
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Reverse-Engineering Malware: Malware Analysis Tools and Techniques (Forensics 610)"
at http://www.giac.org/registration/grem

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/grem

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Malicious Code Analysis:
The msrll.exe Case

Reverse Engineering Malware
(GREM)

Practical Assignment

Version 1.0

Yves Lafrance
ILOT XII

December 2, 2004

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Yves Lafrance Table of Contents

- 3 -

Table of Contents
Abstract 1
Document Conventions 1
Introduction 2
Laboratory Setup 3

Hardware Settings 3
Network Settings 3

Host Computer 4
'Target 1' Computer 5
'Target 2' Computer 5
'Monitor / Utility' Computer 5

Software 6
Host Computer 6
Target 1 Computer 6
Target 2 Computer 7
'Monitor / Utility' Computer 7

Properties of the Malware Specimen 9
File Information 9
Embedded Strings 9

Behavioral Analysis 11
Msrll.exe 'first run' 11

File Monitoring 11
Registry Monitoring 11
Cryptography 12
Confirming Observations 12

Behavior Once Installed 13
Agent Behavior 14

'msrll.exe' Startup 14
'msrll.exe' Auxiliary Files 14
Environment Information 15
Network Activities 15
Alternate Ports (8080 and 9999) 15
Successful IRC Connection 16
Port 2200 17
Agent Commands 17

Code Analysis 19
Unpacking 'msrll.exe' 19
"Authentication Bypass" 19
Finding Commands 20
Finding command routines 21

Analysis Wrap-up 22
Program Capabilities 22
Protect against it! 22
Detect it! 22
Contain it! 22
Eradicate it! 22

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Yves Lafrance Table of Contents

- 4 -

Appendices 24
Appendix A – Checklist Examples 24

Malicious Code Loading 24
Transferring Results Files 24

Appendix B - Embedded Strings 25
Appendix C - Regshot Comparison – User Account 33
Appendix D - Agent Control Commands 36
Appendix E - Connection Sequences 41

References 42

List of Figures

Figure 1 – Laboratory Setup for Malicious Code Analysis 3
Figure 2 – msrll.exe Behavior 13

List of Tables

Table 1 – Msrll.exe - Program Sections 9
Table 2 – File Monitoring 11
Table 3 – Registry Monitoring 12
Table 4 - Cryptography 12
Table 5 – RegShot - Files 13
Table 6 – Folder Creation – Name Collision 14
Table 7 – Auxiliary Files 15
Table 8 - DNS Request 15
Table 9 – Port 8080 Activity 16
Table 10 - IRC Connection 17
Table 11 - AsPack Section Name 19
Table 12 - Authentication Error Messages 19
Table 13 - Authentication Bypass 20
Table 14 - Command Names & Command Subroutines Call 21

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Yves Lafrance- 5 -<your
name>

Abstract

- 5 -

Abstract
This document presents observations made about one piece of malicious code.
It follows the investigating method taught in the 'Reverse Engineering Malware'
course.

The first section presents the setup used to investigate. This is followed by the
first observations regarding the code to analyze. The next two sections describe
the findings about the program's behavior and code analysis. Through these
sections, readers may see how pieces of information influence the analysis
process.

The document concludes with a wrap-up of the knowledge gained during the
analysis.

Appendices contain detailed information gathered about 'msrll.exe'.

Document Conventions
When you read this practical assignment, you will see that certain words are
represented in different fonts and typefaces. The types of words that are
represented in this way include the following:

command Operating system commands are represented in this
font style. This style indicates a command that is
entered at a command prompt or shell.

filename Filenames, paths, and directory names are
represented in this style.

computer output The results of a command and other computer output
are in this style

URL Web URL's are shown in this style.
Quotation A citation or quotation from a book or web site is in

this style.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.6

Yves Lafrance Introduction

Introduction

Examining malicious code is a fascinating experience. Like many specialized
tasks, it requires both the use of tools and knowledge. But it also requires some
understanding of people. Analyzing someone else's program leads to trying to
understand their motives and way of thinking.

The first part of this document describes the laboratory used to pursue the
analysis. This includes the hardware and the software used as well as the
network settings. The environment being set, the next sections describe one
specific malicious code analysis.

The subsequent sections describe observations made during the experiments
conducted to understand this piece of code. These observations were gathered
using two methods. The first one consists in deploying tools to observe the
interaction of the malicious code specimen, both inside and outside an infected
computer. The goal of the second method is to gain access to the code of the
analyzed program and to understand it (at least parts of it).

Even though these sections are presented sequentially, the process of
understanding malicious code requires combining behavioral and code analyses
together; the result of one approach gives pertinent clues to use with the other
one. It is possible to go deeper in the analysis combining the knowledge gained
from the two methods.

It is important to remember why such an analysis is performed. The overall
goals are to contribute to the incident handling process. Malicious code analysis
can be very handy especially for the 'containment' and 'eradication' phases. To
be cost effective, analyses have to stop when the analyst has reasonable
grounds to believe that the process has delivered the required information.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.7

Yves Lafrance Laboratory Setup

Laboratory Setup
The laboratory used to perform this malicious code analysis is inspired from the
setup proposed in the "Reverse Engineering Malware" course. It is based on
virtual computers running on a single "real" one.

Hardware Settings
The computer supporting the laboratory environment is configured with a 1.8
Ghz Pentium 4M CPU and 786 Mbytes of memory. It runs under a Windows XP-
SP2 operating system. The current document refers to this computer as the
'host computer'.

VMware is used to provide the virtual computer environment. It is described in
the 'hardware section' because it simulates hardware on which operating
systems run as well as providing the network environments. Settings are
adjusted to implement maximum isolation between the real computer and the
virtual ones. These include deactivating the 'cut and paste' capabilities between
the host computer and the other ones.

Network Settings
The figure below illustrates how the host computer is configured to create the
environment used to securely study malicious programs (malware). The
objective of this configuration is to provide the connectivity required to perform
analyses as well as maintaining isolation to make sure that malicious code
does not "escape" from the laboratory environment.

Figure 1 – Laboratory Setup for Malicious Code Analysis

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.8

Yves Lafrance Laboratory Setup

Keeping risk mitigation in mind, the laboratory is designed with three different
networks. A fourth network is 'simulated' using another VMware function.

Production
network
(green)

This network is used only to transfer files with the 'host q

computer'.
The network cable is physically disconnected when working with q

malicious code.

Host
network
(yellow)

This network, provided by the VMware software, is used to q

supply connectivity between the host computer and the virtual
ones.
This network is only used to share information between the q

isolated network and the host computer (mostly to retrieve files
resulting from the analysis).
Computers targeted to be 'infected' by the malicious code are q

not connected to this network.
An FTP server is used to perform the file transfer directed to the q

host computer.
The network interface on the host computer is only activated q

(using the virtual machine settings) when required.

Isolated
network
(red)

The isolated network is the only network where malicious traffic q

is allowed to happen.
The host computer is not linked to this network, to reduce q

contamination risks. The FTP server also uses this network to
relay files from the 'target computers' to the host computer.
Once again, this server is only activated when a file transfer is q

required.

ISO disk
images
(orange)

VMware provides a function to feed ISO image files to a virtual q

computer to reproduce a CD-ROM disk. This function is used to
'feed' the first target computer with the malicious code to
analyze.
This provides a network with an independent (and read-only) q

way to communicate from the host computer to the first target
computer.
This method results in a 'one-way' communication to protect the q

host computer from malicious infection.

Now that the communications paths have been configured, each computer has
distinct functions:

Host Computer
The host computer controls the environment of the virtual computers that are
used to perform the malicious code analysis. It supplies the virtual networks and

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.9

Yves Lafrance Laboratory Setup

resources to run each virtual computer.

The primary concern about the host computer is its protection. This computer
must be 'sealed' to guarantee that malicious code won't leak into the production
environment. Several methods are used to enforce the safety measures.

Up-to-date operating system maintenance to reduce the vulnerability q

level of the host computer.
Up-to-date Anti Virus software to detect any known malicious code that q

could be stored or active on the host computer.
Firewall tightly configured on each network interface (virtual and real)q

ISO images to provide the malicious code to the first target computer in a q

one-way communication
Procedures and Checklists to make sure that all safety measures are q

enforced correctly to protect the host computer. Checklists are reminders
to protect the integrity of the laboratory environment. Appendix A presents
examples of checklists used every time a file exchange is made to or
from the host computer with the virtual environment.

'Target 1' Computer
The first target computer is used to:

Check the properties of the malicious specimenq

Perform the behavioral analysis of the specimenq

Perform the code analysisq

Store the file of each observationq

The computer was configured with Windows 2000 Professional - Service Pack
4. Other software applications used on this target computer are described in the
software section. This computer may also be called 'target', 'infected computer'
'bot' or 'zombie computer'. A zombie is a computer acting under the control of
another one operated by a person with malicious intentions.

'Target 2' Computer
The general role of the second target computer is to be infected by the first one
over the isolated network. It operates under Windows 2000 Professional -
Service Pack 4 with no additional protection. In the present analysis, it is used
as a second member of a 'zombie army'.

'Monitor / Utility' Computer
This computer, running under Redhat Linux version 9, supplies commodities to
perform the malicious code analysis.

It is used to:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.10

Yves Lafrance Laboratory Setup

Simulate servers if required by the code infecting the target computersq

Support tools to monitor the malicious code behavior over the 'isolated q

network'
As a base for the analyst to interact over the network with the malicious q

code running on targets to 'stimulate' malicious code and observe its
reactions
To transfer files containing the observations to the host computer where q

analyses and report writing are performed.

Software
Software applications used to perform the analysis are presented grouped under
the computers in which they are installed.

Host Computer

Vmware
v 4.5.2

As described in the hardware section, this software simulates the
hardware and network environments to perform tasks on 'virtual
computers and networks'. URL: http://www.vmware.com/

Notepad Text editor provided with Microsoft Windows XP.
URL: http://www.microsoft.com/

Excel Spreadsheet used to browse logs in a convenient way.
URL: http://www.microsoft.com/

MagicISO ISO image editor to create ISO images to be read by the target
computers. MagicISO is a commercial product. A function restricted
trial version is available. URL: http://www.magiciso.com/index.htm

'Target 1' Computer
Windows
2000Pro

Partially patched Operating system to operate the computer.
Patch level is Service Pack 4. URL: http://www.microsoft.com/

WinZip Used to read compressed files and extract their content.
URL: http://www.winzip.com/

MD5sum Computes a unique hash based on the content of a file. This hash
provides a sure way to determine if a file is an exact copy of
another one.
Windows version URL: http://www.etree.org/md5com.html

BinText Used to extract text strings from an executable file.
URL: http://www.foundstone.com/

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.11

Yves Lafrance Laboratory Setup

PEinfo Used to view PE headers and embedded strings from an
executable program. This program, created by Tom Liston, was
installed from the 'Reverse Engineering Malware course' CD.

RegShot A tool to compare to 'states' of a computer. This is used to look at
modifications performed on a computer by a malicious program.
URL: http://regshot.ist.md/

RegMon Logs actions made on a computer regarding the Registry.
URL: http://www.sysinternals.com/ntw2k/source/regmon.shtml

FileMon Logs actions made on a computer regarding the file system.
URL: http://www.sysinternals.com/ntw2k/source/filemon.shtml

TDIMon Logs network actions made on a computer regarding the network
(TCP and UDP) activities.
URL: http://www.sysinternals.com/ntw2k/freeware/tdimon.shtml

Process
Explorer

Tracking program to gather information about processes running
on a computer. Can also be used to kill processes that may be
difficult to stop with task manager.
URL: http://www.sysinternals.com/ntw2k/freeware/procexp.shtml

IDA pro Freeware version of the IDA pro Disassembler. Used to
disassemble the malicious code to look at it in a more
comprehensive way.
URL: http://www.datarescue.be/downloadfreeware.htm

OllyDebug Free debugger including a disassembler. Used to trace a program
with the objective of understanding its behavior.
URL: http://home.t-online.de/home/Ollydbg/

AsPackDie Unpacking tool to unpack files packed using 'AsPack' method.
URL: http://protools.anticrack.de/unpackers.htm

'Target 2' Computer
Software applications used on this computer are identical to those used on
'Target 1' computer.

'Monitor / Utility' Computer

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.12

Yves Lafrance Specimen Properties

RedHat
Linux
v. 9

The Linux Operating system platform is used to provide a different
operating environment from the target computers. The difference in
technology helps to reduce malicious code propagation risks. The
Linux virtual machine image supplied on the course CD was used for
the laboratory elaboration. URL: http://www.redhat.com

NetCat Network utility used to read and write across network connections.
Used to simulate software listening on specific network ports.
URL: http://www.atstake.com/research/tools/

Snort Open source network intrusion detection system. Used in the
laboratory environment to capture network traffic.
URL: http://www.snort.org/

IRCd IRC server used to interact with malicious code infecting target
computers. URL: http://ircd-hybrid.com/

Vsftpd FTP server used to transfer files from the 'target computers' and Linux
computer to the host computer. Installed from the RedHat CD image
disks. URL: http://vsftpd.beasts.org/

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.13

Yves Lafrance Specimen Properties

Properties of the Malware Specimen
When harvesting files to perform malware analysis, it is important to gather as
much information as possible. Information such as:

Computer where the file(s) are taken fromq

How the computer received the file (email, network, WEB, unknown q

source, etc…)
Was the file embedded into a compressed file? If so, information about q

the compressed file would have been gathered as well.

It is also important to preserve as much of the computer's environment (registry,
files) as possible in case the analysis process requires further extraction to
pursue the investigation. In the present case, theses circumstances are
unknown and will not be described.

File Information
The following information is presented as if there were only a single file:

File name: msrll.exe
File date and time: 2004-05-10 16:29
File size 41 984 bytes
Runs on: Windows operating systems
File MD5 signature: 84acfe96a98590813413122c12c11aaa *msrll.exe

This information is essential to correctly identify the malicious code during
analysis as well as information exchanged between people investigating the
same case.

Embedded Strings
A first attempt to retrieve strings embedded (using BinText tool) in the
'msrll.exe' file showed that the program was packed (compressed). The tool
retrieved only a few significant text strings. However, the first strings seemed to
represent program sections. This was confirmed using the PEInfo tool.

File pos Mem pos ID Text
======== ======= == ====
0000004D 0040004D 0 !This program cannot be run in DOS

mode.
00000178 00400178 0 .text
000001A0 004001A0 0 .data
000001F0 004001F0 0 .idata
00000218 00400218 0 .aspack
00000240 00400240 0 .adata

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.14

Yves Lafrance Behavioral Analysis

Table 1 – Msrll.exe - Program Sections

Once the program was unpacked, a large amount of text strings were found.
Appendix B shows the complete text string list. For details about the unpacking
process, refer to the Code Analysis chapter.

A glance at the string list showed some clues that may be used in the analysis
process:

Many strings begin with at question mark ('?') followed by strings that q

may represent some kind of commands. Here are a few examples:
?login,?uptime,?reboot,?status,?jump,?nick, ?echo, …
Strings including '%s' and '%u' seem to be answers or error messagesq

Some strings seem to refer to IRC parameters: Here are some examples: q

irc.user irc.usereal irc.real irc.pass, …
Other strings have the same format but refer to something named 'jtr': q

jtr.bin, jtr.home, jtr.id, jtr.%u%s.iso, jtr.*,
One string refers to an Internet domain name and communication ports: q

collective7.zxy0.com,collective7.zxy0.com:9999!,collect
ive7.zxy0.com:8080

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.15

Yves Lafrance Behavioral Analysis

Behavioral Analysis
This section describes the observed behavior when the msrll.exe file was
activated. It is divided into two parts. The first one addresses the observed
behavior when the program is run for the first time. The second one describes
the behavior or the code when 'comfortably installed' on a computer.

Msrll.exe 'first run'
A first attempt was made to run the 'msrll.exe' program that was made using a
user account. This attempt showed almost no results. This was later confirmed
using the RegShot program, other tools requiring an administrative right to start.
Appendix C presents RegShot comparison results. Every other experiment was
made using an administrator account.

Several tools were activated to observe the program's behavior when it was run
for the first time. Most of them were active on the target computer (RegShot,
FileMon, RegMon and TDImon). The snort program was also used on the Linux
computer to capture eventual traffic emanating from the target computer.
Following are the most important observations about the malware's first run.

File Monitoring
When first launched, the program's objective regarding the file system appeared
to hide itself in the system files and 'disappear' from its original location. To
confirm this hypothesis, a few extracts were taken from the file monitor
(FileMon).

Create 'mfm' folder
msrll.exe:560 CREATE C:\WINNT\system32\mfm SUCCESS Options: Create
Directory Access: All

Copy itself in 'mfm' folder
msrll.exe:560 CREATE C:\WINNT\system32\mfm\msrll.exe SUCCESS
Options: OverwriteIf Sequential Access: All

msrll.exe:560 WRITE C:\WINNT\system32\mfm\msrll.exe SUCCESS
Offset: 0 Length: 41984

Set attributes about it's file
msrll.exe:560 SET INFORMATION C:\WINNT\system32\mfm\msrll.exe
SUCCESS

Delete the original file
msrll.exe:560 DELETE C:\Resultats\msrll.exe SUCCESS

Table 2 – File Monitoring

Registry Monitoring

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.16

Yves Lafrance Behavioral Analysis

On the registry level, 'msrll.exe' explores many registry values, possibly to
learn about the environment in which it runs. Registry monitoring (using RegMon)
also reveals how the programs arrange the system settings to start
automatically when the computer is started. A log extract from RegMon shows
how 'msrll.exe' uses Windows Services.exe to register as a service started
up at boot time:

SERVICES.EXE:212 OpenKey HKLM\System\CurrentControlSet\Services SUCCESS Key:
0xE1C88660

SERVICES.EXE:212 CreateKey HKLM\System\CurrentControlSet\Services\mfm SUCCESS Key:
0xE1E92760

SERVICES.EXE:212 CloseKey HKLM\System\CurrentControlSet\Services SUCCESS Key:
0xE1C88660

SERVICES.EXE:212 SetValue HKLM\System\CurrentControlSet\Services\mfm\Type SUCCESS
0x120

SERVICES.EXE:212 SetValue HKLM\System\CurrentControlSet\Services\mfm\Start SUCCESS
0x2

SERVICES.EXE:212 SetValue HKLM\System\CurrentControlSet\Services\mfm\ErrorControl
SUCCESS 0x2

SERVICES.EXE:212 SetValue HKLM\System\CurrentControlSet\Services\mfm\ImagePath
SUCCESS "C:\WINNT\system32\mfm\msrll.exe"

SERVICES.EXE:212 SetValue HKLM\System\CurrentControlSet\Services\mfm\DisplayName
SUCCESS "Rll enhanced drive"

SERVICES.EXE:212 CreateKey HKLM\System\CurrentControlSet\Services\mfm\Security
SUCCESS Key: 0xE1C88660

SERVICES.EXE:212 SetValue
HKLM\System\CurrentControlSet\Services\mfm\Security\Security SUCCESS 01 00 14 80
A0 00 00 00 ...

SERVICES.EXE:212 CloseKey HKLM\System\CurrentControlSet\Services\mfm\Security
SUCCESS Key: 0xE1C88660

SERVICES.EXE:212 SetValue HKLM\System\CurrentControlSet\Services\mfm\ObjectName
SUCCESS "LocalSystem"

Table 3 – Registry Monitoring

Cryptography
The msrll.exe program shows many traces regarding cryptography. Embedded
strings in the unpacked file show references to crypto routines (such as
Blowfish, Rijndael, XTEA, Twofish, SHA-512, SHA1, MD5, etc).
Registry monitoring also shows activity regarding cryptography:

msrll.exe:504 CreateKey HKLM\SOFTWARE\Microsoft\Cryptography\RNG SUCCESS Key:
0xE139DA80

msrll.exe:504 SetValue HKLM\SOFTWARE\Microsoft\Cryptography\RNG\Seed SUCCESS E3
0E 6E 3A 5E 8A EA 63 ...

Table 4 - Cryptography

Confirming Observations
Most observations made dynamically with Filemon and Regmon tools are
confirmed using RegShot. This tool was used to compare the computer's state
before and after the 'msrll.exe' program had completed its installation. An
extract from the comparison log shows both the created and deleted files:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.17

Yves Lafrance Behavioral Analysis

Files added:2

C:\WINNT\system32\mfm\jtram.conf
C:\WINNT\system32\mfm\msrll.exe

Files deleted:1

C:\Resultats\TP\msrll.exe

Table 5 – RegShot - Files

Behavior Once Installed
Before going further, it appears appropriate to define some terms used to
describe the program's behavior.

A 'zombie' or 'zombie computer' is a computer that is under someone else's
control without the knowledge of its legitimate user or administrator. This
computer is generally used as an intermediary to perform 'Denial of Service'
attacks (DoS).1 A 'zombie army' is a collection of many computers under the
same control. To succeed with a DoS attack, malicious persons need to
synchronize the behavior of many computers into attacking the same target at
the same time.

A 'zombie agent' or 'agent' is a program that runs on a computer to automate a
specific task. In this document, the interest for this kind of program is its
capability to react to orders that are issued to it, generally from an outside
source, and whichinfluence the computer's actions. Agents are also referred as
'bots', which is short for 'robot'.

The following figure facilitates the understanding of the 'msrll.exe' program
detailled in the next pages.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.18

Yves Lafrance Behavioral Analysis

Figure 2 – msrll.exe Behavior

Agent Behavior
Once installed, the original program terminates itself and starts the newly
installed file. This program may also be called an 'agent'. Its behavior, such as
trying to create the directory where it has already been copied, shows that it is
probably the same file. This is confirmed using MD5sum, which generates an
identical hash.

Try to create 'mfm' folder
msrll.exe:1044 CREATE C:\WINNT\system32\mfm NAME COLLISION Options:

Create Directory Access: All

Table 6 – Folder Creation – Name Collision

'msrll.exe' Startup
The 'msell.exe' program may also be started as a service when the system is
booted. It can be started as a regular program if activated under the Windows
explorer or a command shell.

The 'msrll.exe' process cannot be killed using Windows task manager. The
'process explorer' tool can both investigate and kill the process.

The 'msrll.exe' process disables GUI safemode by rebooting the computer if an
attempt is made to enter into this mode. Text safemode is still functional.

'msrll.exe' Auxiliary Files

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.19

Yves Lafrance Behavioral Analysis

One of the first noticeable tasks performed by 'msrll.exe' is to create the
C:\WINNT\system32\mfm\jtram.conf file. To create this file, it looks for
c:\dev\random. If the file is absent, the program seems to rely on itself to
generate the random strings.

On Unix/linux systems, the /dev/random file is used to generate random
strings. Its counterpart (as a file) does not exist on Windows systems. If the file
name c:\dev\random is created and filled with some strings in it, the program
reads it like a real random string generator.

The following FileMon log extracts corroborate this hypothesis:

File not found:
1029 19:47:36 msrll.exe:972 OPEN C:\dev\random PATH NOT FOUND Options:
Open Access: All
1030 19:47:36 msrll.exe:972 OPEN C:\dev\random PATH NOT FOUND Options:
Open Access: All
1031 19:47:36 msrll.exe:972 WRITE C:\WINNT\system32\mfm\jtram.conf
SUCCESS Offset: 0 Length: 53

File present:
2673 20:02:36 msrll.exe:252 OPEN C:\dev\random SUCCESS Options: Open
Access: All
2674 20:02:36 msrll.exe:252 READ C:\dev\random SUCCESS Offset: 0
Length: 16
2675 20:02:36 msrll.exe:252 CLOSE C:\dev\random SUCCESS
2676 20:02:36 msrll.exe:252 WRITE C:\WINNT\system32\mfm\jtram.conf
SUCCESS Offset: 0 Length: 53

Table 7 – Auxiliary Files

The C:\winnt\system32\mfm\jtram.conf file is read and recreated every
time the 'msrll.exe' program is started. It is then updated (or re-created if
renamed or deleted) every hour. Update time depends on the 'mrsll.exe'
starting time (boot time). File content varies every time. The file is updated even
if the agent is not able to reach its server to receive orders (if server is
unreachable or if targeted ports (IRC (6667), 8080 and 9999) do not answer (port
RESET)). It is also possible to force the file to be updated using the '?dump'
command (refer to the 'agent control' section).

Environment Information
File and registry monitoring shows 'interest' from the 'msrll.exe' program
about the computer environment. It reads and even modifies registry values
regarding 'Internet Explorer', and 'Document and settings keys and files. It acts
the same with cryptography keys and 'DLL' files.

Network Activities
Network activities were monitored using the TDIMon tool on the infected
computer and Snort on the Linux computer. Snort can trace any traffic on the
network while TDImon can reveal listening processes not traceable with Snort if

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.20

Yves Lafrance Behavioral Analysis

not solicited.

'msrll.exe' begins its network activities by looking for a
'master site'. This is done using DNS request for the
'collective7.zxy0.com' domain.

Snort trace – DNS request
11/12-15:03:42.437367 192.168.116.110:1029 -> 192.168.116.1:53
UDP TTL:128 TOS:0x0 ID:186 IpLen:20 DgmLen:66 Len: 38
E4 AD 01 00 00 01 00 00 00 00 00 00 0B 63 6F 6C col
6C 65 63 74 69 76 65 37 04 7A 78 79 30 03 63 6F lective7.zxy0.co
6D 00 00 01 00 01 m.....

Table 8 - DNS Request

To give the malicious code access to a fake collective7.zxy0.com server,
the host table was edited to point this name to the linux computer's interface.

In reaction, 'msrll.exe' then starts to listen on port 113 and port 2200. It then
tries to connect to the collective7.zxy0.com server on port 6667, an IRC port.

Alternate Ports (8080 and 9999)

If the IRC server is not available, the agent ('msrll.exe') tries to connect to port
8080. If successful, it sends some identification strings to it. The agent appears
to wait for a command for 5 seconds then closes the connection. Experiments
did not succeed in provoking a reaction from the agent with this connection.

Snort trace – connection on port 8080
11/22-07:27:46.730978 192.168.116.128:1030 -> 192.168.116.129:8080
TCP TTL:128 TOS:0x0 ID:82 IpLen:20 DgmLen:92 DF
AP Seq: 0x8C0C546D Ack: 0x4A43DBB Win: 0xFAF0 TcpLen: 20
55 53 45 52 20 6F 43 6A 4A 7A 4C 42 20 6C 6F 63 USER oCjJzLB loc
61 6C 68 6F 73 74 20 30 20 3A 61 6B 70 4F 72 66 alhost 0 :akpOrf
76 0A 4E 49 43 4B 20 6D 55 6C 73 6B 59 74 69 62 v.NICK mUlskYtib
47 4D 61 0A GMa.

Netcat capture on port 8080
USER ymPSNwcKHRf localhost 0:fDGWTMtySwEDlRWmvPvPSvvfWOcGZn
NICK iUHyQPxrWh

Table 9 – Port 8080 Activity

If not successful on port 8080, the agent repeats the same process on port
9999.

Successful IRC Connection
If the 'master computer' has an IRC server listening, the agent connects itself to
an IRC channel named '#mils'. Experiments did not succeed in provoking a
reaction from the agent with this connection.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.21

Yves Lafrance Behavioral Analysis

Snort trace – IRC connection request
11/23-04:00:16.987346 192.168.116.128:1026 -> 192.168.116.129:6667
TCP TTL:128 TOS:0x0 ID:23 IpLen:20 DgmLen:48 DF
******S* Seq: 0xEBCC1B9A Ack: 0x0 Win: 0xFAF0 TcpLen: 28
TCP Options (4) => MSS: 1460 NOP NOP SackOK
6D 00 00 01 00 01

Snort trace – IRC server tries to authenticate the connecting computer
11/23-04:00:17.011508 192.168.116.129:1036 -> 192.168.116.128:113
TCP TTL:64 TOS:0x0 ID:63166 IpLen:20 DgmLen:60 DF
******S* Seq: 0xBFB830A8 Ack: 0x0 Win: 0x16D0 TcpLen: 40
TCP Options (5) => MSS: 1460 SackOK TS: 574998 0 NOP WS: 0
=+=
11/23-04:00:17.016621 192.168.116.128:113 -> 192.168.116.129:1036
TCP TTL:128 TOS:0x0 ID:25 IpLen:20 DgmLen:64 DF
***A**S* Seq: 0xEBCD6F1E Ack: 0xBFB830A9 Win: 0xFAF0 TcpLen: 44
TCP Options (9) => MSS: 1460 NOP WS: 0 NOP NOP TS: 0 0 NOP NOP
SackOK
=+=
11/23-04:00:17.016735 192.168.116.129:1036 -> 192.168.116.128:113
TCP TTL:64 TOS:0x0 ID:63167 IpLen:20 DgmLen:52 DF
A* Seq: 0xBFB830A9 Ack: 0xEBCD6F1F Win: 0x16D0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 574999 0
=+=
11/23-04:00:17.084360 192.168.116.129:1036 -> 192.168.116.128:113
TCP TTL:64 TOS:0x0 ID:63168 IpLen:20 DgmLen:65 DF
AP Seq: 0xBFB830A9 Ack: 0xEBCD6F1F Win: 0x16D0 TcpLen: 32
TCP Options (3) => NOP NOP TS: 575006 0
31 30 32 36 20 2C 20 36 36 36 37 0D 0A 1026 , 6667..

Snort trace – IRC connection to server
11/23-04:00:17.169372 192.168.116.128:1026 -> 192.168.116.129:6667
TCP TTL:128 TOS:0x0 ID:26 IpLen:20 DgmLen:129 DF
AP Seq: 0xEBCC1B9B Ack: 0xC01189CD Win: 0xFAC2 TcpLen: 20
55 53 45 52 20 49 47 64 67 46 63 46 45 6B 57 20 USER IGdgFcFEkW
6C 6F 63 61 6C 68 6F 73 74 20 30 20 3A 50 57 67 localhost 0 :PWg
79 54 68 50 48 6D 72 6F 67 47 6D 64 68 6A 51 5A yThPHmrogGmdhjQZ
4D 77 48 44 78 6E 50 43 52 47 41 74 6B 4D 46 65 MwHDxnPCRGAtkMFe
4C 69 6D 6A 77 70 0A 4E 49 43 4B 20 6E 61 45 63 Limjwp.NICK naEc
43 6B 77 4D 46 41 76 74 0A CkwMFAvt.

Snort trace – IRC infected computer joins #mils channel
11/23-04:00:17.989294 192.168.116.128:1026 -> 192.168.116.129:6667
TCP TTL:128 TOS:0x0 ID:23 IpLen:20 DgmLen:48 DF
******S* Seq: 0xEBCC1B9A Ack: 0x0 Win: 0xFAF0 TcpLen: 28
TCP Options (4) => MSS: 1460 NOP NOP SackOK
6D 00 00 01 00 01

Table 10 - IRC Connection

The agent reacts to an IRC 'PING' request from the server by issuing a 'PONG'
answer. This shows the agent's capability to wait for strings on this connection
and to take action based on the input supplied.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.22

Yves Lafrance Code Analysis

Port 2200
With original code of 'msrll.exe', a connection to port 2200 on the target
computer using a telnet, is answered by a two character string '#:' prompt.
You may enter some character strings on the first two lines. If they do not
correspond to something expected, the communication is closed.

A modified version of the agent (see 'code analysis section') was patched to
bypass this barrier. It was the possible to enter commands and analyze the
agent reactions.

If attempting to connect another computer a second telnet on port 2200 while
the first one is still active, the agent issues a message to the first session: '***
bot.port: connect from <second computer IP>'. MSRLL does not
answer to the second session.

Agent Commands
Once the "authentication process" is deactivated, a session begins by entering
string on the first two lines after the '#:' prompt. String entered on first line is
displayed on the connection on port 2200 by the '?sklist' command.

Experiments identified four command types.
Information commands return information about the agent. These q

commands are: '?si, ?status, ?echo and ?uptime'. The
'?set' without parameters may also be considered as an informative
command.
Agent controls are used to control the agent's actionsq

Socket commands are used to manage the agent's IRC communicationsq

Attack commands instruct the agent to perform an attack on the q

specified target. Attack commands are: '?ping, ?udp, ?jolt, ?syn
and ?smurf'.

Funny detail: Embedded strings show commands beginning with a question
mark. However, the agent accepts commands if they begin with other
characters (except numbers or letters) such as: . , ; _ : - = + / \ # | ? % ()
etc…

Appendix D presents the complete command list and the experiment results for
each of them. Some commands kept their secrets. This is the case for the
'?lsmod, ?insmod and ?rmmod' commands. However, it is possible that
they represent the remains of a piece of code made to run in a Unix/linux
environment. Their names look like names for this kind of system.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.23

Yves Lafrance Code Analysis

Code Analysis
As mentioned earlier, the code analysis process was performed in collaboration
with the behavioral analysis. This section presents the results of the work done
using tools like 'BindText, PEInfo, AsPackDie, OllyDbg'.

Unpacking 'msrll.exe'
Clues to find out the program packer used to pack the 'msrll.exe' program were
given by the BindText and PeInfo tools. As the following extract shows, a
program section was named as a packer program ('AsPack'):

Section Name: .aspack
VirtualAddress: 0051D000
VirtualSize: 00002000 (8192)
SizeOfRawData: 00002000 (8192)
PointerToRawData: 0011D000
Section characteristics:

Contains initialized data
Default alignment (16 bytes)
Is readable
Is writeable

Table 11 - AsPack Section Name

The 'AsPackDie' program was used to successfully unpack the program. Some
tests showed that the behavior of the unpack version was similar to the original
file. From that moment, the unpacked code was use to conduct the analysis.

Some experiments with both 'IDA pro' and 'OllyDbg' showed that
'OllyDbg' alone could be used to complete the analysis. The following code
segments were extracted using 'OllyDbg'.

"Authentication Bypass"
A clue to find this piece of code was at:

0040BB52 . 25 73 20 62 61>ASCII "%s bad pass from"
0040BB62 . 20 22 25 73 22>ASCII " "%s"@%s",0

Table 12 - Authentication Error Messages

These strings suggested that the following code performed some kind of
'authentication'.

To bypass the "authentication requirement" that controls access on port 2200,
NOP operations are used to replace the 'JUMP' operation at address 0040BBE9

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.24

Yves Lafrance Code Analysis

(JE SHORT msrll.0040BC5A). To gain access to the channel, any strings will be
accepted on the first two lines (hit 'return' between the two chains). On the third
line, commands are accepted. The first character string (first line) seems to be
used as a "name". The '?sklist' command's result shows this string as
identifying the connection on port 2200 by the agent.

Original code
0040BBDE .52 PUSH EDX ; |Arg1
0040BBDF .E8 8E9CFFFF CALL msrll.0040587
0040BBE4 .83C4 10 ADD ESP,10
0040BBE7 .85C0 TEST EAX,EAX
0040BBE9 .74 6F JE SHORT MSRLL.0040BC5A
0040BBEB .83EC 0C SUB ESP,0C

Modified code
0040BBDE .52 PUSH EDX ; |Arg1
0040BBDF .E8 8E9CFFFF CALLmsrll.0040587
0040BBE4 .83C4 10 ADD ESP,10
0040BBE7 .85C0 TEST EAX,EAX
0040BBE9 .90 NOP
0040BBEA .90 NOP
0040BBEB .83EC 0C SUB ESP,0C

Table 13 - Authentication Bypass

Finding Commands
To gather the list of all possible commands for connection on port 2200, a first
search was performed to find out program calls with names related to the TCP
network system call.2 Appendix E shows a table for some of these calls as well
as a trace of network connections made by 'msrll.exe'.

After several experiments with 'OllyDbg', it was found that setting a breakpoint
at the address 004089F8 (in red in the next 'OllyDbg' extract) gives the best
opportunity to look at every command name accepted by 'msrll.exe'. At that
point, the EAX register (easily readable in the'OllyDbg' 'Register pane')
contains the value of one valid command. The program runs through a loop until
the subroutine finds a match or runs out of possibilities. Issuing commands in
the telnet session with port 2200 to make the program going into that loop, an
analyst can find every string acceptable by the agent.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.25

Yves Lafrance Analysis Wrap-up

'OllyDbg' extract
004089F7 |. 50 |PUSH EAX ; |Arg1
004089F8 |. E8 A6440000 |CALL msrll.0040CEA3 ; \msrll.0040CEA3
004089FD |. 83C4 10 |ADD ESP,10
00408A00 |. 85C0 |TEST EAX,EAX
00408A02 |. 74 59 |JE SHORT msrll.00408A5D
00408A04 |. 8B43 08 |MOV EAX,DWORD PTR DS:[EBX+8]
00408A07 |. A9 10000000 |TEST EAX,10
00408A0C |. 75 4F |JNZ SHORT msrll.00408A5D
00408A0E |. A9 00000200 |TEST EAX,20000
00408A13 |. 74 15 |JE SHORT msrll.00408A2A
00408A15 |. 6A 00 |PUSH 0
00408A17 |. 68 EC884000 |PUSH msrll.004088EC ; ASCII "hmm"
00408A1C |. FF75 10 |PUSH DWORD PTR SS:[EBP+10]
00408A1F |. FFB6 84040000 |PUSH DWORD PTR DS:[ESI+484]
00408A25 |. FF53 04 |CALL DWORD PTR DS:[EBX+4]
00408A28 |. EB 29 |JMP SHORT msrll.00408A53
00408A2A |> 83EC 0C |SUB ESP,0C
00408A2D |. FF75 10 |PUSH DWORD PTR SS:[EBP+10]
00408A30 |. E8 3C1C0000 |CALL msrll.0040A671
00408A35 |. 6A 00 |PUSH 0
00408A37 |. 68 EC884000 |PUSH msrll.004088EC ; ASCII "hmm"
00408A3C |. FF75 10 |PUSH DWORD PTR SS:[EBP+10]
00408A3F |. FFB6 84040000 |PUSH DWORD PTR DS:[ESI+484]
00408A45 |. FF53 04 |CALL DWORD PTR DS:[EBX+4]
00408A48 |. 83C4 14 |ADD ESP,14

Table 14 - Command Names & Command Subroutines Call

Finding command routines
Once the code validating commands founded, it is relatively simple to find any
subroutine associated with a specific command. Setting a breakpoint at address
00408A45 (in yellow in the previous code extract) pauses the 'msrll.exe'
agent just before it jump to the subroutine corresponding to the selected
command. Executing a program step in 'OllyDbg' (F7 key) makes the program
go to the subroutine entry point. For example, using this method on the '?smurf'
command shows that the subroutine executing it is located at 00402284.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.26

Yves Lafrance Analysis Wrap-up

Analysis Wrap-up

Program Capabilities
To review the capabilities of the 'msrll.exe' program, we learned:

The program cannot install itself if run under a user privilege account.q

The program hides itself on a computer in a directory named 'mfm' q

under c:\%systemroot%\System32\ .
It normally runs as a service, but can be started a regular program (the q

?status command informs the malicious person controlling this agent of
the current running mode of the program).
The agent is configurable using the ?set and ?dump commands.q

The objective of this malicious program is to take control of computers to q

perform Denial of Service attacks (DoS).
It reports to the site controlling it using an IRC channel.q

Ports 8080 and 9999 appear to be backup communication channels.q

Ports 113 is used to facilitate the computer authentication on the IRC q

server but is not mandatory.
'msrll.exe' accepts commands on port 2200 once an authentication q

is accepted. To be efficient, a malicious person would probably use a
program to issue commands to an army of such infected computers
(zombies). Another possibility to control such an army is to issue
commands on the IRC channel. This possibility was not confirmed.

Protect against it!
The simplest way to protect against 'msrll.exe' is to operate the computer
using a user account for day-to-day work.

Detect it!
In its Current form, it is possible to detect this malware by looking for the
presence of an 'mfm' directory under c:\%systemroot%\System32\ . This
directory should contains two files: 'msrll.exe' and 'jtram.conf'.

Contain it!
To contain the action of this agent, it is possible to block outgoing ports 6667,
8080 and 9999 trying to reach the 'collective7.zxy0.com' domain. In
addition, blocking the incoming access to ports 2200 is mandatory. Access to
port 113 could also be blocked.

Eradicate it!
The minimal action to remove this malware is to delete all 'msrll.exe' files.
If no anti virus can detect this program and erase every trace of it, a script could

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.27

Yves Lafrance Analysis Wrap-up

be constructed to erase the files and Registry entries made by the malicious
code.

It would be interesting to go deeper into this program analysis, but it appears
that the information gathered is sufficient to deal with this threat.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.28

Yves Lafrance Appendices

Appendices

Appendix A – Checklist Examples

Malicious Code Loading

Environment settings checklist
Action Done

(check)
Comments

Host computer disconnected
from the production network

Host computer disconnected
from the 'host network'

First Target computer reset
Fresh copy of computer image
OR VMware Snapshot revert

Anti-virus active detection
turned OFF

ISO image creation Files included in the ISO image:

Anti-virus active detection
turned ON

Files loaded on first target
computer

 Files destination (folder):

CD-ROM drive deactivated on
first target computer

Transferring Results Files

Environment settings checklist
Action Done

(check)
Comments

Host computer
disconnected from the
network

Host computer
disconnected from the 'host
network'
Anti-virus active detection
turned ON

Activate FTP server on
'monitor' computer

Transfer files from target
computer(s) to 'monitor'
computer. (targets 'put' files)

 File list:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.29

Yves Lafrance Appendices

Transfer files from 'monitor'
computer to host computer
(host computer 'get' files)

 File destination folder:

Perform anti-virus detection
on destination folder

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.30

Yves Lafrance Appendices

Appendix B - Embedded Strings

!This program cannot be run
in DOS mode.
[AspackDie!]
.text
.data
.idata
.aspack
.adata
?insmod
?rmmod
?lsmod
%s: <mod name>
%s: mod list full
%s: err: %u
mod_init
mod_free
%s: cannot init %s
%s: %s loaded (%u)
%s: mod allready loaded
%s:%s err %u
%s:%s not found
%s: unloading %s
[%u]: %s hinst:%x
unloading %s
%s: invalid_addr: %s
%s%s [port]
finished %s
%s <ip> <port> <t_time>
<delay>
sockopt: %u
sendto err: %u
sockraw: %u
syn: done
%s <ip> <duration> <delay>
sendto: %u
jolt2: done
%s <ip> <p size> <duration>
<delay>
Err: %u
smurf done
PhV#@
&err: %u

?ping
?smurf
?jolt
PONG :%s
0h (@
%s!%s@%s
%s!%s
SVh=+@
irc.nick
NICK %s
NETWORK=
irc.pre
_%s__
__%s__
__%s___
NICK %s
%s %s
irc.chan
%s %s
WHO %s
PPhV,@
USERHOST %s
logged into %s(%s) as %s
<$hE:@
PhR:@
nick.pre
%s-%04u
irc.user
irc.usereal
irc.real
irc.pass
tsend(): connection to
%s:%u failed
USER %s localhost 0 :%s
NICK %s
Ph <@
PRIVMSG
trecv(): Disconnected from
%s err:%u
NOTICE
%s %s :%s
Ph}D@

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.31

Yves Lafrance Appendices

MODE %s -o+b %s *@%s
C'PSWh
Sh'G@
MODE %s -bo %s %s
Sh'G@
%s.key
Ph'G@
sk#%u %s is dead!
s_check: %s dead?
pinging...
PING :ok
s_check: send error to %s
disconnecting
expect the worst
s_check: killing socket %s
irc.knick
jtr.%u%s.iso
ison %s
servers
s_check: trying %s
Ph9K@
PhkK@
ShtK@
uYVh|K@
%s.mode
MODE %s %s
ShRP@
Sh$I@
PShZP@
mode %s +o %s
akick
mode %s +b %s %s
KICK %s %s
irc.pre
Set an irc sock to preform
%s command on
Type
%csklist
to view current sockets,
then
%cdccsk
<#>
%s: dll loaded
%s: %d
RhHY@
RhHY@

said %s to %s
usage: %s <target> "text"
%s not on %s
usage: %s <nick> <chan>
%s logged in
Sh [@
sys: %s bot: %s
preformance counter not
avail
usage: %s <cmd>
%s free'd
unable to free %s
0h+\@
later!
unable to %s errno:%u
service:%c user:%s inet
connection:%c contype:%s
reboot privs:%c
Ph@]@
%-5u %s
%s: %s
%s: somefile
PhHY@
host: %s ip: %s
capGetDriverDescriptionA
cpus:%u
WIN%s (u:%s)%s%s
mem:(%u/%u) %u%% %s %s
%s: %s (%u)
%s %s
%s bad args
3hTg@
akick
%s[%u] %s
%s removed
couldnt find %s
%s added
%s allready in list
usage: %s +/- <host>
7h*h@
jtram.conf
%s /t %s
jtr.home
%s\%s
%s: possibly failed: code
%u

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.32

Yves Lafrance Appendices

%s: possibly failed
%s: exec of %s failed err:
%u
u.exf
Ph+j@
Ph?j@
jtr.id
%s: <url> <id>
IREG
CLON
ICON
WCON
#%u [fd:%u] %s:%u [%s%s]
last:%u
|\=> [n:%s fh:%s] (%s)
|---[%s] (%u) %s
| |-[%s%s] [%s]
|=> (%s) (%.8x)
B$PRhco@
%s <pass> <salt>
%s <nick> <chan>
PING %s
mIRC v6.12 Khaled Mardam-
Bey
VERSION %s
dcc.pass
temp add %s
$h%u@
%s%u-%s
%s opened (%u)
%u bytes from %s in %u
seconds saved to %s
(%s %s): incomplete! %u
bytes
couldnt open %s err:%u
(%s) %s: %s
(%s) urlopen failed
(%s): inetopen failed
Whjv@
Ph w@
no file name in %s
%s created
%s %s to %s Ok
3hI~@
%0.2u/%0.2u/%0.2u
%0.2u:%0.2u %15s %s

%s (err: %u)
ShHY@
err: %u
%s %s :ok
unable to %s %s (err: %u)
ShHY@
%-16s %s
%-16s (%u.%u.%u.%u)
[%s][%s] %s
closing %u [%s:%u]
unable to close socket %u
using sock #%u %s:%u (%s)
Invalid sock
usage %s <socks #>
leaves %s
:0 * * :%s
joins: %s
ACCEPT
resume
err: %u
DCC ACCEPT %s %s %s
dcc_resume: cant find port
%s
dcc.dir
%s\%s\%s\%s
unable to open (%s): %u
resuming dcc from %s to %s
DCC RESUME %s %s %u
?clone
?clones
?login
?uptime
?reboot
?status
?jump
?nick
?echo
?hush
?wget
?join
?akick
?part
?dump
?md5p
?free
?update

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.33

Yves Lafrance Appendices

?hostname
?!fif
?play
?copy
?move
?sums
?rmdir
?mkdir
?exec
?kill
?killall
?crash
?sklist
?unset
?uattr
?dccsk
?killsk
VERSION*
IDENT
%ud %02uh %02um %02us
%02uh %02um %02us
%um %02us
jtram.conf
jtr.*
DiCHFc2ioiVmb3cb4zZ7zWZH1oM
=
conf_dump: wrote %u lines
get of %s incomplete at %u
bytes
get of %s completed (%u
bytes), %u seconds %u cps
error while writing to %s
(%u)
chdir: %s -> %s (%u)
dcc_wait: get of %s from %s
timed out
dcc_wait: closing [#%u]
%s:%u (%s)
%4s #%.2u %s %ucps %u%%
[sk#%u] %s
%u Send(s) %u Get(s) (%u
transfer(s) total) UP:%ucps
DOWN:%ucps Total:%ucps
PRQh0
send of %s incomplete at %u
bytes

send of %s completed (%u
bytes), %u seconds %u cps
cant open %s (err:%u)
pwd:{%s}
DCC SEND %s %u %u %u
%s %s
%s exited with code %u
%s\%s
%s: %s
exec: Error:%u pwd:%s
cmd:%s
dcc.pass
bot.port
%s bad pass from "%s"@%s
%s: connect from %s
jtr.bin
msrll.exe
jtr.home
jtr.id
irc.quit
servers
collective7.zxy0.com,collec
tive7.zxy0.com:9999!,collec
tive7.zxy0.com:8080
irc.chan
#mils
1KZLPLKDf$W8kl8Jr1X8DOHZs
mIp9qq0
1KZLPLKDf$55isA1ITvamR7bj
AdBziX.
SSL_get_error
SSL_load_error_strings
SSL_library_init
SSLv3_client_method
SSL_set_connect_state
SSL_CTX_new
SSL_new
SSL_set_fd
SSL_connect
SSL_write
SSL_read
SSL_shutdown
SSL_free
SSL_CTX_free
kernel32.dll
QueryPerformanceCounter

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.34

Yves Lafrance Appendices

QueryPerformanceFrequency
RegisterServiceProcess
jtram.conf
irc.user
%s : USERID : UNIX : %s
QUIT :FUCK %u
Killed!? Arrg! [%u]
QUIT :%s
SeShutdownPrivilege
%s\%s
%s\%s\%s
Rll enhanced drive
software\microsoft\windows\
currentversion\run
/d "%s"
< u&
./0123456789ABCDEFGHIJKLMNO
PQRSTUVWXYZabcdefghijklmnop
qrstuvwxyz
usage %s: server[:port]
amount
%s: %s
%s %s %s <PARAM>
%s: [NETWORK|all] %s
<"parm"> ...
USER %s localhost 0 :%s
NICK %s
PSVh
md5.c
md != NULL
buf != NULL
hash != NULL
message digest
abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZa
bcdefghijklmnopqrstuvwxyz01
23456789
1,23457E+79
sprng
sprng.c
buf != NULL
rc6.c
skey != NULL
key != NULL
ct != NULL
pt != NULL

#4EVgx
$5FWhy
#4EVgx
$5FWhy
#4EVgx
$5FWhy
gN]HU
desired_keysize != NULL
ctr.c
ctr != NULL
key != NULL
count != NULL
ct != NULL
pt != NULL
ABCDEFGHIJKLMNOPQRSTUVWXYZa
bcdefghijklmnopqrstuvwxyz01
23456789+/
?456789:;<=
!"#$%&'()*+,-./0123
base64.c
outlen != NULL
out != NULL
in != NULL
_ARGCHK '%s' failure on
line %d of file %s
crypt.c
name != NULL
cipher != NULL
hash != NULL
prng != NULL
LibTomCrypt 0.83
Endianess: little (32-bit
words)
Clean stack: disabled
Ciphers built-in:
Blowfish
RC2
RC5
RC6
Serpent
Safer+
Safer
Rijndael
XTEA
Twofish
CAST5

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.35

Yves Lafrance Appendices

Noekeon
Hashes built-in:
SHA-512
SHA-384
SHA-256
TIGER
SHA1
MD5
MD4
MD2
Block Chaining Modes:
CFB
OFB
CTR
PRNG:
Yarrow
SPRNG
RC4
PK Algs:
RSA
DH
ECC
KR
Compiler:
WIN32 platform detected.
GCC compiler detected.
Various others: BASE64
MPI HMAC
/dev/random
Microsoft Base
Cryptographic Provider v1.0
bits.c
buf != NULL
t9VWS
prng != NULL
"<""tx< tf< t"
"< tV< t"
"< tJ< tF"
#NOM?
<ip> <total secs> <p size>
<delay>
modem
Lan
Proxy
none
m220 1.0 #2730 Mar 16

11:47:38 2004
unable to %s %s (err: %u)
unable to kill %s (%u)
%s killed (pid:%u)
AVICAP32.dll
unable to kill %u (%u)
pid %u killed
error!
ran ok
MODE %s +o %s
set %s %s
Mozilla/4.0
Accept: */*
<DIR>
Could not copy %s to %s
%s copied to %s
0123456789abcdef
%s unset
unable to unset %s
(%s) %s
%s %s
libssl32.dll
libeay32.dll
<die|join|part|raw|msg>
AdjustTokenPrivileges
CloseServiceHandle
CreateServiceA
CryptAcquireContextA
CryptGenRandom
CryptReleaseContext
GetUserNameA
LookupPrivilegeValueA
OpenProcessToken
OpenSCManagerA
RegCloseKey
RegCreateKeyExA
RegSetValueExA
RegisterServiceCtrlHandlerA
SetServiceStatus
StartServiceCtrlDispatcherA
AddAtomA
CloseHandle
CopyFileA
CreateDirectoryA
CreateFileA
CreateMutexA

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.36

Yves Lafrance Appendices

CreatePipe
CreateProcessA
CreateToolhelp32Snapshot
DeleteFileA
DuplicateHandle
EnterCriticalSection
ExitProcess
ExitThread
FileTimeToSystemTime
FindAtomA
FindClose
FindFirstFileA
FindNextFileA
FreeLibrary
GetAtomNameA
GetCommandLineA
GetCurrentDirectoryA
GetCurrentProcess
GetCurrentThreadId
GetExitCodeProcess
GetFileSize
GetFullPathNameA
GetLastError
GetModuleFileNameA
GetModuleHandleA
GetProcAddress
GetStartupInfoA
GetSystemDirectoryA
GetSystemInfo
GetTempPathA
GetTickCount
GetVersionExA
GlobalMemoryStatus
InitializeCriticalSection
IsBadReadPtr
LeaveCriticalSection
LoadLibraryA
MoveFileA
OpenProcess
PeekNamedPipe
Process32First
Process32Next
QueryPerformanceFrequency
ReadFile
ReleaseMutex
RemoveDirectoryA

SetConsoleCtrlHandler
SetCurrentDirectoryA
SetFilePointer
SetUnhandledExceptionFilter
Sleep
TerminateProcess
WaitForSingleObject
WriteFile
_itoa
_stat
_strdup
_stricmp
__getmainargs
__p__environ
__p__fmode
__set_app_type
_beginthread
_cexit
_errno
_fileno
_onexit
_setmode
_vsnprintf
abort
atexit
clock
fclose
fflush
fgets
fopen
fprintf
fread
fwrite
malloc
memcpy
memset
printf
raise
realloc
setvbuf
signal
sprintf
srand
strcat
strchr
strcmp

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.37

Yves Lafrance Appendices

strcpy
strerror
strncat
strncmp
strncpy
strstr
toupper
ShellExecuteA
DispatchMessageA
ExitWindowsEx
GetMessageA
PeekMessageA
GetFileVersionInfoA
VerQueryValueA
InternetCloseHandle
InternetGetConnectedState
InternetOpenA
InternetOpenUrlA
InternetReadFile
WSAGetLastError
WSASocketA
WSAStartup
__WSAFDIsSet
accept
closesocket
connect
gethostbyaddr
gethostbyname
gethostname
getsockname
htonl
htons
inet_addr
inet_ntoa
ioctlsocket
listen
ntohl
select
sendto
setsockopt
shutdown
socket
ADVAPI32.DLL
KERNEL32.dll
msvcrt.dll
msvcrt.dll

SHELL32.DLL
USER32.dll
VERSION.dll
WININET.DLL
WS2_32.DLL
VirtualAlloc
VirtualFree
kernel32.dll
ExitProcess
user32.dll
MessageBoxA
wsprintfA
LOADER ERROR
The procedure entry point
%s could not be located in
the dynamic link library %s
The ordinal %u could not be
located in the dynamic link
library %s
MW|dNW|
(08@P
D4l|M
;;F,s
,;F0s
;F4s
D$$W3
kernel32.dll
GetProcAddress
GetModuleHandleA
LoadLibraryA
advapi32.dll
msvcrt.dll
msvcrt.dll
shell32.dll
user32.dll
version.dll
wininet.dll
ws2_32.dll
AdjustTokenPrivileges
_itoa
__getmainargs
ShellExecuteA
DispatchMessageA
GetFileVersionInfoA
InternetCloseHandle
WSAGetLastError

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.38

Yves Lafrance Appendices

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.39

Yves Lafrance Appendices

Appendix C - Regshot Comparison – User Account

REGSHOT LOG 1.61e5
Comments:
Datetime:2004/11/12 15:00:11 , 2004/11/12 15:01:59
Computer:TARGET1-2000PRO , TARGET1-2000PRO
Username:User , User

Keys added:3

HKEY_USERS\S-1-5-21-1993962763-1767777339-839522115-
1000\Software\Microsoft\Windows\CurrentVersion\Explorer\Stre
ams\7
HKEY_USERS\S-1-5-21-1993962763-1767777339-839522115-
1000\Software\Microsoft\Windows\CurrentVersion\Explorer\Stre
ams\8
HKEY_USERS\S-1-5-21-1993962763-1767777339-839522115-
1000\Software\Microsoft\Windows\CurrentVersion\Explorer\Stre
ams\9

Values added:12

HKEY_USERS\S-1-5-21-1993962763-1767777339-839522115-
1000\Software\Microsoft\Windows\CurrentVersion\Explorer\Stre
amMRU\7: 14 00 1F 50 E0 4F D0 20 EA 3A 69 10 A2 D8 08 00 2B
30 30 9D 19 00 23 43 3A 5C 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 31 84 25 00 31 00 00 00 00 00 51 31 E6 A9
31 00 50 72 6F 67 72 61 6D 20 46 69 6C 65 73 00 50 52 4F 47
52 41 7E 31 00 17 00 31 00 00 00 00 00 7B 31 E5 9D 10 00 52
65 67 53 68 6F 74 00 00 00 00
HKEY_USERS\S-1-5-21-1993962763-1767777339-839522115-
1000\Software\Microsoft\Windows\CurrentVersion\Explorer\Stre
amMRU\8: 14 00 1F 50 E0 4F D0 20 EA 3A 69 10 A2 D8 08 00 2B
30 30 9D 19 00 23 43 3A 5C 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 31 84 25 00 31 00 00 00 00 00 51 31 E6 A9
31 00 50 72 6F 67 72 61 6D 20 46 69 6C 65 73 00 50 52 4F 47
52 41 7E 31 00 17 00 31 00 00 00 00 00 51 31 E9 A8 10 00 46
69 6C 65 6D 6F 6E 00 00 00 00
HKEY_USERS\S-1-5-21-1993962763-1767777339-839522115-
1000\Software\Microsoft\Windows\CurrentVersion\Explorer\Stre
amMRU\9: 14 00 1F 50 E0 4F D0 20 EA 3A 69 10 A2 D8 08 00 2B
30 30 9D 19 00 23 43 3A 5C 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 31 84 25 00 31 00 00 00 00 00 51 31 E6 A9

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.40

Yves Lafrance Appendices

31 00 50 72 6F 67 72 61 6D 20 46 69 6C 65 73 00 50 52 4F 47
52 41 7E 31 00 00 00
HKEY_USERS\S-1-5-21-1993962763-1767777339-839522115-
1000\Software\Microsoft\Windows\CurrentVersion\Explorer\Stre
ams\7\CabView: 5C 00 00 00 00 00 00 00 01 00 00 00 FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF 42 00 00 00 42 00 00
00 54 03 00 00 5F 02 00 00 01 00 00 00 00 00 00 00 80 60 08
00 00 00 00 00 56 0F 51 71 07 00 00 00 E0 D0 57 00 73 35 CF
11 AE 69 08 00 2B 2E 12 62 01 00 00 00 00 00 00 00
HKEY_USERS\S-1-5-21-1993962763-1767777339-839522115-
1000\Software\Microsoft\Windows\CurrentVersion\Explorer\Stre
ams\7\ViewView2: 1C 00 00 00 01 00 00 00 00 00 00 00 00 00
30 00 00 00 00 00 01 00 00 00 FF FF FF FF F0 F0 F0 F0 14 00
03 00 30 00 00 00 00 00 00 00 00 00 00 00
HKEY_USERS\S-1-5-21-1993962763-1767777339-839522115-
1000\Software\Microsoft\Windows\CurrentVersion\Explorer\Stre
ams\8\CabView: 5C 00 00 00 00 00 00 00 01 00 00 00 FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF 42 00 00 00 42 00 00
00 54 03 00 00 5F 02 00 00 01 00 00 00 00 00 00 00 80 60 08
00 00 00 00 00 56 0F 51 71 07 00 00 00 E0 D0 57 00 73 35 CF
11 AE 69 08 00 2B 2E 12 62 01 00 00 00 00 00 00 00
HKEY_USERS\S-1-5-21-1993962763-1767777339-839522115-
1000\Software\Microsoft\Windows\CurrentVersion\Explorer\Stre
ams\8\ViewView2: 1C 00 00 00 01 00 00 00 00 00 00 00 00 00
30 00 00 00 00 00 01 00 00 00 FF FF FF FF F0 F0 F0 F0 14 00
03 00 30 00 00 00 00 00 00 00 00 00 00 00
HKEY_USERS\S-1-5-21-1993962763-1767777339-839522115-
1000\Software\Microsoft\Windows\CurrentVersion\Explorer\Stre
ams\9\CabView: 5C 00 00 00 00 00 00 00 01 00 00 00 FF FF FF
FF FF FF FF FF FF FF FF FF FF FF FF FF 42 00 00 00 42 00 00
00 54 03 00 00 5F 02 00 00 01 00 00 00 00 00 00 00 80 60 08
00 00 00 00 00 56 0F 51 71 07 00 00 00 E0 D0 57 00 73 35 CF
11 AE 69 08 00 2B 2E 12 62 01 00 00 00 00 00 00 00
HKEY_USERS\S-1-5-21-1993962763-1767777339-839522115-
1000\Software\Microsoft\Windows\CurrentVersion\Explorer\Stre
ams\9\ViewView2: 1C 00 00 00 01 00 00 00 00 00 00 00 00 00
30 00 00 00 00 00 01 00 00 00 FF FF FF FF F0 F0 F0 F0 14 00
03 00 30 00 00 00 00 00 00 00 00 00 00 00
HKEY_USERS\S-1-5-21-1993962763-1767777339-839522115-
1000\Software\Microsoft\Windows\CurrentVersion\Explorer\User
Assist\{75048700-EF1F-11D0-9888-
006097DEACF9}\Count\HRZR_EHACNGU:P:\Cebtenz
Svyrf\Svyrzba\Svyrzba.rkr: 00 00 00 00 06 00 00 00 90 6F 1E
4D ED D6 C4 01
HKEY_USERS\S-1-5-21-1993962763-1767777339-839522115-
1000\Software\Microsoft\Windows\CurrentVersion\Explorer\User

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.41

Yves Lafrance Appendices

Assist\{75048700-EF1F-11D0-9888-
006097DEACF9}\Count\HRZR_EHACNGU:P:\Erfhygngf\zfeyy.rkr: 00
00 00 00 06 00 00 00 E0 64 1C 5A ED D6 C4 01
HKEY_USERS\S-1-5-21-1993962763-1767777339-839522115-
1000\Software\Microsoft\Windows\CurrentVersion\Run\Rll
enhanced drive: "C:\WINNT\system32\mfm\msrll.exe"

Values modified:3

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Cryptography\RNG\Seed:
A5 D9 87 86 2D 43 17 B7 7E 47 92 89 13 CB DE 45 A0 17 B3 65
31 7C 8B DB 69 8E 8D 68 61 45 BA E2 E9 A7 D1 7E E3 A4 63 7D
DB 84 28 B6 3F 06 49 15 F7 0D 99 3F E7 5C D7 E6 17 EB 6E 3D
F3 C6 79 6B 31 87 B2 11 24 3F 5A B3 87 AC BD 53 59 90 A3 A8
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Cryptography\RNG\Seed:
B0 96 66 8E D8 84 85 BF D0 7D 9C BF E8 F6 F6 12 70 0D B9 3B
1C 2D DF 9B F8 CB F4 1D A3 EE B1 77 FB E5 D7 75 1A 2D CD 65
02 2B 0D 29 92 AF E8 44 23 1B 38 CB F1 95 A0 6B 48 89 29 C5
66 B5 9F 1C 33 CB A9 58 67 CA 1F 9C 4D 0A DD D9 44 09 F0 96
HKEY_USERS\S-1-5-21-1993962763-1767777339-839522115-
1000\Software\Microsoft\Windows\CurrentVersion\Explorer\Stre
amMRU\MRUListEx: 06 00 00 00 05 00 00 00 04 00 00 00 03 00
00 00 02 00 00 00 01 00 00 00 00 00 00 00 FF FF FF FF
HKEY_USERS\S-1-5-21-1993962763-1767777339-839522115-
1000\Software\Microsoft\Windows\CurrentVersion\Explorer\Stre
amMRU\MRUListEx: 09 00 00 00 01 00 00 00 08 00 00 00 07 00
00 00 06 00 00 00 05 00 00 00 04 00 00 00 03 00 00 00 02 00
00 00 00 00 00 00 FF FF FF FF
HKEY_USERS\S-1-5-21-1993962763-1767777339-839522115-
1000\Software\Microsoft\Windows\CurrentVersion\Explorer\User
Assist\{75048700-EF1F-11D0-9888-
006097DEACF9}\Count\HRZR_EHACNGU: 00 00 00 00 0F 00 00 00 B0
50 8D 41 ED D6 C4 01
HKEY_USERS\S-1-5-21-1993962763-1767777339-839522115-
1000\Software\Microsoft\Windows\CurrentVersion\Explorer\User
Assist\{75048700-EF1F-11D0-9888-
006097DEACF9}\Count\HRZR_EHACNGU: 00 00 00 00 11 00 00 00 E0
64 1C 5A ED D6 C4 01

Total changes:19

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.42

Yves Lafrance Appendices

Appendix D - Agent Control Commands

Command Type Parameter(s) Effect
'Authentication process'

This process is bypassed to complete the
command analysis.

After displaying a prompt ('#:'), MSRLL.EXE seems
to wait for <ID> and <password> on the first two
lines.
String entered on first line is displayed on the
connection on port 2200 by the '?sklist'
command.

?uptime Info Time since system was booted and since the agent
(msrll.exe) has been started

?si Info Returns information about infected host:

OS-version (u:user) mem: (used/available) CPU-
utilization CPU-type CPU-speed

Ex:
WIN2k (u:SYSTEM) mem:(175/255) 31%
GenuineIntel Intel(R) Pentium(R) 4
Mobile CPU 1.80GHz

?echo Info <text> Echo back the text string
?status Info Issues information about the 'zombie computer'

status
Runs as a service? Started under which user
??inet connection?? Connection type
Reboot privilege?

Ex:
service:Y user:SYSTEM inet
connection:Y contype: Lan reboot
privs:Y

?con ???????
?ping Attack <ip>

<total
secs>

<p size>
<delay>
[port]

Issues a 'ping attack' from the zombie computer

?udp Attack <ip>
<total
secs>

<p size>
<delay>
[port]

Issues a 'UDP attack' from the zombie computer

?jolt Attack <ip>
<duration>
<delay>

Issues a 'JOLT attack' from the zombie computer

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.43

Yves Lafrance Appendices

?smurf Attack <ip>
<p_size>

<duration>
<delay>

Issues a 'SMURF attack' from the zombie computer

?syn Attack <ip>
<port>

<t_time>
<delay>

Issue a 'SYN attack' from the zombie computer

?reboot Agent
Control

Reboots the zombie computer
Returns 'later!' as command confirmation

?cd Agent
Control

<directory
name>

Issues a "CHANGE DIR command' on the zombie
computer to control the agent's current directory

?pwd Agent
Control

Returns the agent's current directory

?dir or
?ls

Agent
Control

[filename] Issues a "dir command' on the zombie computer,
returning the directory list to the agent's current
directory on the zombie computer.
Filename is optional, file name format does not
appear to be limited to 8.3 format. Can use a wild
card (*).
The single-replacement character (?) is also
supported but only if not repeated (ex: fil?.txt but not
fi??.txt)

?mkdir Agent
Control

<directory
name>

Creates a directory on the zombie computer.

?rmdir Agent
Control

<directory
name>

Deletes a directory on the zombie computer.

?copy Agent
Control

<filename1>
<filename2>

Copies a file (local to the zombie computer) on the
zombie computer.

?play Agent
Control

<filename> Displays the specified file content.

?move Agent
Control

[dir]
<filename1>

[dir]
<filename2>

Moves a file from one directory to another.
Can also be used to rename a file.

?del Agent
Control

<filename> Deletes a file on the zombie computer. The command
has problems addressing long file names.
Can use a wild card (*).
The single-replacement character (?) is also
supported but only if not repeated (ex: fil?.txt but not
fi??.txt)

?hostname Agent
Control

Returns agent computer's hostname and IP address

Ex:
Host:Target1-2000pro IP: 192.168.134.130

?sums Agent
Control

Returns a MD5 signature of every file in the current
directory.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.44

Yves Lafrance Appendices

?run Agent
Control

<filename>
|

<command>
Executes the file or the command on the zombie
computer.

Returns a confirmation ending with a return code
The return code seems to be identical for every
command issued : (4151744)

?exec Agent
Control

<filename>
|

<command>
Similar to '?run' except that the program is not
visible on the desktop
Does not return confirmation.

?ps Agent
Control

Returns a list of running processes, each one
preceded by its process ID (PID).

?kill Agent
Control

<pid> Terminates the indicated process (using the pid) on
the zombie computer.

Returns two confirmation lines:
PID <pid> killed
<Program_name> exited with code <return_code>

?killall Agent
Control

<process
name>

Terminates the indicated process (using its name)
on the zombie computer.

Returns confirmation:
<Program_name> killed (PID:<pid>)

?set Agent
Control

<var>
<value>

Used without parameters, shows the 'environment'
ruling the agent comportment.

Used with parameters, modifies a value for the given
variable.

Ex:
set jtr.bin msrll.exe
set jtr.home mfm
set bot.port 2200
set jtr.id run5
set irc.quit
set servers
collective7.zxy0.com,collective7.zxy0.com:99
99!,collective7.zxy0.com:8080
set irc.chan #mils
set pass 1KZLPLKDf$W8kl8Jr1X8DOHZsmIp9qq0
set dcc.pass
1KZLPLKDf$55isA1ITvamR7bjAdBziX.

?unset Agent
Control

<var> Deletes the variable (and the associated value) from
the agent's environment.

?dump Agent
Control

Writes the environment variables into the jtram.conf
file in a ciphered form. (see ?set command)

?md5p Agent
Control

<pass>
<salt>

Produces a text string with beginning with '1'
followed with the 'salt' passed as second parameter,
followed with the '$' and ends with the ciphered
password.

Ex:
1malware$ppk9WdZ7tMT7skiakRnpm

?free ??? <command> Disables the specified command. Consequently, the
command cannot be used until the agent is restarted
on the zombie computer.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.45

Yves Lafrance Appendices

?die Agent
Control

Terminates msrll.exe program on the zombie
computer

?crash ? Makes the agent quit the IRC server. In addition, the
agent no longer answers to commands issued on
port 2200. However, the agent maintains the
connection opened on this port.

?update Agent
Control

<url>
<id>

Seems to command a file download intended to
replace the current version of the agent.

?ssl Agent
Control

Seems to return a status code.
Ex:
SSL: -1

?wget Agent
Control

<URL>
<filename>

Makes the agent go to the specified URL to
download a file

?sklist Socket
command

Issues a list of active agent sockets(IP address:port
number)

Ex:
#1 [fd:424] collective7.zxy0.com:6667 [IRC
IATH IREG ICON RNL] last:117
|\=> [n:LyQEMLktC fh:LyQEMLktC!~exYqqrej@

192.168.116.128] (WFnet)
|
 |---[#mils] (2) +tn
| |-[LyQEMLktC] [192.168.116.128]
| |-[@root] [127.0.0.1]
#2 [fd:436] 192.168.116.129:0 [DCC ICON RNL
] last:0
|=> (_R.E.M._) (00000021)

Maybe [IRC IATH IREG ICON RNL] and
[DCC ICON RNL] represents authorized
commands on displayed sockets

?dccsk Socket
command

<socket #> Opens a "channel" to relay commands issued on the
2200 port to the selected socket. The socket is
specified using the numbers displayed following the
'#' character within text returned by the '?sklist'
command.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.46

Yves Lafrance Appendices

?killsk Socket
command

<socket #> Terminate communication on the selected socket.

Based on the sockets showed as result of the
?sklist command, here are two samples of the
?killsk command

Killing socket when using the IRC socket (#1)
disconnects the agent from IRC server :
Answer
Closing 0 [:2200]

Killing socket when using backdoor socket (#2)
disconnect the current session with the agent on
port 2200:
Answer:
Closing 2 [192.168.116.129:0]
*** leaves _R.E.M._

"Socket commands" require a 'socket' to be selected using the sklist and dccsk
commands prior to being used.

?get Socket
command

?hush Socket
command

This command did not return results.
However, 'Hush' is an IRC command. This command
is normally issued by an IRC operator (not by a
channel operator) to suspend a user from sending
visible messages to the server.

?uattr Socket
command

<nick>
<chan>

Command had no apparent effect.

?op Socket
command

Command had no apparent effect.

?aop Socket
command

Command had no apparent effect.

?dcc Socket
command

Command had no apparent effect.
On IRC, the 'DCC' command is used to initiate a
'direct chat channel' between two users connected
on the same IRC network.

?say Socket
command

<target>
"text"

Sends a private message in IRC channel to the
nickname specified as target.

?kb Socket
command

<nick>
<chan>

Command had no apparent effect.

?msg Socket
command

<target>
"text"

Sends a private message in IRC channel to the
nickname specified as target. Apparently identical to
the '?say' command.

?raw Socket
command

?join Socket
command

<IRC
channel>

Makes the zombie computer join the specified IRC
channel.

?part Socket
command

<IRC
channel>

Makes the zombie computer quit the specified IRC
channel.

?akick Socket
command

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.47

Yves Lafrance Appendices

?login ?
?clone ? <server>

[:port]
<amount>

?clones ? [NETWORK |
all]

<die | join
| part |
raw |
msg>

<"parm">
….

?jump ?
?nick ? <password> Makes the zombie computer changes the nickname

used on the IRC server.
?insmod ? <mod name>
?rmmod ?
?lsmod ?
?fif ? ???? Find File ????
?!fif ?

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.48

Yves Lafrance Appendices

Appendix E - Connection Sequences

Seq. Function Location Caller Port Known addresses
Function Address RETN add.

1 Listen 0040E4D1 0040C400 2200

2 Connect 0040D8BC 004050l6 6667

3 Listen 0040E4D1 00405025 113 Listen0040E4D1 0040E52B
4 CloseSocket 0040E400 0040E015 0040B1D6 0040B2AE
5 Connect 0040D8BC 004050l6 9999

6 CloseSocket 0040E400 00404DC7 9999 CloseSocket004019EF 00401A2C
7 Connect 0040D8BC 004050l6 8080 00401F5C 00401FBB
8 CloseSocket 0040E400 00404DC7 8080 0040222D 00402257
9 Connect 0040D8BC 004050l6 004025C3 004025DD

10 CloseSocket 0040E400 0040C6A0 00402704 00402752
11 CloseSocket 0040E400 00404DC7 113 0040D88A 004008CD
12 ShutDown 0040C672 0040DF62 6667 0040DC0D 0040E326
13 CloseSocket 0040E400 0040E015 0040E400 0040E420
14 Connect 0040D8BC 004050l6 9999

15 Listen 0040E4D1 00405025 9999 Connect0040D8BC 004008CD
16 CloseSocket 0040E400 00404DC7
17 Connect 0040D8BC 004050l6 8080 ShutDown004086A8 004086D2
18 CloseSocket 0040E400 00404DC7 0040A471 0040A4AF
19 Connect 0040D8BC 004050l6 0040AE6A 0040AEAA
20 CloseSocket 0040E400 0040C6A0 0040BC92 0040BCC8
21 CloseSocket 0040E400 00404DC7 0040C672 0040C67D
22 ShutDown 0040C672 0040DF62
23 CloseSocket 0040E400 0040E015
24 Connect 0040D8BC 004050l6

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.49

Yves Lafrance References

References

1 Tulloch, Mitch. Microsoft Encyclopedia of Security. Redmond: Microsoft Press
2003 p.385

2 Wright, Gary R. & Stevens, W. Richards. TCP/IP Illustrated Volume 2; The
Implementation. Addisson-Wesley 1995 p.449

