
6 !

Harshit!Nayyar,!hanayyar@cisco.com!! ! !

Figure 36: Crisis Kext Parsing Code Of OSKext::lookupKextWithTag To Locate

sLoadedKext Address

Technique: The address of sLoadedKext can be obtained by parsing the code of

OSKext::lookupKextWithLoadTag in memory. The sLoadedKext is an array of loaded

kexts and the rootkit can remove itself from that list without affecting system stability.

Now that the sLoadedKexts OSArray is known, the code locates the kext with

name “com.apple.mdworker”. If it is the last kext in the list, the code simply reduces the

list size by 1. If it is not the last kext in the list, the code modifies the list copying the last

kext in place of the rootkit kext and reduces the list size by 1. This takes care of hiding

An Opportunity In Crisis! 4
7 !

Harshit!Nayyar,!hanayyar@cisco.com!! ! !

the kext itself. Once this is done, listing of all loaded kexts such as through command

“kextstat” will not show this kext in the list.

Note that out of the box, the kext will crash in OSX Lion (at least in xnu_debug-

1699.32.7) trying to hide itself. A small patch can fix the issue. The root cause of the

crash is that code expects the kmod_info member to be at an offset of 0x28, whereas it is,

in fact, at an offset of 0x2C. The crash happens because the code tries to dereference a

bad pointer.

Figure 37: Incorrect Offset Of kmod_info Member Causing A Kernel Panic

Technique: BSD Rootkit techniques such as process hiding can be used effectively with

Mac OS X.

Tip: At times small patches fixing code can avoid kernel panics and help with dynamic

analysis; malware creators may fix such bugs in later versions.

The rootkit provides facilities to hide directories as well. This is done by replacing

functions in the system call table (sysent), with trojanized functions that call the original

functions and then cherry pick responses returned in the caller’s buffer based on certain

criteria. The handlers for the following system calls are replaced:

• SYS_getdirentries,

• SYS_getdirentriesattr

• SYS_getdirentries64

An Opportunity In Crisis! 4
8 !

Harshit!Nayyar,!hanayyar@cisco.com!! ! !

 The following code snippet shows handler function for SYS_getdirentries

being replaced by _hook_getdirentries. This function calls the original handler and then

compares the returned list with a list of exclusions stored for each registered backdoor. If

the directory name is present in the exclusion list, it is skipped. This process is very

similar to the technique of SSDT table hooking in Windows (skape & Skywing, 2008).

Figure 38: System Entry Table Hooking

In addition to hiding files and directories, the rootkit can also hide processes. To

hide a process, it uses Direct Kernel Object Manipulation. It finds the base of process list

in the kernel (_allproc) and then unlinks the node holding the information of the process

to be hidden.

The symbol _allproc points to a doubly linked list of struct proc, defined in the

following header file:
struct proc {
 LIST_ENTRY(proc) p_list; /* List of all processes. */

 pid_t p_pid; /* Process identifier. (static)*/
 void * task; /* corresponding task (static)*/
 struct proc * p_pptr; /* Pointer to parent process.(LL) */
 pid_t p_ppid; /* process's parent pid number */
 pid_t p_pgrpid; /* process group id of the process (LL)*/
 uid_t p_uid;
 …

Listing 5: struct proc Showing Process Id

The process hiding code runs partially in Mac OS X version 10.7.5. While, it is

able to hide the process, itself, the code is not able to remove the process from the list of

sibling processes. This is because the process structure has changed from OS X Snow

Leopard (10.6) to OS X Lion (10.7) in the XNU kernel. As a result the offsets of the list

of sibling processes has changed:

An Opportunity In Crisis! 4
9 !

Harshit!Nayyar,!hanayyar@cisco.com!! ! !

 struct proc * p_pptr; /* Pointer to parent process.(LL) */
 pid_t p_ppid; /* process's parent pid number */
 pid_t p_pgrpid; /* process group id of the process (LL)*/
+ uid_t p_uid;
+ gid_t p_gid;
+ uid_t p_ruid;
+ gid_t p_rgid;
+ uid_t p_svuid;
+ gid_t p_svgid;
+ uint64_t p_uniqueid; /* process uniqe ID */

 lck_mtx_t p_mlock; /* mutex lock for proc */

Listing 6: Changes In proc struct Between OSX 10.6 To 10.7

The diff above shows new fields that have been added.

Figure 39: Comments Showing Offsets To Be Changed For Process Hiding.

However, fortunately the rootkit code does not crash on OS X Lion. It simply

accesses the values of p_mlock as if they were a linked list and does not cause any major

operational problems.

In conclusion, OSX/Crisis has a compact, but feature rich kernel rootkit, which

has several interesting characteristics, though it seems to have fallen into disuse with

An Opportunity In Crisis! 5
0 !

Harshit!Nayyar,!hanayyar@cisco.com!! ! !

newer version of OS X. It is probably being abandoned in favor of user-land rootkit

techniques.

7. Crisis Core Backdoor: Code Injection

Process injection is commonly seen in malware on Windows. It allows the

malware to evade antivirus or modify run-time process behavior by hooking functions for

implementing user-land rootkits and stealing information or injecting fields into web

forms (Man-In-The-Browser).

On Windows, several methods of process injection are possible. Two commonly

seen ones are:

● Hollow Process Injection - the target process is created in suspension, and its code

is replaced with malicious code, so that when the main thread is resumed,

malicious code executes. Whereas for all intents and purposes, the OS structures

show that the original target process is running.

● DLL Injection - A DLL (Dynamically Linked Library) is loaded into a running

target process by either creating a remote-thread that loads the DLL or causing the

DLL to be loaded upon an event using the SetWindowsHook technique (Lukan,

2013).

Crisis uses a technique in Mac OS X roughly equivalent to the Windows’

DLLInjection through SetWindowsHook method discussed above.

It drops a library and sends an event causing the library to be loaded by the host

process. The mechanism is used in some legitimate products such as 1password and the

process is explained in a blog post (Ballard, 2009).

In brief, Mac OS X supports a scripting language called AppleScript that allows

An Opportunity In Crisis! 5
1 !

Harshit!Nayyar,!hanayyar@cisco.com!! ! !

an application to be scripted and its UI elements controlled. AppleScript controls the host

application by sending it predefined events.

The set of pre-defined events can be supplemented and extended using Scripting

Additions that allows defining new events and their handlers. A Scripting Addition is

packaged as a bundle, with a name ending in “.osax”, which contains at a minimum, the

following components:

● A resource file that describes the new event(s) being added.

● A library that exports an event handler for that event and implements functionality

to handle it.

● An Info.plist that glues the bundle together relating the event to the handler.

The script addition can then be placed in specific locations such as

/System/Library/ScriptingAdditions or /Library/ScriptingAdditions or

$HOME/Library/ScriptingAdditions. Any new process that supports AppleScript will

load the Scripting Addition when it starts.

The final piece of the puzzle is how to load the Scripting Addition into a process

that is already running. For this, crisis uses an esoteric predefined event that causes the

running process to refresh its Scripting Addition handlers. This is the event with id

ascr/gdut (Get Dynamic User Terminology). A reference for it can be found in an Apple

Technical Q&A (Apple, 2001). For Mac OS X Lion, the backdoor creates a new core

backdoor process (IZsROY7X.-MP) passing a –p argument along with the target pid

(Process ID).

Crisis abuses this technology to load a malicious library as a Scripting Addition

into all running applications. It creates an osax at the following path:

/Users/$USER/Library/ScriptingAdditions/appleHID/

The following files are created within the bundle:

An Opportunity In Crisis! 5
2 !

Harshit!Nayyar,!hanayyar@cisco.com!! ! !

• Contents/Info.plist (Section 13.5.4 OSAX!Script!Addition!Property!List)

• Contents/MacOS/lUnsA3Ci.Bz7

• Contents/Resources/appleOsax.r (13.5.5OSAX!Resource!File!For!New!Event)

The resource file appleOsax.r defines an event with id RCSe/load (Load RCS),

which the backdoor sends to the injection target after the ascr/gdut event. The event

handler for this event is defined in the Info.plist as the function InjectEventHandler,

which the injected library dutifully exports. The InjectEventHandler function simply

saves the pid of the backdoor in a global variable and returns.

Figure 40: InjectEventHandler Function Saving Backdoor PID in Global Variable

This data is then used later to create a user-land rootkit. The precise mechanism of

this rootkit is discussed in Section 8 on Crisis! Backdoor! Agents:! Hooking! And!

Swizzling, although, it is clear from the following screenshot in Figure! 41 that if the

bundle id of the main bundle is “com.apple.ActivityMonitor”, the code is calling a

method called hideCoreFromAM. The AM in the function’s name evidently stands for

“Activity Monitor”, and its job is to hide the backdoor process given by _gBackdoorPID,

from showing up in Activity Monitor.

Kaiti Marcella� 6/5/14 12:36 PM
Deleted: Figure 41

An Opportunity In Crisis! 5
3 !

Harshit!Nayyar,!hanayyar@cisco.com!! ! !

Figure 41: The Code to Hide Backdoor Process From Activity Monitor

Even though static analysis is a powerful tool, it is often essential to do dynamic

analysis to see the run time behaviour of the code in action. This can make the purpose of

certain functions/variables easier to understand and prove or disprove assumptions made

during static analysis. However, unlike debugging an executable file, which can be

started in a debugger, performing dynamic analysis on a library that gets injected into

another process is a slightly more involved process.

To debug the injected library, a debugger can be attached to the target process

prior to injection. Next a breakpoint can be placed on the function

_CFBundleDlfcnLoadBundle of the CoreFoundation library. This function initiates the

loading of the injected bundle. Once the ascr/gdut event is sent to the target process, and

the injection library has to be loaded, this breakpoint will be hit. Now another breakpoint

can be placed on call_load_methods function exported by the objective-c library. This

function is responsible for calling the load method (entry point) of the loaded library.

Within the “call_load_methods” function, it is easy to locate the call to the load

method(s) of the loaded library giving us a chance to debug the library starting from the

initial entry point.

An Opportunity In Crisis! 5
4 !

Harshit!Nayyar,!hanayyar@cisco.com!! ! !

Technique: Mac malware can use Scripting Additions To Inject Libraries into all

scriptable applications. The injection can be done at run time by sending the ascr/gdut

event to the target process, without the need for the application to be restarted.

Tip: To debug a library injected as a Scripting Addition, starting from the point of

loading, a breakpoint should be placed at _CFBundleDlfcnLoadBundle followed by

another one on call_load_methods after the first one is hit.

8. Crisis Backdoor Agents: Hooking And Swizzling
!

Crisis backdoor agents are injected into individual processes and implement user-

land rootkit and data stealing routines. As shown in the component overview of Figure

22, they get injected into processes like Skype and Address book to steal data, and in

Activity Monitor to hide the backdoor. This code is implemented by the OSAX bundle

library discussed in Section 7.

A backdoor agent uses two techniques to do its job:

1. Function hooking provided by mach_override package

2. Method swizzling for Objective-C APIs

The mach_override package (Rentzsch,!2013) implements run-time patching of a

target function. It is similar to the Detours library in Microsoft Windows provided by

Microsoft Research (Hunt & Brubacher, 1999).

Mach_override works by allocating two regions (Branch Islands) of writeable and

executable virtual memory called:

1. Escape Island (mandatory)

2. Re-entry Island (optional)

Escape Island consists of a jump instruction to the function that is intended to

Kaiti Marcella� 6/5/14 12:36 PM
Deleted: Figure 22

An Opportunity In Crisis! 5
5 !

Harshit!Nayyar,!hanayyar@cisco.com!! ! !

replace or over-ride Mac OS X. The memory containing the target function is made

writeable using ‘mprotect’ function. The first instruction is replaced with a branch to the

escape island. The escape island has a jump to the replacement function, which will

implement custom behaviour over the target function. Optionally, the mach_override

package allows defining re-entry code, in the re-entry island, which executes the original

first instruction of the target function, which was replaced with the branch. It then jumps

to the second instruction of the target function, thereby causing the original code to

execute again before returning results to the caller.

The following figure shows a logical view of this process:

Figure 42: Mach_Override Function Hooking.

Crisis uses this technique to hook the AudioDeviceIOProc functions to record

input and output of audio devices to log and exfiltrate calls made on the infected host.

Figure 43: Code Showing Replacement Of _AudioDeviceAddIOProc

An Opportunity In Crisis! 5
6 !

Harshit!Nayyar,!hanayyar@cisco.com!! ! !

In the above example, the _AudioDeviceAddIOProc function is being replaced

with __hook_AudioDeviceAddIOProc function.

The second technique used by Crisis is unique to Objective-C code. Objective-C

code creates a list of methods of a class where each node contains the name of the

method, its definition/prototype and a pointer to its implementation. This means that the

implementation of the method lives independently of its name and the mapping between

the name and implementation can be changed.

This is done through a process called method swizzling. Method swizzling allows

the implementation of a method to be replaced with another implementation, so that the

original selector now maps to the new method and the new selector maps to the original

one. It is a straight swap between names and implementations. This technique allows the

replacement method to call the original method and modify the results returned, thus

achieving the same result as function hooking, without any major modification of the

memory. The method is discussed in more detail in (Nutting, 2002), which also gives a

sample implementation.

Crisis backdoor agent makes extensive use of method swizzling. For example it

implements a user-land rootkit, hiding the presence of core backdoor module from

Activity Monitor. As discussed in Section 6, the kernel rootkit needs some modifications

to work with Mac OS X Lion. The user-land rootkit is able plug that gap. Crisis swizzles

the methods of SMProcessController class to remove the process id, which matches the

Core backdoor process, thereby hiding it in Activity Monitor.

An Opportunity In Crisis! 5
7 !

Harshit!Nayyar,!hanayyar@cisco.com!! ! !

Figure 44: Replacing filteredProcess Method With filteredProcessHook Method

Using Method swizzling

Figure 44 show how a Crisis backdoor agent injected into Activity Monitor

replaces SMProcessController::outlineView:numberOfChildrenOfItem with

mySMProcessController::outlineViewHook:numberOfChildrenOfItem. It also replaces

SMProcessController::filteredProcess with mySMProcessController::filteredProcessHook

method. These two hooks skip a process with process_id that matches the backdoor

process and decrement the total number of child processes to hide the Core backdoor

process.

The agent also uses method swizzling extensively to replace API methods with

wrappers that log and steal information, which is then communicated to the core

backdoor module. The core backdoor logs this data and eventually ex-filtrates it to the

CnC server.

Technique: Run time hooking in Mac OS X can be achieved by using mach_override

function for C Code and method swizzling for Objective-C code. Both provide stable,

well-tested user-level hooking mechanisms.

! !

Kaiti Marcella� 6/5/14 12:36 PM
Deleted: Figure 44

An Opportunity In Crisis! 5
8 !

Harshit!Nayyar,!hanayyar@cisco.com!! ! !

9. Core Backdoor: Configuration
!

Encrypted backdoor configuration is saved in the file called eiYNz1gd.Cfp in the

sample under analysis. This is the initial configuration. The file is encrypted with AES-

128, though the key length is 64 bytes instead of 32 bytes. It is likely that this was done

to allow support for AES-256 if needed in the future.

The key can be easily recovered using an IDA Script that looks for the symbol

_gConfAesKey. The script is provided in Appendix A1, Section 13.1.5. Note that it will

only work with a sample in which symbols have not been stripped.

The configuration is appended with its SHA1 hash and encrypted with the 16-byte

key using AES-128 with PKCS#5 padding and no IV (Initialization Vector) in CBC

mode.

For the sample under analysis the key is:

A6 F7 F3 41 23 A6 A1 AB 12 FA E0 AA 61 D0 2C 2D

Another script is provided to decode the configuration file. The decoded

configuration is given in Section 13.5.6 in the Appendices.

The configuration enables or disabled built in functionality such as key-logging,

camera capture, password stealing etc., sets the IP of the CnC server and configures

malware components.

!

10. Core Backdoor: Network Command And Control
!

The backdoor configuration contains the IP address of a CnC server:
 …

An Opportunity In Crisis! 5
9 !

Harshit!Nayyar,!hanayyar@cisco.com!! ! !

 "desc": "SYNC",

 "subactions": [

 {

 "action": "synchronize",

 …

 "host": "176.58.100.37",

 …

 }

Crisis backdoor communicates with its CnC server using a proprietary protocol.

The protocol consists of binary messages, AES128 encrypted and sent over an HTTP

channel. The encryption key for the initial communication can be extracted using the

script provided in Section 13.1.5 in the Appendices. It is pointed to by the global variable

called “_gBackdoorSignature”:

_gBackdoorSignature:

6D 11 7C 40 73 91 6F D9 16 F8 D5 C1 9E D0 57 11

A sample initial POST request sent to the CnC server is shown:

Figure 45: Packet Capture Showing Initial POST Request

Headers such as User-Agent are hardcoded in the backdoor code:

An Opportunity In Crisis! 6
0 !

Harshit!Nayyar,!hanayyar@cisco.com!! ! !

!
Figure 46: Hardcoded User-Agent String

The backdoor supports several different operations/commands such as:

Operation Class Implemented Purpose

Authentication AuthNetworkOperation Authenticate Agent With Server And
Get Session Key.

Identity IDNetworkOperation Unknown

Configuration ConfNetworkOperation Configuration Updates

Download DownloadNetworkOperation Download from URL

Upload UploadNetworkOperation Upload to URL

FileSystem FSNetworkOperation Operations related to host file system

Log LogNetworkOperation Logging/Exfiltration

Bye ByeNetworkOperation End of Communications

Table 4: Showing Operations/Commands Supported By Crisis Backdoor

For example, the initial POST in Figure!45 shows an AUTH request in an HTTP

dissected packet capture in Wireshark.

We created a fake CnC server to interact with the backdoor. This server script is

provided in Section 13.2.3. At present, it can only handle Authentication requests and

respond with the command to uninstall the backdoor.

The authentication request is a 0x60 byte string, which consists of the following

fields:

Kaiti Marcella� 6/5/14 12:36 PM
Deleted: Figure 45

An Opportunity In Crisis! 6
1 !

Harshit!Nayyar,!hanayyar@cisco.com!! ! !

Field Offset Size

Nonce 1 0x0 0x10

Nonce 2 0x10 0x10

Backdoor ID 0x20 0x10

UUID 0x30 0x14

Agent Type 0x44 0x10

Outer SHA1 0x54 0x14

Table 5: Crisis Auth Request Packet Format

A sample of decoded request is shown below:

---Decoded---
00000000: 98 6b 25 43 c2 d6 c4 22 8c 4a 5a 2f 83 f8 00 29 |.k%C...".JZ/...)|
00000010: 33 bf 08 09 28 d6 94 5e 8a 43 57 0a 0c 56 3d 43 |3...(..^.CW..V=C|
00000020: 64 38 64 32 30 30 30 30 30 34 30 30 33 37 00 00 |d8d20000040037..|
00000030: 9a 04 d8 ef 9d 44 5a 8c 92 91 e4 c5 25 1f 6d 88 |.....DZ.....%.m.|
00000040: 54 ba ff 81 4f 53 58 00 00 00 00 00 00 00 00 00 |T...OSX.........|
00000050: 00 00 00 00 6c 47 13 4f 6d ae 7a 7c d4 79 62 f7 |....lG.Om.z|.yb.|
00000060: ce 18 72 6d b6 ea a5 f3 08 08 08 08 08 08 08 08 |..rm............|

Figure 47: Decoding Of Fields In A Decrypted AUTH Request

The interpreted fields in the above request are shown below:

Nonce1: 986b2543c2d6c4228c4a5a2f83f80029
Nonce2: 33bf080928d6945e8a43570a0c563d43
Backdoor_id: d8d20000040037 (64386432303030303034303033370000)
UUID: 9a04d8ef9d445a8c9291e4c5251f6d8854baff81
OSX_String: OSX (4f535800000000000000000000000000
Outer_SHA1: 6c47134f6dae7a7cd47962f7ce18726db6eaa5f3
Padding: 08 08 08 08 08 08 08 08

The UUID is calculated as the SHA1 sum of the username string appended to the

serial number string:

An Opportunity In Crisis! 6
2 !

Harshit!Nayyar,!hanayyar@cisco.com!! ! !

SHA1(“SerialNumber”+”Username”)

The serial number can be retrieved from the terminal by using the following

command:

 ioreg -l | grep IOPlatformSerialNumber | awk '{print $4}' | awk -F"\""
'{print $2}'

In response, Crisis expects a 200 OK HTTP response with a 0x40 byte content as

shown in Figure!48.

Figure 48: Code Checking For Response Length of 0x40

The content of the HTTP response, as illustrated in Figure!49, consists of two

parts:

1. First 0x20 bytes encrypted with a fixed key - same key used to encrypt the request

2. Second 0x20 bytes encrypted with a per-session key.

Kaiti Marcella� 6/5/14 12:36 PM
Deleted: Figure 49

Kaiti Marcella� 6/5/14 12:36 PM
Deleted: Figure 49

An Opportunity In Crisis! 6
3 !

Harshit!Nayyar,!hanayyar@cisco.com!! ! !

Figure 49: Logical View of AUTH Response

The first 0x20 bytes, consists of two 0x10 byte unknown values. The fake server

script, sets them to a strings of ‘A’s and ‘B’s. These are encrypted with

“_gBackdoorSignature” key value mentioned before.

The first unknown (Unknown1) is used to create the session key:

session_key = SHA1(CONF_KEY + Unknown1 + Nonce1)

Where CONF_KEY is the configuration encryption/decryption key. Nonce1 is the

first nonce sent by the backdoor to the server in its AUTH request.

The session key is used to encrypt a 0x20 byte value. This value contains the

Nonce2 sent by the backdoor before. Followed by a DWORD command and an Unknown

0x0C byte value.

The backdoor code considers the server authenticated if the first 0x10 bytes of the

second part of the response payload, decoded using the session key, matches the original

Nonce2 sent by the backdoor in its AUTH request. If this check passes, the code executes

instructions matching the command type sent.

An Opportunity In Crisis! 6
4 !

Harshit!Nayyar,!hanayyar@cisco.com!! ! !

For example, the Command 0x0A000000 is the Uninstall command. The fake

CnC server script given in Appendix A1 sends this command and as a result Crisis gets

uninstalled from the infected host.

Figure 50: Code processing AUTH Response Making Checks For Authentication

!

Technique: A custom binary protocol, encrypted with a symmetric key cipher going over

HTTP, can be an effective way to hide a CnC channel.

Tip: Due to the use of symmetric key cryptosystem, analysis of the backdoor alone is

sufficient for creating a fake CnC Server since there is a shared secret.

Overall, the CnC protocol of Crisis is moderately secure - it provides

confidentiality and integrity but not proper authenticity and non-repudiation. In effect,

this allows anyone to spoof a CnC server or become a Man-In-the-Middle. Although the

code defines many commands, the author did not study the CnC protocol

comprehensively.

11. Summary
!

During the analysis of Crisis, several offensive code techniques were learnt. Some

tips to make such analysis were also discussed. These are summarized here.

0
0
0

An Opportunity In Crisis! 6
5 !

Harshit!Nayyar,!hanayyar@cisco.com!! ! !

11.1. Techniques
!

During the course of this research, several techniques used by Crisis to implement

offensive code on Mac OS X were identified. These techniques are given below:

• Mac malware can have an entry point in a custom segment. This throws off some

debuggers and analysis tools.

• Instead of calling API methods, malware may use INT 80 directly to obfuscate

code and hide its true intent.

• Malware can also obfuscate its code by replacing all library import function

names with a hashing function. All functions exported by a library are then

hashed and the hash compared to determine the actual function name to be

called.

• Malware code written in Objective-C requires specialized knowledge to reverse

and can be harder to disassemble.

• One way of detecting the presence of a debugger in a Mac OS X process is to

check the P_TRACED flag in the extern_proc struct returned by an appropriate

sysctl call.

• Mac malware can ensure that only a single malware process runs at a time by

registering a named port. The existence of this named port can indicate prior or

ongoing infection.

• BSD Kernel Rootkit techniques such as process hiding can be used effectively

with Mac OS X.

• To bypass the problem of finding symbol addresses when running in kernel space,

symbols can be resolved in user-land and sent down to the a rootkit kext in

IOCTLs.

• Mac malware can use Scripting Additions To Inject Libraries into all scriptable

applications. The injection can be done at run time by sending the ascr/gdut event

to the target process, without the need for the application to be restarted.

An Opportunity In Crisis! 6
6 !

Harshit!Nayyar,!hanayyar@cisco.com!! ! !

• Run time hooking in Mac OS X can be achieved by using mach_override function

for C Code and method swizzling for Objective C code. Both provide stable, well-

tested user-level hooking mechanisms.

• A custom binary protocol, encrypted with a symmetric key cipher going over

HTTP, can be an effective way to hide a CnC channel.0

!

11.2. Tips

While Crisis implements several techniques to obfuscate code and hide itself,

some tips that help in analysis of such code on Mac OS X are given below:

• Tools like MachOView can be used to quickly understand the structure of a Mac

OS X malware binary and perform tasks such as determining its real entry point.

• ASLR in a MachO file can be easily removed by removing the MH_PIE flag from

the binary header. Debuggers lacking support for ASLR will fail unless MH_PIE

is removed.

• IDAPython or IDC scripts can be written to de-obfuscate code that uses INT 80

directly instead of calling a function to make a system call.

• If hiding function names through a hashing function obfuscates malware code, the

hashing function can be analyzed and an IDC/IDAPython script can be written to

de-obfuscate the binary.

• To debug forks, that execute child processes, the code may be patched to NOP out

the execution and the child process can be started in another debugger.

• An IDA script maybe written to clean up Objective-C code to make it more

readable.

• If the malware is using a debugger detection technique implemented in a function,

the call to that function can be NOPed out to hide the debugger.

• Some Mac malware can be detected by checking for a named port they register.

For example, OSX/Crisis can be detected by checking for port named

“com.apple.mdworker.executed”.

An Opportunity In Crisis! 6
7 !

Harshit!Nayyar,!hanayyar@cisco.com!! ! !

• At times, small patches fixing code can avoid kernel panics and help with dynamic

analysis; malware creators may fix such bugs in later versions.

• To debug a library injected as a Scripting Addition, starting from the point of

loading, a breakpoint should be placed at _CFBundleDlfcnLoadBundle followed

by another one on call_load_methods after the first has been hit.

• After some research, scripts such as the one provided in Section 13.2.3 can be

easily written to prod the malware into unraveling its network behavior.

• Due to the use of symmetric key cryptosystem, analysis of the backdoor alone is

sufficient for creating a fake CnC Server since there is a shared secret.

12. Conclusion
!

Mac malware is getting rather close to rivaling Windows malware in complexity

and obtaining feature parity. Techniques seen in Windows malware such as Debugger

Detection, Code Obfuscation, DLL injection, Inline function patching, Rootkit device

drivers etc. all have analogues in Mac OS X and are being used by Mac malware. This

paper used OSX/Crisis as an example to demonstrate this fact and to discuss tips and

techniques involved in Mac OS X malware analysis.

!

An Opportunity In Crisis! 6
8 !

Harshit!Nayyar,!hanayyar@cisco.com!! ! !

References

Apple. (2001, September 13). Loading Scripting Additions in Mac OS X. Technical Q&A

QA1070. Retrieved May 14, 2014, from

https://developer.apple.com/library/mac/qa/qa1070/_index.html

Ballard, K. (2009, September 2). 1Password extension loading in Snow Leopard. .

Retrieved May 14, 2014, from http://kevin.sb.org/2009/09/02/1password-extension-

loading-in-snow-leopard/

Citizen Lab (2012, October 10). Backdoors are Forever: Hacking Team and the Targeting

of Dissent. The Citizen Lab Backdoors are Forever Hacking Team and the Targeting of

Dissent Comments. Retrieved May 14, 2014, from

https://citizenlab.org/2012/10/backdoors-are-forever-hacking-team-and-the-targeting-of-

dissent/

Falliere, N. (2007, September 11). Windows Anti-Debug Reference. (Symantec).

Retrieved May 14, 2014, from http://www.symantec.com/connect/articles/windows-anti-

debug-reference

Greenberg, A. (2012, April 20). Cybercrime Game Theory: Why Apple's Malware Grace

Period Ended Early. Forbes. Retrieved May 14, 2014, from

http://www.forbes.com/sites/andygreenberg/2012/04/20/cybercrime-game-theory-why-

apples-malware-grace-period-ended-early

Hengeveld, W. J. (2003, January 1). Fix Objective C. Retrieved May 14, 2014, from

http://nah6.com/~itsme/cvs-xdadevtools/ida/idcscripts/fixobjc.idc

Hunt, G., & Brubacher, D. (1999, July 1). Detours. Detours. Retrieved May 14, 2014,

from http://research.microsoft.com/en-us/projects/detours/

An Opportunity In Crisis! 6
9 !

Harshit!Nayyar,!hanayyar@cisco.com!! ! !

Katsuki, T. (2012, November 30). Crisis: The Advanced Malware. Retrieved May 1,

2014, from

https://www.symantec.com/content/en/us/enterprise/media/security_response/whitepaper

s/crisis_the_advanced_malware.pdf

Lukan, D. (2013, June 13). Using SetWindowsHookEx for DLL Injection on Windows.

Retrieved March 1, 2014, from http://resources.infosecinstitute.com/using-

setwindowshookex-for-dll-injection-on-windows/

Miller, C., & Zovi, D. (2009). The Mac hacker's handbook. Indianapolis, IN: Wiley.

Napier, R. (2010, July 7). Hijacking With method_exchange Implementations. Hijacking

With method_exchangeImplementations() -. Retrieved May 14, 2014, from

http://robnapier.net/hijacking-methodexchangeimplementations

Nutting, J. (2002, April 9). Method Swizzling. . Retrieved May 14, 2014, from

http://cocoadev.com/MethodSwizzling

Parkour, M. (2012, December 7). contagio: Aug 2012 W32.Crisis and OSX.Crisis - JAR

file Samples - APT. contagio: Aug 2012 W32.Crisis and OSX.Crisis - JAR file Samples -

APT. Retrieved May 14, 2014, from http://contagiodump.blogspot.ca/2012/12/aug-2012-

w32crisis-and-osxcrisis-jar.html

Ramilli, M. (2011, January 25). How to Patch Binary with IDA Pro. : How to Patch

Binary with IDA Pro. Retrieved May 14, 2014, from

http://marcoramilli.blogspot.ca/2011/01/how-to-patch-binary-with-ida-pro.html

Rentzsch, J. (2003, June 18). Mach_Override. GitHub. Retrieved May 14, 2014, from

https://github.com/rentzsch/mach_override

An Opportunity In Crisis! 7
0 !

Harshit!Nayyar,!hanayyar@cisco.com!! ! !

Saghelyi, P. (2004, February 2). MachOView. SourceForge. Retrieved May 14, 2014,

from http://sourceforge.net/projects/machoview/

skape., & Skywing. A Catalog of Windows Local Kernel-mode Backdoor Techniques.

Uninformed, 8. Retrieved May 14, 2014, from

http://uninformed.org/index.cgi?v=8&a=2&t=sumry

snare. (2012, February 18). VMware debugging II: "Hardware" debugging. VMware

debugging II: "Hardware" debugging. Retrieved May 14, 2014, from

http://ho.ax/posts/2012/02/vmware-hardware-debugging/

An Opportunity In Crisis! 7
1 !

Harshit!Nayyar,!hanayyar@cisco.com!! ! !

13. Appendix
13.1. Appendix A1 – IDA Scripts
13.1.1. Script to comment INT80 calls
coding=utf-8
import idaapi
import sys
import re

SYSCALL_HEADER="/usr/include/sys/syscall.h"

def create_syscall_map():
 syscall_map={}
 try:
 header_file = open(SYSCALL_HEADER,'r')
 except Exception,e:
 print "Unable to open /usr/include/sys/syscall.h due to
%s"%(sys.exc_info()[0])
 print "Quitting ..."
 exit(-1)
 define_regex = re.compile('#define\s+(SYS_[^\s]*)\s+([0-9]+)')

 for line in header_file.readlines():
 mo = define_regex.match(line)
 if mo:
 syscall_map[int(mo.groups()[1])]=mo.groups()[0]
 return syscall_map

def comment_int80(syscall_map):
 for seg_ea in Segments():
 if SegName(seg_ea) == '__INIT_STUB_hidden':
 syscall_num=None
 for head in Heads(SegStart(seg_ea), SegEnd(seg_ea)):
 if isCode(GetFlags(head)):
 mnem = GetMnem(head)
 if mnem == 'mov':
 if GetOpType(head,1) == 5:
 if GetOpType(head,0) == 1:
 reg=GetOpnd(head,0)
 syscall_num=GetOperandValue(head,1)
 if mnem == 'int':
 if GetOpnd(head,0) == '80h' and syscall_num != None:
 syscall_name = syscall_map[syscall_num]
 MakeRptCmt(head,syscall_name)
 syscall_num=None

syscall_map=create_syscall_map()
comment_int80(syscall_map)

Listing 7: IDAPython Script For Crisis Dropper INT80 Cleanup

An Opportunity In Crisis! 7
2 !

Harshit!Nayyar,!hanayyar@cisco.com!! ! !

13.1.2. Script to convert Dropper hash to import name
coding=utf-8
import idaapi
import sys
import subprocess
import re
import os

dylib_list=['/usr/lib/dyld','/usr/lib/system/libsystem_c.dylib','/usr/lib/syste
m/libsystem_kernel.dylib']

def hash_func(in_string):
 #Crisis hash function
 var_4=0;
 for i in range(0, len(in_string)):
 var_4 = (((var_4 << 6) & 0xFFFFFFFF) + ((ord(in_string[i]) + (var_4 <<
16)) & 0xFFFFFFFF) - var_4) & 0xFFFFFFFF
 return var_4

def make_dict(hash_dict):
 #Make a lookup table from hashes to importnames
 for lib in dylib_list:
 for libname in dylib_list:
 hash_dict['%.8X'%hash_func(libname)] = libname
 for command in [('/usr/bin/nm','-j',lib),('/usr/bin/strings',lib)]:

all_symbols=subprocess.Popen(command,stdout=subprocess.PIPE).communicate()[0]
 all_symbols=all_symbols.split()
 for symbol in all_symbols:
 hash_dict['%.8X'%hash_func(symbol)]=symbol

def find_next(ea, n_inst, mnemonic):
 #look for @mnemoic in next n_inst instructions
 cur_ea = ea
 for i in range(0,n_inst):
 cur_ea = NextHead(cur_ea,BADADDR)
 if isCode(GetFlags(cur_ea)):
 if GetMnem(cur_ea) == mnemonic:
 return cur_ea
 return None

def hash_to_function_comment():
 #Add a comment to hash giving name of function it belongs to.
 #
 #Find the variable where results of hash matching is stored.
 #And rename the variable to function name var_ptr$<function_name>

 hash_dict={}
 make_dict(hash_dict)
 dec_func=None
 local_var_regex = re.compile('\[(ebp\+)([^\]]*)')
 for seg_ea in Segments():
 if SegName(seg_ea) == '__INIT_STUB_hidden':

An Opportunity In Crisis! 7
3 !

Harshit!Nayyar,!hanayyar@cisco.com!! ! !

 for head in Heads(SegStart(seg_ea), SegEnd(seg_ea)):
 if isCode(GetFlags(head)):
 op_num=-1
 mnem = GetMnem(head)
 if mnem == 'cmp':
 op_num=1
 elif mnem == 'push':
 op_num=0
 else:
 continue

 #If operand is immediate constant
 if GetOpType(head,op_num) == 5:
 opnd = GetOpnd(head,op_num)
 if opnd and isinstance(opnd,str) and len(opnd.strip())
!= 0:

 if opnd[-1] == 'h':
 op_val=GetOperandValue(head,op_num)
 #Make the hex value as key to the function hash
 op_val_key = "%.8X"%(op_val)
 if op_val > 1024:
 if op_val_key in hash_dict.keys():
 func_name = hash_dict[op_val_key]
 print '%.8X, %.8X,
%s'%(head,op_val,func_name)
 MakeRptCmt(head,func_name)
 #Find Decryption Function And Rename
Returned Variable
 if mnem == 'push':
 #Find Next Call
 call_ea = find_next(head,5,'call')
 if call_ea:
 #Find Next MOV
 mov_ea =
find_next(call_ea,5,'mov')
 if mov_ea:
 #Find Next MOV
dword:[EBP+LVAR_OFFSET],EAX
 if GetOpnd(mov_ea,1) ==
'eax':
 dest_var =
GetOpnd(mov_ea,0)
 mo =
local_var_regex.match(dest_var)
 if mo:

local_var=mo.groups()[1]

stack_id=GetFrame(mov_ea)
 #Get offset from
name - LVAR_OFFSET
 offset =
GetMemberOffset(stack_id,local_var)
 if offset != -1:

An Opportunity In Crisis! 7
4 !

Harshit!Nayyar,!hanayyar@cisco.com!! ! !

 #Set name of
LVAR_OFFSET to var_ptr$<act_function_name>
 SetMemberName(
stack_id, offset, "var_ptr$%s"%(func_name))
 return

hash_to_function_comment()

Listing 8: IDAPython Script To Convert Hash to Import Name

13.1.3. Objective C Cleanup:
import idaapi
import idc

STRUCT_OBJC_METHOD_SIZE=12
STRUCT_OBJC_PROTOCOL_SIZE=12

def cleanup_objectivec():
 cleanup__class_section()
 cleanup__metaclass_section()
 cleanup__protocol_section()
 cleanup__category_section()
 cleanup__cfstring()
 cleanup__message_refs()
 cleanup__cls_refs()
 return

def robust_MakeName(ea,name):
 make_name=name
 num=1
 while(MakeNameEx(ea,make_name,SN_NOWARN) == 0):
 make_name = "%s_%d"%(name,num)
 num += 1
 if num > 10:
 break
 return make_name

def make_inst_methods(method_list_ptr, class_name):

 if method_list_ptr == 0 or method_list_ptr == BADADDR:
 return
 else:
 methods_count = Dword(method_list_ptr + 4)
 method_list_start = method_list_ptr+8
 if method_list_start != BADADDR:
 for i in range(0, methods_count):
 method_struct_start =
method_list_start+(i*STRUCT_OBJC_METHOD_SIZE)
 method_name=GetString(Dword(method_struct_start))
 method_impl=Dword(method_struct_start+0x08)
 #print "%.8X:%s_%s"%(method_impl,class_name,method_name)

An Opportunity In Crisis! 7
5 !

Harshit!Nayyar,!hanayyar@cisco.com!! ! !

 robust_MakeName(method_impl, "%s_%s"%(class_name, method_name))

def handle_class_structs(head,prefix=None):

 class_name=GetString(Dword(head+8),-1,0)
 if prefix:
 class_name="%s_%s"%(prefix,class_name)
 MakeName(Dword(head+0x18),"ivars_%s"%class_name)
 MakeName(Dword(head+0x1C),"methods_%s"%class_name)

 method_list_ptr = Dword(head+0x1C)
 make_inst_methods(method_list_ptr, class_name)

def cleanup__class_section():
 class_section = SegByName('__class')
 for head in Heads(SegStart(class_section), SegEnd(class_section)):
 if GuessType(head)=="__class_struct":
 handle_class_structs(head)

def cleanup__metaclass_section():
 metaclass_section = SegByName('__meta_class')
 for head in Heads(SegStart(metaclass_section), SegEnd(metaclass_section)):
 if GuessType(head)=="__class_struct":
 handle_class_structs(head,"meta")

#__protocol_struct struc ; (sizeof=0x14)
#isa dd ?
#protocol_name dd ?
#protocol_list dd ?
#instance_methods dd ?
#class_methods dd ?
#__protocol_struct ends
def cleanup__protocol_section():
 protocol_section = SegByName('__protocol')
 for head in Heads(SegStart(protocol_section), SegEnd(protocol_section)):
 if GuessType(head) == "__protocol_struct":
 name = GetString(Dword(head+4))
 proto_name=name
 robust_MakeName(head,"protocol_%s"%name)
 #Inst_Methods
 if Dword(head+0x0C) != 0:
 mth_name="proto_instmth_%s"%name
 robust_MakeName(Dword(head+0x0C),mth_name)

 #Class_Methods
 if Dword(head+0x10) != 0:
 mth_name="proto_classmth_%s"%name
 robust_MakeName(Dword(head+0x10),mth_name)

#00000000 __category_struct struc ; (sizeof=0x14)
#00000000 category_name dd ? ; offset
#00000004 class_name dd ? ; offset

An Opportunity In Crisis! 7
6 !

Harshit!Nayyar,!hanayyar@cisco.com!! ! !

#00000008 methods dd ? ; offset
#0000000C class_methods dd ? ; offset
#00000010 protocols dd ? ; offset
#00000014 __category_struct ends
def cleanup__category_section():
 category_section = SegByName('__category')
 for head in Heads(SegStart(category_section), SegEnd(category_section)):
 if GuessType(head) == "__category_struct":
 name = GetString(Dword(head))
 class_name = GetString(Dword(head+0x04))
 category_name = "category_%s_%s"%(class_name,name)
 catinstmth_name = "cat_instmth_%s"%(name)
 catclsmth_name = "cat_clsmth_%s"%(name)
 MakeName(head,category_name)
 if Dword(head+0x08) != 0:
 robust_MakeName(Dword(head+0x08),catinstmth_name)
 make_inst_methods(Dword(head+0x08), catinstmth_name)
 if Dword(head+0x0C) != 0:
 robust_MakeName(Dword(head+0x0C), catclsmth_name)
 make_inst_methods(Dword(head+0x0C), catclsmth_name)

#00000000 __module_info_struct struc ; (sizeof=0x10)
#00000000 version dd ?
#00000004 size dd ?
#00000008 name dd ? ; offset
#0000000C symbols dd ? ; offset
#00000010 __module_info_struct ends
def cleanup__module_info():
 moduleinfo_section = SegByName('__module_info')
 for head in Heads(SegStart(moduleinfo_section),
SegEnd(moduleInfo_section)):
 if GuessType(head) == '__module_info_struct':
 MakeName(Dword(head+0x0C), "symtab_%X"%(Dword(head+0x0C)))

#00000000 __CFString struc ; (sizeof=0x10)
#00000000 isa dd ? ; offset
#00000004 info dd ?
#00000008 data dd ? ; offset
#0000000C length dd ?
#00000010 __CFString ends
def cleanup__cfstring():
 cfstring_section = SegByName('__cfstring')
 for head in Heads(SegStart(cfstring_section),SegEnd(cfstring_section)):
 if GuessType(head) == '__CFString':
 cur_name = Name(head)
 rename=False
 if cur_name == None or cur_name == "":
 rename=True
 elif cur_name.split('_') and cur_name.split('_')[0] == 'stru':
 rename=True
 if rename:
 name="cfstr_%s"%GetString(Dword(head+0x08))
 robust_MakeName(head,name)

An Opportunity In Crisis! 7
7 !

Harshit!Nayyar,!hanayyar@cisco.com!! ! !

def cleanup__message_refs():
 message_refs_section = SegByName('__message_refs')
 for head in Heads(SegStart(message_refs_section),
SegEnd(message_refs_section)):
 name = "msg_%s"%GetString(Dword(head))
 robust_MakeName(head,name)
 #Add Cross Reference To Method Implementation
 #1 Find string's references in __cat_inst_meth or __inst_meth etc.
 #2 Add a data cross reference to method impl
 ref_to_msgname = DfirstB(Dword(head))
 ref_impl_list=[]
 while ref_to_msgname != BADADDR:
 if SegName(ref_to_msgname).find('_meth') > 0:
 ptr_to_mthstruct=ref_to_msgname
 mth_impl=Dword(ptr_to_mthstruct+0x08)
 ref_impl_list += [mth_impl]
 ref_to_msgname = DnextB(Dword(head),ref_to_msgname)
 #To simplify we only add cross references for cases where
 #there is a single method implementation for a message name
 if len(ref_impl_list) == 1:
 xref_from = DfirstB(head)
 while(xref_from != BADADDR):
 add_dref(xref_from, ref_impl_list[0], XREF_USER | dr_O)
 add_dref(ref_impl_list[0], xref_from, XREF_USER | dr_O)
 xref_from = DnextB(head, xref_from)
 #elif len(ref_impl_list) > 1:
 #TODO: The implementation depends on class

def cleanup__cls_refs():
 class_references_section = SegByName('__cls_refs')
 for head in Heads(SegStart(class_references_section),
SegEnd(class_references_section)):
 name = "cls_%s"%GetString(Dword(head))
 name = robust_MakeName(head,name)
 xref = DfirstB(head)
 while(xref != BADADDR):
 MakeComm(xref,"Class: %s"%(name))
 xref = DnextB(head,xref)

cleanup_objectivec()

Listing 9: IDAPython Script For Objective-C Cleanup

!
!
!

13.1.4. Rootkit Kext Hash To Function
import idaapi
import subprocess

hash_dict = {}

An Opportunity In Crisis! 7
8 !

Harshit!Nayyar,!hanayyar@cisco.com!! ! !

funcs = ['_findSymbolInFatBinary64','_findSymbolInFatBinary']

def hash_function(in_string):
 hash=0
 for i in range(0, len(in_string)):
 ebx = ord(in_string[i])
 ebx -= hash
 hash *= 0x10040
 hash = (hash & 0xFFFFFFFF)
 hash += ebx
 hash = (hash & 0xFFFFFFFF)
 return hash

def make_dict():
 #Create a dictionary of hash to symbol name
 all_sym=subprocess.Popen(['/usr/bin/nm','-
j','/mach_kernel'],stdout=subprocess.PIPE).communicate()[0]
 all_sym=all_sym.split()
 for sym in all_sym:
 (key,value)=("%.8X"%(hash_function(sym)),sym)
 print "%s = %s"%(key,value)
 hash_dict[key] = value

def main():
 make_dict()
 for func in funcs:
 ea = LocByName(func)
 ref = RfirstB(ea)
 while ref != BADADDR:
 #Look upto 64 bytes back
 min_ea = ref - 0x40
 prev_head = PrevHead(ref,min_ea)
 while prev_head >= min_ea:
 if isCode(GetFlags(prev_head)) and GetOpType(prev_head,1) == 5:
 constant = '%.8X'%GetOperandValue(prev_head,1)
 if hash_dict.has_key(constant):
 MakeRptCmt(prev_head,'%s'%(hash_dict[constant]))
 print "%.8X:%s"%(prev_head,hash_dict[constant])
 break
 ref = RnextB(ea,ref)

main()

Listing 10: IDAPython Script to Convert Crisis Rootkit Kext's Hash To Function

13.1.5. Get Cryptographic Keys From Crisis Backdoor
import idaapi
import idc

symbols={'_gConfAesKey':0x10,'_gLogAesKey':0x10,'_gBackdoorSignature':0x10}

An Opportunity In Crisis! 7
9 !

Harshit!Nayyar,!hanayyar@cisco.com!! ! !

def print_bytes_at_name(sym,length,debugger_memory):
 bytes_list =
GetManyBytes(LocByName(sym),0x10,debugger_memory).encode('hex')
 print "%s: %s"%(sym,bytes_list)

for sym in symbols.keys():
 print_bytes_at_name(sym,symbols[sym],0)

Listing 11: IDAPython Script To Get AES Keys From Unstripped Sample

!
!

13.2. Appendix A2 - Other Scripts And Tools
13.2.1. Objective-C tool to detect presence of Crisis Backdoor

#import <Foundation/Foundation.h>
#import <Foundation/NSPortNameServer.h>

int main(int argc, const char * argv[])
{

 @autoreleasepool {

 NSPort *port = [NSPort port];
 BOOL success = [[NSPortNameServer systemDefaultPortNameServer]
registerPort:port name:@"com.apple.mdworker.executed"];
 if (success)
 NSLog(@"\nCrisis Backdoor Is Not Running !\n");
 else
 NSLog(@"\nInfected - Crisis Backdoor Running!\n");

 }
 return 0;
}

Listing 12: Objective-C tool for Crisis Backdoor Detection

Kaiti Marcella� 6/5/14 12:36 PM
Deleted: 11

An Opportunity In Crisis! 8
0 !

Harshit!Nayyar,!hanayyar@cisco.com!! ! !

13.2.2. Crisis Configuration Decode

!
#!/usr/bin/python
from Crypto.Cipher import AES
import sys
import struct
import json
import hashlib

def usage(name):
 print "Usage: %s <key_bytes> <config_file>"%name
 print "\tExample: %s A6F7F34123A6A1AB12FAE0AA61D02C2D eiYNz1gd.Cfp"%name

def unpad(s):
 #PKCS5 Unpad
 return s[0:-ord(s[-1])]

def main(args):
 if len(args) < 3:
 usage(args[0])
 exit()
 hex_key = args[1].strip()
 config_file = args[2]
 if len(hex_key) % 2 != 0:
 print "Odd length key, please ensure that key is hex encoded string"
 bin_key = hex_key.decode('hex')
 encoded_config = open(config_file,"rb").read()
 decoded_config = AES.new(bin_key, AES.MODE_CBC).decrypt(encoded_config)
 decoded_config = unpad(decoded_config)
 sha1_footer = decoded_config[-20:]
 decoded_config = decoded_config[0:-20]
 sha1_computed = hashlib.sha1(decoded_config).hexdigest()
 print json.dumps(json.loads(decoded_config),sort_keys=True, indent=4,
separators=(',', ': '))
 if sha1_footer.encode("hex") != sha1_computed:
 print "\033[91mWARN:Config SHA1 Does Not Match !\033[0m"
 else:
 print "\033[92mSuccess ! Config SHA1 matches.\033[0m"

if __name__ == '__main__':
 main(sys.argv)

Listing 13: Python Script To Decode Crisis Configuration File

!
!
!
!
!

An Opportunity In Crisis! 8
1 !

Harshit!Nayyar,!hanayyar@cisco.com!! ! !

13.2.3. Crisis Fake CnC and Uninstaller

#!/usr/bin/python
from socket import *
import sys
import hashlib
import struct
from Crypto.Cipher import AES

TO_SEND='A'*64
KEY_BYTES='\x6D\x11\x7C\x40\x73\x91\x6F\xD9\x16\xF8\xD5\xC1\x9E\xD0\x57\x11'
CONF_KEY="\xA6\xF7\xF3\x41\x23\xA6\xA1\xAB\x12\xFA\xE0\xAA\x61\xD0\x2C\x2D"

def decrypt(data):
 crypt = AES.new(KEY_BYTES, AES.MODE_CBC)
 decoded = crypt.decrypt(data)
 return decoded

def encrypt(data):
 crypt = AES.new(KEY_BYTES, AES.MODE_CBC)
 encoded = crypt.encrypt(data)
 return encoded

def get_payload(data):
 start_payload=data.index('\x0D\x0A\x0D\x0A')
 start_payload+=4
 return data[start_payload:]

def hex_dump(src, length=16, sep='.'):
 FILTER = ''.join([(len(repr(chr(x))) == 3) and chr(x) or sep for x in
range(256)])
 lines = []
 for c in xrange(0, len(src), length):
 chars = src[c:c+length]
 hex = ' '.join(["%02x" % ord(x) for x in chars])
 if len(hex) > 24:
 hex = "%s %s" % (hex[:24], hex[24:])
 printable = ''.join(["%s" % ((ord(x) <= 127 and FILTER[ord(x)]) or sep)
for x in chars])
 lines.append("%08x: %-*s |%s|\n" % (c, length*3, hex, printable))
 print ''.join(lines)

def computed_sha1(*args):
 full_string = ""
 for part in args:
 full_string += part
 full_string+=CONF_KEY
 return hashlib.sha1(full_string).hexdigest()

def get_response_payload(nonce1, nonce2, command):
 unknown1="A"*0x10
 unknown2="B"*0x10
 payload_1=unknown1+unknown2

An Opportunity In Crisis! 8
2 !

Harshit!Nayyar,!hanayyar@cisco.com!! ! !

 session_key=hashlib.sha1(CONF_KEY + unknown1 + nonce1)
 print "Session Key:%s"%(session_key.hexdigest())
 session_key=session_key.digest()[0:0x10]
 payload_2=nonce2
 payload_2+=struct.pack("<L", command)
 payload_2+="C"*0x0C
 crypt = AES.new(session_key, AES.MODE_CBC)
 payload_2 = crypt.encrypt(payload_2)
 payload = encrypt(payload_1) + payload_2
 return payload

def main():
 s = socket(AF_INET,SOCK_STREAM)
 s.bind(('',8080))
 s.listen(5)
 while True:
 try:
 conn, addr = s.accept()
 print "Received Connection From:",(addr)
 rcv=""
 while True:
 data = conn.recv(512)
 rcv += data
 if not data or len(data) == 0:
 break
 else:
 break
 data = None
 data = rcv
 if len(data):
 print "---Received---"
 hex_dump(data)
 print "---Decoded---"
 payload = get_payload(data)
 if len(payload) < 0x10:
 continue
 decoded = decrypt(payload)
 hex_dump(decoded)

 #No need to unpad pkcs5 - request size is fixed
 (random1,random2,bkid,inner_sha1,osx_string,outer_sha1) = \
 struct.unpack("16s16s16s20s16s20s",decoded[0:104])

 print "Nonce1: ",random1.encode("hex")
 print "Nonce2: ",random2.encode("hex")
 print "Backdoor_id:%s, %s"%(bkid,bkid.encode("hex"))
 print "Inner_SHA1: ",inner_sha1.encode("hex")
 print "OSX_String:%s, %s"%(osx_string,osx_string.encode("hex"))
 print "Outer_SHA1: ",outer_sha1.encode("hex")
 print "Computed_SHA1: ",computed_sha1(bkid, inner_sha1,
osx_string)
 print "--------------"

 #Send Uninstall Command
 command = 0x0A

An Opportunity In Crisis! 8
3 !

Harshit!Nayyar,!hanayyar@cisco.com!! ! !

 response_payload=get_response_payload(random1, random2,
command)
 print "Sending Payload (Decrypted)"
 print hex_dump(respose_payload)

 send_header="HTTP/1.0 200 OK\r\n"
 send_header+="Content-Type: application/octet-stream\r\n"
 send_header+="Content-Length: %s"%len(response_payload)
 send_header+="\r\n\r\n"
 send_data=send_header+response_payload

 print "Sending Response"
 print "--------------"
 print hex_dump(send_data)
 print "--------------"
 conn.sendall(send_data)
 conn.close()
 except Exception, e:
 print e
 s.close()
 exit(1)
 s.close()

if __name__ == '__main__':
 main()

Listing 14: Fake CnC Server Python Script

13.3. Appendix B - Crisis Diffs/Patches
13.3.1. Backdoor (AntiDebug)

IZsROY7X.-MP
00002F26: E8 90
00002F27: A5 90
00002F28: 54 90
00002F29: 04 90
00002F2A: 00 90

13.3.2. Backdoor (Kext Install)

IZsROY7X.-MP
00002F26: E8 90
00002F27: A5 90
00002F28: 54 90
00002F29: 04 90
00002F2A: 00 90
00053643: 36 37

An Opportunity In Crisis! 8
4 !

Harshit!Nayyar,!hanayyar@cisco.com!! ! !

13.4. Kext (Fix kmod_info location changed in OSX Lion)

WeP1xpBU.wA-
000014DA: 28 2C
00001517: 28 2C

13.4.1. Kext (Fix for struct proc changes in OSX Lion)

WeP1xpBU.wA-
00000BD4: 3C 5C
00000BDB: 40 60
00000BDE: 40 60
00000BE1: 3C 5C
00000BE4: 40 60

13.5. Appendix C - Property List Files And Resources
13.5.1. Launchd Agent Property List

Path:&
$HOME/Library/LaunchAgents/com.apple.mdworker.plist

Contents:&
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>Label</key>
 <string>com.apple.mdworker</string>
 <key>LimitLoadToSessionType</key>
 <string>Aqua</string>
 <key>OnDemand</key>
 <false/>
 <key>ProgramArguments</key>
 <array>

 <string>/Users/<REDACTED>/Library/Preferences/jlc3V7we.app/IZsROY7X.-
MP</string>
 </array>
 <key>StandardErrorPath</key>
<string>/Users/$USER/Library/Preferences/jlc3V7we.app/ji33</string>
 <key>StandardOutPath</key>
 <string>/Users/$USER/Library/Preferences/jlc3V7we.app/ji34</string>
</dict>
</plist>

An Opportunity In Crisis! 8
5 !

Harshit!Nayyar,!hanayyar@cisco.com!! ! !

13.5.2. Crisis Bundle Property List

Path:&
$CRISIS_HOME/Contents/Info.plist

Contents:&

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>CFBundleDevelopmentRegion</key>
 <string>English</string>
 <key>CFBundleExecutable</key>
 <string>IZsROY7X.-MP</string>
 <key>CFBundleIdentifier</key>
 <string>com.apple.mdworker-user</string>
 <key>CFBundleInfoDictionaryVersion</key>
 <string>6.0</string>
 <key>CFBundleName</key>
 <string>mdworker-user</string>
 <key>CFBundlePackageType</key>
 <string>APPL</string>
 <key>CFBundleSignature</key>
 <string>????</string>
 <key>CFBundleVersion</key>
 <string>1.0</string>
 <key>NSMainNibFile</key>
 <string>MainMenu</string>
 <key>NSPrincipalClass</key>
 <string>NSApplication</string>
 <key>NSUIElement</key>
 <string>1</string>
</dict>
</plist>

13.5.3. Rootkit Kext Property List:

Path:&
$CRISIS_HOME/Contents/Resources/WeP1xpBU.wA-.kext/Contents/Info.plist

Contents:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">

An Opportunity In Crisis! 8
6 !

Harshit!Nayyar,!hanayyar@cisco.com!! ! !

<dict>
 <key>CFBundleDevelopmentRegion</key>
 <string>English</string>
 <key>CFBundleExecutable</key>
 <string>WeP1xpBU.wA-</string>
 <key>CFBundleIdentifier</key>
 <string>com.apple.mdworker</string>
 <key>CFBundleInfoDictionaryVersion</key>
 <string>6.0</string>
 <key>CFBundleName</key>
 <string>com.apple.mdworker</string>
 <key>CFBundlePackageType</key>
 <string>KEXT</string>
 <key>CFBundleSignature</key>
 <string>????</string>
 <key>CFBundleVersion</key>
 <string>2.0</string>
 <key>OSBundleLibraries</key>
 <dict>
 <key>com.apple.kpi.bsd</key>
 <string>11.4.2
</string>
 <key>com.apple.kpi.libkern</key>
 <string>11.4.2
</string>
 </dict>
</dict>
</plist>

13.5.4. OSAX Script Addition Property List

Path:&&
/Users/$USER/Library/ScriptingAdditions/appleHID/Contents/Info.plist

Contents:&

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>CFBundleDevelopmentRegion</key>
 <string>English</string>
 <key>CFBundleExecutable</key>
 <string>lUnsA3Ci.Bz7</string>
 <key>CFBundleIdentifier</key>
 <string>com.yourcompany.lUnsA3Ci.Bz7</string>
 <key>CFBundleInfoDictionaryVersion</key>
 <string>6.0</string>
 <key>CFBundleName</key>
 <string>lUnsA3Ci.Bz7</string>
 <key>CFBundlePackageType</key>

An Opportunity In Crisis! 8
7 !

Harshit!Nayyar,!hanayyar@cisco.com!! ! !

 <string>osax</string>
 <key>CFBundleShortVersionString</key>
 <string>1.0</string>
 <key>CFBundleSignature</key>
 <string>????</string>
 <key>CFBundleVersion</key>
 <string>1</string>
 <key>OSAScriptingDefinition</key>
 <string>rcs.sdef</string>
 <key>OSAXHandlers</key>
 <dict>
 <key>Events</key>
 <dict>
 <key>RCSeload</key>
 <dict>
 <key>Context</key>
 <string>Process</string>
 <key>Handler</key>
 <string>InjectEventHandler</string>
 <key>ThreadSafe</key>
 <false/>
 </dict>
 </dict>
 </dict>
</dict>
</plist>

13.5.5. OSAX Resource File For New Event

Path:&
/Users/$USER/Library/ScriptingAdditions/appleHID/Contents/Resources/appleOsax.r

Contents:&

#include <Carbon/Carbon.r>

#define Reserved8 reserved, reserved, reserved, reserved, reserved, reserved,
reserved, reserved
#define Reserved12 Reserved8, reserved, reserved, reserved, reserved
#define Reserved13 Reserved12, reserved
#define dp_none__ noParams, "", directParamOptional, singleItem,
notEnumerated, Reserved13
#define reply_none__ noReply, "", replyOptional, singleItem, notEnumerated,
Reserved13
#define synonym_verb__ reply_none__, dp_none__, { }
#define plural__ "", {"", kAESpecialClassProperties, cType, "", reserved,
singleItem, notEnumerated, readOnly, Reserved8, noApostrophe, notFeminine,
notMasculine, plural}, {}

resource 'aete' (0, "RCSM Terminology") {
 0x1, // major version
 0x0, // minor version

An Opportunity In Crisis! 8
8 !

Harshit!Nayyar,!hanayyar@cisco.com!! ! !

 english,
 roman,
 {
 "RCSM Suite",
 "Load RCS",
 'RCSe',
 1,
 1,
 {
 /* Events */

 "inect RCSM into Snow Leopard",
 "load RCSM into the receiving application.",
 'RCSe', 'load',
 reply_none__,
 dp_none__,
 {

 }
 },
 {
 /* Classes */

 },
 {
 /* Comparisons */
 },
 {
 /* Enumerations */
 }
 }
};

13.5.6. Configuration JSON

Path:&
!
$CRISIS_HOME/eiYNz1gd.Cfp

Contents:&
!
{
 "actions": [
 {
 "desc": "STARTUP",
 "subactions": [
 {
 "action": "module",
 "module": "device",
 "status": "start"
 },

An Opportunity In Crisis! 8
9 !

Harshit!Nayyar,!hanayyar@cisco.com!! ! !

 {
 "action": "module",
 "module": "keylog",
 "status": "start"
 },
 {
 "action": "module",
 "module": "mouse",
 "status": "start"
 },
 {
 "action": "module",
 "module": "password",
 "status": "start"
 }
]
 },
 {
 "desc": "CAMERA",
 "subactions": [
 {
 "action": "module",
 "module": "camera",
 "status": "start"
 }
]
 },
 {
 "desc": "SYNC",
 "subactions": [
 {
 "action": "synchronize",
 "bandwidth": 500000,
 "cell": false,
 "host": "176.58.100.37",
 "maxdelay": 0,
 "mindelay": 0,
 "stop": false,
 "wifi": true
 }
]
 }
],
 "events": [
 {
 "desc": "STARTUP",
 "enabled": true,
 "event": "timer",
 "start": 0,
 "subtype": "loop",
 "te": "23:59:59",
 "ts": "00:00:00"
 },
 {
 "delay": 180,

An Opportunity In Crisis! 9
0 !

Harshit!Nayyar,!hanayyar@cisco.com!! ! !

 "desc": "CAMERA",
 "enabled": true,
 "event": "timer",
 "iter": 5,
 "repeat": 1,
 "start": 1,
 "subtype": "loop",
 "te": "23:59:59",
 "ts": "00:00:00"
 },
 {
 "delay": 300,
 "desc": "SYNC",
 "enabled": true,
 "event": "timer",
 "repeat": 2,
 "subtype": "loop",
 "te": "23:59:59",
 "ts": "00:00:00"
 }
],
 "globals": {
 "advanced": false,
 "collapsed": false,
 "migrated": false,
 "nohide": [],
 "quota": {
 "max": 4194304000,
 "min": 1048576000
 },
 "remove_driver": true,
 "type": "desktop",
 "version": 2012041601,
 "wipe": false
 },
 "modules": [
 {
 "module": "addressbook"
 },
 {
 "module": "application"
 },
 {
 "module": "calendar"
 },
 {
 "buffer": 512000,
 "compression": 5,
 "module": "call",
 "record": true
 },
 {
 "module": "camera",
 "quality": "med"
 },

An Opportunity In Crisis! 9
1 !

Harshit!Nayyar,!hanayyar@cisco.com!! ! !

 {
 "module": "chat"
 },
 {
 "module": "clipboard"
 },
 {
 "call": true,
 "camera": true,
 "hook": {
 "enabled": true,
 "processes": []
 },
 "mic": true,
 "module": "crisis",
 "network": {
 "enabled": false,
 "processes": []
 },
 "position": true,
 "synchronize": false
 },
 {
 "list": false,
 "module": "device"
 },
 {
 "accept": [],
 "capture": false,
 "date": "2012-07-09 00:00:00",
 "deny": [],
 "maxsize": 500000,
 "minsize": 1,
 "module": "file",
 "open": false
 },
 {
 "factory": "",
 "local": false,
 "mobile": false,
 "module": "infection",
 "usb": false,
 "vm": 0
 },
 {
 "module": "keylog"
 },
 {
 "mail": {
 "enabled": true,
 "filter": {
 "datefrom": "2012-07-09 00:00:00",
 "dateto": "2100-01-01 00:00:00",
 "history": true,
 "maxsize": 100000

An Opportunity In Crisis! 9
2 !

Harshit!Nayyar,!hanayyar@cisco.com!! ! !

 }
 },
 "mms": {
 "enabled": true,
 "filter": {
 "datefrom": "2012-07-09 00:00:00",
 "dateto": "2100-01-01 00:00:00",
 "history": true
 }
 },
 "module": "messages",
 "sms": {
 "enabled": true,
 "filter": {
 "datefrom": "2012-07-09 00:00:00",
 "dateto": "2100-01-01 00:00:00",
 "history": true
 }
 }
 },
 {
 "autosense": false,
 "module": "mic",
 "silence": 5,
 "threshold": 0.22
 },
 {
 "height": 50,
 "module": "mouse",
 "width": 50
 },
 {
 "module": "password"
 },
 {
 "cell": true,
 "gps": false,
 "module": "position",
 "wifi": true
 },
 {
 "module": "print",
 "quality": "med"
 },
 {
 "module": "screenshot",
 "onlywindow": false,
 "quality": "med"
 },
 {
 "module": "url"
 }
]
}

