GIAC

CERTIFICATIONS

Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?

Check out the list of upcoming events offering

"Reverse-Engineering Malware: Malware Analysis Tools and Techniques (Foren
at http://www.giac.org/registration/grem

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/grem

Reverse Engineering
of msrll.exe

GIAC Reverse Engineering
Malware (GREM)
Practical Assignment
Version 1.0

Submitted by: Erlend Garberg
02 December 2004

Abstract:

Behavioral analysis and code analysis are used
to learn about the capabilities of the malware
specimen msrll.exe. The specimen is using
AsPack compression and MD5 passwords to
make analysis harder.

© SANS Institute 2000 - 2005

Author retains full rights.

| Erlend Garberg | | <GREM 1.0 Practical

Table of Contents

Introduction 2
Laboratory Setup 2
Hardware 2
Networking 2
Software resources 3
Properties of the Malware Specimen 4
Type of file and size 4
MD5 hash 5
Operating systems 5
Embedded strings 6
Behavioral Analysis 7
Findings 7
Molding the laboratory environment 11
DNS 11
IRC Port 6667 11
Port 9999 and 8080 12
Code Analysis 13
Unpacking 13
Disassembly 14
Patching to change MD5 passwords 15
Finding Capabilites 17
Analysis Wrap-Up 18
Capabilities 18
Potential Users 18
Defence 18

© SANS Institute 2000 - 2005 Author retains full rights.

| Erlend Garberg | <GREM 1.0 Practical

List of Fiqures

Figure 1 - Network infrastructure

Figure 2 - PEInfo

Figure 3 - IDA Pro

Figure 4 - md5sum

Figure 5 - Operating System version from PEInfo
Figure 6 - BinText

Figure 7 - Service added

Figure 8 - jtram.conf

Figure 9 - snort dns

Figure 10 - identd is running on port 113

Figure 11 - backdoor?

Figure 12 - Starting ircd

Figure 13 - Process Explorer

Figure 14 - irc

Figure 15 - Port 9999 and 8080

Figure 16 - Extracting msrll.exe with AspackDie
Figure 17 - configuration

Figure 18 - Authentication routine?

Figure 19 — login

T O T QIR (I T QK (O QL G |
DO U WWNN_,LAOOOOOWONOOOLADN

© SANS Institute 2000 - 2005 Author retains full rights.

Erlend Garberg GREM 1.0 Practical

Introduction

This is the Practical Assignment for GIAC Reverse Engineering Malware. | thank
Lenny Zeltser for an informative course.

Laboratory Setup

This section describes the laboratory setup used in this assignment.

Hardware

My host computer for the laboratory setup is an Intel Pentium IV 3GHZ with
1GB RAM running Windows XP SP2. Two virtual machines were set up with
VmWare, one Red Hat Linux 9.0 and one Windows XP SP2.

Networking

For the networking part of the laboratory setup, | follow the recommendations
from the course material and use VmW are host-only networking. This provides
isolation; communication is only possible between virtual machines (VM) and
host, virtual machines cannot reach machines not on the laboratory network.
The network infrastructure is illustrated in Figure 1.

Host - Windows XP
192.168.129.1
Virtual Machine - Redhat 9.0
192.168.129.129
Virtual Machine - Windows XP
192.168.129.128
(O Laboratory Network - 192.168..129.0/24———)
| |

Figure 1 - Network infrastructure

The DHCP server in VmW are provides IP-addresses for the virtual machines.

© SANS Institute 2000 - 2005 4 Author retains full rights.

Erlend Garberg

GREM 1.0 Practical

Software resources

The following software is used in the analysis:

Name Description How/Where used
WinZip Does File Extraction. Extracting of malware.
NetCat Network Swiss Army Knife. Connecting to backdoor of
malware and faking services
for the malware to connect to.
VmWare Emulator for Intel hardware. Running multiple machines in
Makes it possible to run the lab and for enforcing
many virtual computers system isolation.
simultaneously on one
workstation.
MDSsum Checksum application. Creating checksum of
malware specimen.
FileMon Logs access to files. Finding files accessed by the
malware specimen.
RegMon Logs access to registry. Finding registry keys accessed
by the malware specimen.
TDIMon Logs network connections. Finding network connections
opened by the malware
specimen.
RegShot Snapshots file system and Finding differences in file
registry. system and registry
before/after running the
malware specimen.
BinText Finds strings embedded in a | Finding strings in the malware
binary file. specimen.
IDA Pro Interactive Disassembler Disassembly and debugging
of the malware specimen.
PEInfo PE file info Finding type of file, size, OS
etc of the malware specimen.
AsPackDie Extracts executables packed | Uncompressing the malware
with AsPack specimen.
Snort Packet sniffer Packet sniffing
ircd Internet Relay Chat Server Analyzing network
connections to port 6667 from
the malware specimen.
Process Shows Process Detail Getting summary of process
Explorer resources.
passwd Sets Linux MD5 password Making MD5 password

© SANS Institute 2000 - 2005

Author retains full rights.

Erlend Garberg GREM 1.0 Practical

Properties of the Malware Specimen

Using the shared folders of Vmware (Read-Only), | transfer the malware
specimen (msrll.zip) to the Windows VM. On the VM, the specimen is unpacked
to C:\malware\msrll.exe.

Type of file and size

To find the file type of msrll.exe, | open it in PEInfo and IDA Pro. As shown in
Figure 2 the file is an executable file of size 41984 bytes. As shown in Figure 3,
the message from IDA Pro at startup indicates that the executable is
packed/compressed. This means that it will be harder to analyze, because it
needs to be unpacked before Code Analysis can take place.

-merll exe Path: C:~malwarensrll . exe
Header File =ize: 41984
: Inage =s=ize: 1179648
bata Dircotory e e e Bk
--Sections Resources account for 0.00¥ of the executable
.text
.data Issues:

.b=ss
cidata
caspack
cadata

+- Inport=

Strings

String: GetProchAddress
String: LoadLibrary

——
e
e

Figure 2 — PEInfo

© SANS Institute 2000 - 2005 6 Author retains full rights.

Erlend Garberg GREM 1.0 Practical

] The importz zegment zeems to be destroped. This MAY mean that
e 4 the file was packed or otherwize modified in order to make it

rmore difficult to analyse. IF pou want to zee the imports

gegrment in the oniginal form, pleaze reload it with the

‘make imports gection’ checkbox cleared.

[] Don't display this meszage again | aF. |

Figure 3 - IDA Pro

MD5 hash

To make an md5 hash | use the application md5sum. As shown in Figure 4 the
file has the checksum 84acfe96a98590813413122c12c11aaa.

C:smalware ndSsum mesrll . exe

B84acfe?6a?8598813413122c12cl1l1aaa *nsrll.exe

Cosmaluware >

Figure 4 - md5sum
Operating systems

As shown in Figure 5, the OperatingSystemVersion field in the PE-header of the
executable is set to 4.00, which corresponds to Windows NT 4.0. That means
that the executable will run on Windows versions newer than or equal to
Windows NT 4.0. The file is a Win32 executable.

© SANS Institute 2000 - 2005 7 Author retains full rights.

Erlend Garberg GREM 1.0 Practical

i 'PEInfo
- marll exe Machine: 01i4c -
Header . Té?gslipion——> Intel 80336 ggggessor
; umber ections :

Data Dirsctory TR : 40790135
+-Sections Created (GMT): Sun Apr 11 08:26:29 20041
+- Import= FointerToSymbolTable: goooooon

Strings HumberCfSymnbols=: oooooono

SizeOfOptionalleader: | Q0ED
Hagic: 010B
SizelfCode: gooliaon
Size0fInitializedData: oool4e00
SizelflUninitializedData: 00105Co0
Addres=0fEntrvPoint : goilipondi
Ba=zelfCode: gooolooo
BaseOfData: gonl30o0
InageBaze: oo400000
SectionAlignment : ooooi1o0o
Fileilignment : ooooozoo
LinkerVer=sion: 2.56
OperatingSystenVersion: 4 .00
InageVersion: 1.00
Subsy=temVersion: 4. 00
Wini2VersionValus: gooooooo
Sizelf Inage oo120000
SizelfHeaders: goooo4o0
CheckSum: ooo17803
Subsy=tem: gooz
Translation—--> Windows GUI

DllCharacteristics: oooo
SizelfStackReserve: gozooooo
SizelfStackCommit oooolaoao e

Figure 5 - Operating System version from PEInfo

Embedded strings

| use BinText to extract strings embedded into the malware specimen. This is
shown in Figure 6. The strings give no info about the executable since it is
compressed. An exception is the PE section names, but those can also be
found with PEInfo.

© SANS Institute 2000 - 2005 8 Author retains full rights.

Erlend Garberg GREM 1.0 Practical

7 BinText 3.00

Search | Fiter | Help |

File ko zcan |I::'amalware'xmsrll.e:-:e Erowse Ga

v Advanced wiew Time taken : 0.047 gece Test zsize: 1380 bytes [1.35K]

File pos | Mem poz | D | Text ~
A 00000040 00400040 0
A0on0n7e ood00i@e 0
A 0on0na0 o04001a0 0
A 0000o1F0 o04001FD 0
A 00000218 oo4002418 0 .aspack
A 00000240 00400240 0 .adata
A 00000427 00amnozy 0 lE>HEId
0
0
0
0
0
1]

IThiz program cannat be runin D05 mode. —
et

.data

.idata

A 00000572 00401172 1]n]

A 00000RAS 00407244 5'thigh
A 00000702 00401302 M
A 000007F0 004013F0 #pid
A 000003FD 004071 4FD TPYTH
A 00000327 00401527 Ofrat b
£ I

Ready AMSI 185 ni: O Famc: O Eind Save

Figure 6 - BinText

Behavioral Analysis

| begin the behavioral analysis with starting monitoring tools:

| start RegMon, FileMon and TDIMon

| take a snapshot of the system with RegShot
| then launch msrll.exe and let it run for about 30 seconds. Afterwards | kill it with
the task manager. Finally | pause the monitoring tools.

Findings

| notice the following events after disregarding changes to files and registry keys
that are not related to the malware specimen:

The following files are added:
C:\WINDOWS\system32\mfm\jtram.conf
C:\WINDOWS\system32\mfm\msrll.exe

The following files are deleted:
C:\malware\msrll.exe

© SANS Institute 2000 - 2005 9 Author retains full rights.

Erlend Garberg GREM 1.0 Practical

The following registry keys are added:
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\mfm
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\mfm\Security

The following registry values are added:
HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001\Services\mfm\Security\Security: 01
00 14 80 90 00 00 00 9C 00 00 00 14 00 00 00 30 00 00 00 02 00 1C 00 01 00 00 00 02
80 14 00 FF 01 OF 00 01 01 00 00 00 00 00 01 00 00 00 00 02 00 60 00 04 00 00 00 00
00 14 00 FD 01 02 00 01 01 00 00 00 00 00 05 12 00 00 00 00 00 18 00 FF 01 OF 00 01
02 00 00 00 00 00 0520 00 00 00 20 02 00 00 00 00 14 00 8D 01 02 00 01 01 00 00 00
00 00 05 0B 00 00 00 00 00 18 00 FD 01 02 00 01 02 00 00 00 00 00 05 20 00 00 00 23
02 00 00 01 01 00 00 00 00 00 05 12 00 00 00 01 01 00 00 00 00 00 05 12 00 00 00
HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001\Services\mfm\Type: 0x00000120
HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001\Services\mfm\Start: 0x00000002
HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001\Services\mfm\ErrorControl:
0x00000002
HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001\Services\mfm\ImagePath:
"C:\WINDOWS\system32\mfm\msrll.exe"
HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001\Services\mfm\DisplayName: "RII
enhanced drive"
HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001\Services\mfm\ObjectName:
"LocalSystem"

In other words, msrll.exe copies itself to C:\windows\system32\mfm\, deletes
itself from the former location (C:\malware), and creates a new Windows
Service for the executable in C:\windows\system32\mfm. As shown in Figure 7,
the new service is set to start automatically at boot, but is not started yet.

“#: Services

File Action \iew Help
[zl 2
9 Services (Local) *% Sarvices {Local)

Rll enhanced drive Mame Description Status Startup Type Log On As "~
%QDS RSWP Provides n... Manual Local System

Start the service %Remote Access Aut... Createsa ... Manual Local System
%Remote Access Con.,. Createsa... Manual Local System
%Remote Deskkop He... Manages a... Manual Local Swstem
%Remote Procedure ... Provides th.,, Started Automatic Metwork 5.,
%Remota Procedure ... Managesk.., Marnual Metwark 5.,
%Remote Registry Enables re... Started Automatic Local Service
%Removable Storage Manual Local System

&7 Rl enhanced drive Automatic

%Routing and Remok.., Offers rout,.. Disabled Local System .
%Secondary Logon Enables st... Started Autonatic Laocal System
%Security Accounts ... Stores sec... Started Aukomnatic Local Swstem
%Security Zenter Monitors 5., Started Aukomnatic Local System

% Setver Supports Fil.., Started Aukomatic Local Swstem

%Shell Hardware Det.., Started Automatic Local System W

\ Extended A Standard

Figure 7 - Service added

© SANS Institute 2000 - 2005 10 Author retains full rights.

Erlend Garberg GREM 1.0 Practical

The checksum for the copied file is:

84acfe96a98590813413122c12c11aaa *msrll.exe

This is the same as the original C:\malware\msrll.exe had. This shows that the
copy is identical to the original file.

From the filename, C:\WINDOW S\system32\mfm\jtram.conf seems to be a
configuration file for the malware specimen. The file seems to be encrypted, so
no information can be gained from it. (See Figure 8)

- [BX]

File Edit “ew Insert Formakt Help

Led & & #MA

bfBRAchktKHbKthBys1AUbNX1EuBMEfiYQwBBuRKEAanng== DP4RALME
o/ BRALAETI Cg/ XSPvPMIBE+O3 6 wIbVpuulNESoTaMeDhwd gono== SwERLL] §
PwARAGES I O+Hnebi ool I+MOCTCS4MLalmNidOoeVkiZSnHyaZw== wmygIRLDF
SVERAGeqlCFECTYDREVINvEPOFbO/0vLINi Il 10nSkno e Ul Nog== HfORLOHN
SwARADEQvraLiny3yJoGE)dSOxweBDv a3k 1 ATNYOEBL zaVhg3Cw== owvSRAES
S/8RAPCO/ JTHeUTFISWICIJEPDwANOEghMen3 hNREASPAcxERuwv== ZglRADI

£ | >
For Help, press F1

Figure 8 - jtram.conf

The following interesting information shows up in TDIMon:

15.81876495 msrll.exe:1032819C8480 IRP_MJ_CREATE TCP:0.0.0.0:2200
SUCCESS Address Open

22.08134972 svchost.exe:1036 819C9A38 TDI_SEND_DATAGRAM
UDP:0.0.0.0:1025 192.168.129.1:53 SUCCESS Length:38

22.09424913 msrll.exe:103281AACEA0 IRP_MJ_CREATE TCP:0.0.0.0:113
SUCCESS Address Open

Msrll.exe listens on TCP-port 2200 and 113. It also connects to 192.168.129.1
on UDP-port 53.

In this stage of the analysis | assume that port 2200 is a backdoor and that port
113 is used for an ident daemon. The use of an ident daemon indicates that
msrll.exe wants to connect to IRC; because many IRC servers require that the
clients run identd to be allowed to connect.

© SANS Institute 2000 - 2005 11 Author retains full rights.

Erlend Garberg GREM 1.0 Practical

The connection to port 192.168.129.1 on UDP-port 53 is probably an attempt to
resolve a domain name, since port 53 belongs to DNS and 192.168.129.1 is set
as DNS server on the Windows VM. To find which domain name that is
attempted resolved, | launch snort on the Linux VM with the following command
line and relaunch msrll.exe.

snort —vd —| /root/log

With snort | discover that msrll.exe attempts to resolve collective7.zxy0.com.
(See Figure 9)

[root@localhost ~1# cat ~rootrslog-192.168.129.128-UDP%:1825-53
18.-19-18:15:84.434895 192.168.129.128:1825 -> 192.168.129.1:53
DP TTL:128 TOS5:8xB ID:212 IpLen:28 DgmLen:66
en: 38

8 F3 H1 BB HA H1 BH BB B HA HA BB BB 63 6F 6C
hC 65 63 74 69 Y6 65 37 B4 YA Y8 79 38 B3 63 6F
HD BB BB H1 BB A1

Figure 9 - snort dns

| telnet to port 2200 and 113 on the Windows VM to gain more information about
the services running there.

[root@localhost ~/1# telnet 19£.1668.129.1Z8 113
rying 192.168.129.128. ..

onnected to 192.168.129.128.

scape character is '*1’

df

df : USERID : UNIX : ¥YdGb(odJPc

onnection closed by foreign host.
[root@localhost ~1#

Figure 10 - identd is running on port 113

[rootPlocalhost ~#1# telnet 192.168.129.128 2288
rying 192.168.129.128. ..

onmmected to 192.168.129.128.

scape character is '71°.

rauth

onnection closed by foreign host.

Figure 11 - backdoor?

© SANS Institute 2000 - 2005 12 Author retains full rights.

Erlend Garberg GREM 1.0 Practical

Figure 10 confirms that identd is running.
Figure 11 shows that some kind of backdoor is running on port 2200, but
doesn’t give any more information.

Molding the laboratory environment

DNS

To advance the analysis process it's now needed to change the laboratory
environment. | begin with redirecting traffic for collective7.zxy0.com to the Linux
VM. Entering 192.168.129.129 as the address for collective7.zxy0.com in
C:\Windows\system32\drivers\etc\hosts does this.

7.21099330 msrll.exe:1632818F6678 TDI_CONNECT TCP:0.0.0.0:1091
192.168.129.128:6667 CONNECTION_REFUSED-150 .

44.58069392 msril.exe:372 818D00BO TDI_CONNECT TCP:0.0.0.0:1102
192.168.129.129:9999 CONNECTION_REFUSED

74.79998100 msrll.exe:372 818DB1CO TDI_CONNECT TCP:0.0.0.0:1103
192.168.129.129:8080 CANCELLED

The redirection of network traffic to the Linux VM shows that msrll.exe tries to
connect to port 6667, 9999 and 8080 on collective7.zxy0.com. Port 6667
indicates an IRC connection.

IRC Port 6667

To continue the analysis, | launch an IRC server on the Linux VM.

[rootPlocalhost ~1# su - ircd
[ircdBlocalhost ircdl$.rircd
[ircdBlocalhost ircdl$ ps -u ircd

PID TTY TIME CMD
2278 ttyl HH:HH:HBH bash
2311 7 B8 :88:88 ircd

Figure 12 - Starting ircd

| then restart msrll.exe. Process Explorer shows that msrll.exe has established a
connection with port 6667 on the linux VM.

© SANS Institute 2000 - 2005 13 Author retains full rights.

Erlend Garberg GREM 1.0 Practical

mil msril.exe: 2044 Properties

Image | Performance | Performance Graph | Threads | TEPAP | Security | Enviranment | Strings

F = Local Address Femote Address State
TCP 1921628129.128:1104 192 168.129.1 29667 ESTABLISHED
TCP 0.0.0.0:2200 0.0.0.0:0 LISTEMING

Figure 13 - Process Explorer

| launch an IRC client on the Linux VM and lists all created channels with the
/list command. A channel #mils has been created. | join this channel and list all
clients there with the command /who #mils. This is shown in Figure 14.

#* Your host is localhost.localdomainllocalhost.localdomains6667]1, running
+version 2.8-hybrid-6.3.1
»#» This server was created Tue Jun 4 ZBBZ at 16: 59:45 EDT
»» umodes available o0iwszcrkfydnxb, channel modes available biklmnopstve
#x WALLCHOPS PREFIX=(owv)@+ CHANTYPES=#& MAXCHANNELS=28 MAXBANS=2Z5 NICKLEN=9
+TOPICLEN=128 KICKLEN=98 NETWORK=EFnet CHANMODES=b,k,1,imnpst MODE3=4 are
+supported by this server

There are B users and 2 invisible on 1 serwvers

1 channels have been formed

This server has 2 clients and B servers connected

Current local users: 2 Max: 2

Current global users: 2 HMax: 2

Highest conmnection count: 2 (2 clients) (5 since server was (relstarted)

- localhost.localdomain Message of the Day -

- This is an IRC server. Authorized users only.

Mode change "+i" for user root by root

Channel Users Topic

#tmils 1

root ("root@127.8.8.1) has joined channel #mils

#mils 1898199356

No argument specified

root H “"root@127.8.8.1 (root)

i tIrK1MLgH H ks jDsPyBxKB192.168.129.128 (uYhNZs)
[1]1 B1:22 root (+i) on #mils (+nt) = type ~help for help

Figure 14 - irc

The malware specimen is joined as tIrKIMLgH on the channel. The nickname
seems to be randomly generated, and repeated connections show that the
nickname changes each time. | try to talk to the process to find commands, but
to no avail.

Port 9999 and 8080

To find out what msrll.exe expects on port 9999 and 8080, | launch NetCat on

© SANS Institute 2000 - 2005 14 Author retains full rights.

Erlend Garberg GREM 1.0 Practical

the Linux VM with the command “nc —I —p 8080” and “nc —I —p 9999”. Then |
restart msrll.exe. The ircd is stopped. As shown in Figure 15, msrll.exe expects
an IRC server on port 9999 and 8080.

rootlPlocalhost ~1# nc -1 -p 9999

L USER yCUWB jDPt=s localhost B YDUiLDuZNwWJJf Jygn lKKUNu jRRZg tmx3pE
ICK byD¥FaJGRle

punt?

root@localhost ~1#

rootPlocalhost ~1# nc -1 -p OBGA
SER i(mPIJEc localhost B :(XPipxGGO
ICK hnUbFUWTxu

Figure 15 - Port 9999 and 8080

At this stage in the reverse engineering process behavioral analysis doesn’t
seem to give any more information about the malware specimen. | therefore
proceed with code analysis.

Code Analysis

Before | can disassemble and debug the binary, | need to unpack it.
Unpacking

Earlier in the analysis | established that the malware specimen was encrypted
or compressed. Before code analysis can take place the malware specimen
need to be unpacked/decrypted.

The aspack segment in the file indicates that the executable was packed with
AsPack. Because of this, | try to extract the executable with the application
AsPackDie, which was downloaded from
http://scifi.pages.at/yoda9k/files/AspackDie141.zip.

AsPackDie was able to extract the executable successfully, as shown in Figure
16.

AspackDie - Info @

= File seems to be unpacked successFully,
y Compressor: Aspack 2,12/2.12a/2.12b
Cgbput: W INDOW S svstem 32\ mfmiunpacked, ExE

k.

Figure 16 - Extracting msril.exe with AspackDie

© SANS Institute 2000 - 2005 15 Author retains full rights.

Erlend Garberg

GREM 1.0 Practical

Running the new unpacked executable shows that the unpacking worked; the
malware specimen is acting exactly like before.
| can then proceed with disassembly and debugging.

First | check if there are any interesting strings in the executable with BinText
now that it is unpacked. The following strings seems to be potential commands
to control the malware:

0000934E
00009355
0000935D
00009364
0000936C
00009374
0000937C
00009382
00009388
0000938E
00009394
0000939A
000093A9
000093B0
000093B6
000093C6
000093CC
000093D7
000093DF
000093EE
000093FE
00009404
0000940A
00009415
00009423
0000942A
00009436
00009440
00009446
0000944F
0000946E
00009476
0000947D
00009484
00009490

0040934E
00409355
0040935D
00409364
0040936C
00409374
0040937C
00409382
00409388
0040938E
00409394
0040939A
004093A9
004093B0
004093B6
004093C6
004093CC
004093D7
004093DF
004093EE
004093FE
00409404
0040940A
00409415
00409423
0040942A
00409436
00409440
00409446
0040944F
0040946E
00409476
0040947D
00409484
00409490

?clone
?clones
?login
?uptime

?reboot
?status
?jump
?nick
?echo
?hush
?wget
?join
?akick
?part
?dump
?md5p
?free
?update
?hostname
?Nfif
?play
?copy
?move
?sums
?rmdir
?mkdir
?exec
?kill
?killall
?crash
?sklist
?unset
?uattr
?dccsk
?killsk

| try to control the bot with the strings that BinText gave, but there is still no

© SANS Institute 2000 - 2005

16

Author retains full rights.

Erlend Garberg GREM 1.0 Practical

response.

Disassembly

| proceed with disassembly in IDA Pro.

Address 40BDEO seems to contain a MD5 hashed password. (String begins
with 1) This can be seen in Figure 17.

* .text:0048BD4E ; char ServiceName[]

.text:0040EDLE ServiceName db ‘mfm’,8 ; DATA XREF: sub_ 4BBE4E :loc_ 4OEF1BLlo
.text:0848BDLE ; sub_4BBFEF+Blo ...

* _text:00408BD52 a2288@ db ‘'22088',8 ; DATA XREF: .data:@8413B64lo

* .text:@8048BD57 aJtr_id db *jtr.id*,8 ; DATA XREF: sub_4BBE4E8+89)0
.text:0040BD5T ; -data:98413B68 Lo

* _text:0048BDSE aRun% db ‘run5’,8 ; DATA XREF: .data:@8413B6CLo

* _text:0048BD63 alrc_quit db ‘irc.quit’,@ ; DATA XREF: .text:0048C788Llo0
.text:0848BD63 ; -data:8eu13B78l0

* .text:0040BED6C asc_4OBDGC db * ',8 ; DATA XREF: .data:@88413B74jo

* _text:0048BDGE aServers_8 db ‘servers’,d ; DATA XREF: .data:@8413B78lo

* .text:0048BD76 align 18h

* .text:0048BD8P aCollective7?_zx db 'collective?.zxyB.com,collective?.zxyf.com:92999? ,collective?.”’
.text:0048BDED ; DATA XREF: .data:@88413B7Clo
.text:0048BDE0 db ‘zxy@.com:8888°,0

* _text:0048BDCA alrc_chan db ‘irc.chan’,® ; DATA XREF: .data:@88413B8@Jo

* .text:08048BDD3 aMils db ‘#mils’,8 ; DATA XREF: .data:@884%13B84jo

* .text:0040BDD? aPass_@ db ‘pass’,8 ; DATA XREF: .data:98413BE8lo

* .text:8848BDDE align 18h

* _text:0040BDED al1KzlplkdfWEk18 db *1KZLPLEDFSWEK18Jr1XEDOHZSNIpYqqe’ , 0
.text:0848BDESD Couui........; DATA XREF: .data:08413B8Clo

Figure 17 - configuration

A different password is located at address 40BE20. Since the passwords are
MDS5, the passwords to be used while authenticating won'’t be found in the
binary file. | then have several options, | can find the authentication routine and
patch it to always return true, or | can generate my own MD5 password and
replace the original ones. | choose to replace the passwords.

Patching to change MD5 passwords

| open msrll.exe in a hex editor and locate the addresses 40BDEO and 40BEZ20. |
then replace the original MD5 strings with the string
“1EcOWBmMCq$1P9cBkJQW QgpsiQNeuqGT.”, which | generated with

‘passwd’ on a linux machine. The corresponding password is “INanoics”.
The assembly snippet in Figure 18 is probably part of the authentication

procedure. From the “%s logged in” part, | deduct that the authentication
process uses a username in addition to a password.

© SANS Institute 2000 - 2005 17 Author retains full rights.

Erlend Garberg GREM 1.0 Practical

]

' _text:B88485B2E mou ebp, esp

' .text:B88485B30 push esi

' _text:88485B31 push ebx

' .text:B84A5B32 mou edx, [ebp+8]

' .text:08485B35 mou esi, [ebp+BCh]

' _text:B884085B38 mou ehx, [ebp+i4h]

' .text:88485B3B mov eax, [esi+ZB5Ch]

' Ltext:ae4a5BY1 test eax, 2

! .text:B88485B46 jnz short loc_485B9B

' _text:08485B48 cmp dword ptr [edx+h4], 8
! .text:88485BAC jz short loc_485B9B

' .text:08485B4E test eax, 18h

' .text:88485B53 jz short loc_ 465B9B

' _text:B88485B55 sub esp, 8

' .text:88485B58 push offset aPass ; 'PASS™
" _text:B88485B5D push dword ptr [edz+L4]

" .text:08485B6A call sub_40858f2

' text:AB4ASBAS add esp, 16h

' Ltext:90485%B6E test eax, eax

* .text:B88485B6A jz short loc_465B9B

" _text:B88485BA4C mou eax, [ebx+8FChH]

" .text:B0485B72 test eax, 168888h

' .text:08485B77 jnz short loc_4B5B9B

' .text:80485%B79 or eax, 168888h

' .text:88485BTE mow [ebx+BFCh], eax

' _text:084B85B84 sub esp, HCh

' _text:B88485B87 push ebx

' _text:08485B88 push offset aSLoggedIn ; "%s logged in"
' _text:B884085B8D push esi

' .text:88485BBE push dword ptr [ebp+18h]

Figure 18 - Authentication routine?

After changing the password | proceed with trying to login to the backdoor. | use
NetCat to connect to the Windows VM on port 2200. Then | try to authenticate
with an arbitrary username and the password “INanoics”. The login is
successful, the malware responds to the command “?hosthame” and “?exec”.
This is shown in Figure 19.

rootlflocalhost tmpl# nc 192.168.129.128 Z2Z8H
:Erlend
*Nanoics
‘hostname

1wst: reverser.localdomain ip: 192.168.129.128
fexec Ciswindowsssystem3dZscmd.exe ~c dir
swindowsssystemdZscmd .exe exited with code B

Figure 19 — login

Finding Capabilites

© SANS Institute 2000 - 2005 18 Author retains full rights.

Erlend Garberg

GREM 1.0 Practical

To get an overview of the bots capabilities, | tested all the potential commands
found earlier. To save space, | will not use screenshots in this part. The results
are presented in the following table:

Command Action

?clone Make clones on ircserver
?clones Control clones (say/join/part)
?uptime show uptime of system and bot
?reboot Reboot the computer

?status show status information about the bot
?jump Probably change to next ircserver
?nick Change nickname on irc

?echo print argument

?hush unknown

?wget get file from ftp/http

?join join channel on irc

?akick kick host from irc?

?part part channel on irc

?2dump unknown

?md5p compute md5 password

?free unknown

?update update Trojan from URL ?
?hostname Print hostname

?play play audio file on infected host?
?copy Copy file

?move Move file

?sums Show checksums for msrll.exe and config file
?rmdir Delete directory

?mkdir Make directory

?exec Execute program

?Kill Kill process

?killall Kill all processes?

?crash Crash computer?

?sklist List active network sockets
?unset unknown

?killsk Kill socket?

?ping Pingflood target

?smurf Smurf-attack target

?jolt Unknown attack on target

With that | conclude the code analysis.

© SANS Institute 2000 - 2005

19 Author retains full rights.

Erlend Garberg GREM 1.0 Practical

Analysis Wrap-Up
In this section | will summarize the findings in my analysis.
Capabilities

The malware specimen is capable of installing itself to a system directory,
adding itself as a legal-looking service and connecting to IRC to wait for
instructions from an attacker. It looks like it is intended to be part of a botnet
belonging to the attacker. Based on the built in commands for attack, an
attacker can use such a botnet for distributed denial of service attacks targeting
sites on the Internet. In addition, the malware specimen can be controlled via a
backdoor on port 2000. The attacker can easily update the Trojan software with
the built in “?update” command.

Potential Users

Potential users for this program could be script kiddies wanting to build a botnet
for DDOS attacks.

Defence

To eliminate current infections of msrll.exe, it would be enough to kill the
msrll.exe process, delete C:\windows\system32\mfm\msrll.exe and remove the
NT service. To prevent future infections, it could be possible to build a signature
from the malware specimen which can be added to antivirus scanners. It could
also be possible to use a firewall that could filter away IRC traffic based on layer
7 (application data) instead of fixed service ports.

© SANS Institute 2000 - 2005 20 Author retains full rights.

Erlend Garberg GREM 1.0 Practical

References

Zeltser, Lenny. Reverse-Engineering Malware. Volume 1-4. SANS Press, Jun
04, 2004.

© SANS Institute 2000 - 2005 21 Author retains full rights.

