
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Reverse-Engineering Malware: Malware Analysis Tools and Techniques (Forensics 610)"
at http://www.giac.org/registration/grem

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/grem

Analysis of a MIPS Malware

GIAC (GREM) Gold Certification

Author: Muhammad Junaid Bohio, mjbohio@gmail.com

Advisor: Richard Carbone

Accepted: March 19, 2015

Abstract

Malware functionalities have been evolving and so are their target platforms and

architectures. Non-PC appliances of different architectures have not traditionally

been frequent targets of malware. However, many of those appliances, due to their

enhanced processing power and/or low maintenance, provide ideal targets for

malware. Moreover, due to the lack of security for home routers, they often remain

infected until replaced, thereby providing longer persistence for a malware.

Recently, there has been a surge in malware for the MIPS and ARM architectures,

targeting specific routers, DVRs, and other appliances. These network devices, in

comparison, get less focus from vulnerability researchers and firmware patch

application by end-users. This increases the risk of compromise and requires

additional skills to cope with malware exploiting these platforms. This paper

discusses various tools and techniques for reversing malware for the MIPS platform.

We perform static and dynamic analysis of a MIPS malware, discuss its Command &

Control mechanism, and provide detection of its network communication.

Analysis of a MIPS Malware 2

M. J. Bohio, mjbohio@gmail.com

Acknowledgements
I would like to thank my advisor Richard Carbone for his valuable feedback and

guidelines on this paper. Moreover, I also thank my employer TELUS Security Labs

(telussecuritylabs.com) for providing me the tools and environment to perform research

for this paper.

Analysis of a MIPS Malware 3

M. J. Bohio, mjbohio@gmail.com

1. Introduction

MIPS (Multiprocessor without Interlocked Pipeline Stages) architecture is a Reduced

Instruction Set Computing (RISC) technology that is widely used in embedded devices.

As per the statistics mentioned in MIPS instruction set (n.d.) and MIPS architecture

(n.d.), MIPS-based processors are routinely used in routers from Cisco, Linksys,

Mikrotik, Cable/DSL modems, video gaming consoles from Sony and Nintendo, printers,

set-top boxes, and more. The ARM (Advanced RISC Machines) architecture is the most

widely used architecture in smart phones, TVs, set-top boxes, and mobile devices.

Malware produced for network devices have been far less in number compared to those

produced for PCs. However, this number is growing. According to various sources

(Infodox, 2011; Janus, 2011) the earliest known malware-targeting MIPS platform is

Hydra – an open source botnet framework released in 2008. It was designed for

extensibility and features both a spreading mechanism and DDoS functionality. In 2009,

another malware, Psyb0t, was found in-the-wild targeting routers and high-speed

modems. Its botnet, with an estimated 100,000 compromised devices, was then used in a

DDoS attack against DroneBL, an IP blacklisting service (Psyb0t, 2013).

In 2010, an IRC bot named Chuck Norris was found infecting routers and DSL modems.

In addition to spreading by brute forcing routers’ passwords, this malware also exploited

an authentication bypass vulnerability in D-Link routers (McMillan, 2010). Another IRC

bot named Tsunami supported various commands and modified the DNS server setting in

the configuration of the infected devices (Janus, 2011). This trend has been observed in

more recent malware as well and is effective in redirecting traffic to malicious servers

controlled by attackers.

In 2012, another IRC bot named LightAidra was found. It supported several architectures

including MIPS, MIPSEL, ARM, PPC, and SuperH (Fitsec, 2012). It exploited a D-Link

router vulnerability and modified firewall settings using iptables. The source code of

LightAidra is freely available on the Internet as an open source project. In 2013,

Analysis of a MIPS Malware 4

M. J. Bohio, mjbohio@gmail.com

Symantec discovered a worm called Darlloz (Hayashi, 2013). This malware spread by

exploiting a PHP vulnerability identified by CVE-2012-1823. It targeted various

architectures including x86, ARM, MIPS, and PowerPC, thereby termed as an Internet of

Things (IoT) Worm by Symantec (Hayashi, 2014). In order to block users from

connecting to the infected device using Telnet, it drops Telnet traffic via iptables

configuration and terminates the telnetd process. According to an investigation by

Symantec (Hayashi, 2014), Darlloz compromised more than 31,000 devices by February

2014. Its newer variants supported mining of cryptocurrencies (Mincoins and Dogecoins)

and exploited a default password on Hikvision DVR cameras (Ullrich, 2014b). An

interesting aspect of the Darlloz worm is that it specifically targets rival worm

LightAidra. LightAidra stores its process ID in various files including /var/run/.lightpid,

/var/run/.aidrapid, and /var/run/lightpid. The Darlloz worm attempts to terminate the

processes whose PIDs are stored in these files and deletes LightAidra files from the

infected device (Blinka, 2014).

In February 2014, Dr. Johannes Ullrich of the SANS Technology Institute discovered a

new worm called TheMoon (Ullrich, 2014a). This malware was specifically targeting

Linksys routers. One known instance of this malware,

MD5:A85E4A90A7B303155477EE1697995A43, can target the following specific router

models: E4200, E3200, E2500, E300, WRT610N, E1000, E1200, E1500, E1550, E2000,

and E3000 (Constantin, 2014). The malware exploits a command execution vulnerability

when parsing the ‘ttcp_ip’ parameter value sent in a POST request. It downloads a copy

of itself by running the wget command on the vulnerable router after exploiting the

vulnerability. The malware was named after the Hollywood movie, ‘Moon,’ because it

contains several strings such as Moon, Gerty, Lunar, Sam, and Jupiter that match various

characters in the movie. These characters in the code perform various tasks such as

analysis of the infected device, harvesting targets and sending fingerprinting/exploit

requests, and keeping logs. In the same year, malware Elknot was found targeting x86,

ARM, and MIPS platforms (Kernelmode.info Forum, 2013), whereas GoARM/Ramgo

targeted the ARM architecture (Adrian, 2014b). Moreover, newer versions of the

BlackEnergy Backdoor (that has been used in APT attacks in the past) have been found

Analysis of a MIPS Malware 5

M. J. Bohio, mjbohio@gmail.com

using plugins that target both the ARM and MIPS platforms (Baumgartner & Garnaeva,

2014).

Around mid-2014, a Backdoor/DDoS malware that is known by different names

including Spike, AES, and Dofloo DDoS malware was discovered. Samples of this

malware have been found targeting 32-bit and 64-bit Linux and Windows platforms as

well as MIPS and ARM architectures. A toolkit that generates samples of the Spike

DDoS malware was analyzed by the Akamai PLXsert Team (Akamai, 2014), and its

report states that several Akamai customers have been targeted by DDoS attacks

launched from this botnet. The peak attack by the Spike DDoS botnet, according to

Akamai, was 215 Gigabits per second (Gbps) and 150 million packets per second (Mpps)

(Akamai, 2014). This malware has also been discussed on the Kernelmode.info forum

(Adrian, 2014a). In this paper, we analyze a sample of the Spike DDoS malware for the

MIPS architecture and examine its commands, communication, and other operations.

2. Debugging Environment Setup

In order to analyze the malware binary for the MIPS architecture, the following tools

were used:

x Oracle VM VirtualBox 4.3.7 r91406

x Ubuntu 12.04.4 LTS

x OpenWrt- Barrier Breaker (Bleeding Edge, r39584)

x Qemu 1.6.2

x IDA Pro 6.5.140116 (32-bit)

x Wireshark 1.10.5

x 010 Editor 3.0.4

x Python 2.7

After installing Ubuntu Linux on the Oracle VM VirtualBox, the OpenWrt Linux

distribution was compiled and installed on the VM. OpenWrt also created the cross-

Analysis of a MIPS Malware 6

M. J. Bohio, mjbohio@gmail.com

compiler toolchain that is required to run MIPS binaries. The firmware for Atheros

AR71xx routers was selected with the OpenWrt installation.

After installing OpenWrt, Quick Emulator (QEMU) was installed in order to provide

hardware virtualization for OpenWrt and to run MIPS binaries in the OpenWrt

environment. The detailed guidelines for these installations are not in the scope of this

paper but can be found in other resources (Craig, 2011; Võsandi, 2013). The QEMU

installation created binaries for both LittleEndian (qemu-mipsel) and Big Endian (qemu-

mips) modes. Since the malware sample under analysis is compiled in Little Endian

format, qemu-mipsel was used to run it. This will be demonstrated in the next section.

The malware was run in both a controlled environment (Host-only Adapter) as well as

with Internet access using the Bridged Adapter. The non-controlled environment was

provided in order to capture live traffic from a control server.

3. Analysis of the Malware

The sample under analysis is a 32-bit Little Endian ELF binary for the MIPS architecture,

also known as Backdoor Spike DDoS or Dofloo. This binary was statically compiled and

left unstripped; as such it contains all of its strings and import function names. The

binary’s MD5 hash is 99ccdc5772a827917ae6cc8e29c78aec. These attributes are shown

in the following figure:

Figure 1: md5sum and file attributes of the sample.

Analysis of a MIPS Malware 7

M. J. Bohio, mjbohio@gmail.com

The analysis of this malware includes both its behavioral and technical analysis which

will be described in this paper.

3.1 Behavioral Analysis
When the malware was first run in a restricted environment (host-only network) it did not

perform any network communication. Upon providing it access to the Internet, the

malware contacted its Command & Control (C2) server at IP address 60.169.80.91, port

48080/TCP. The malware sent out some system information and received some

responses. It continued exchanging messages with its control server. Other than

communicating with the control server, no other suspicious connections by the malware,

such as any DDoS operations, were observed in the traffic. This will later be clarified

when the server responses are parsed and interpreted in the following subsections.

3.2 Technical Analysis
On the Ubuntu VM where OpenWrt and QEMU were installed, the sample file name

“99ccdc-spike” was run as shown in Figure 2:

Figure 2: Sample run and waiting for the gdb connection.

Among the above parameters, the “-E” parameter specifies the IP address of the system

from which the IDA debugger will be attached to the malware process. The “-g”

parameter with value “1234” puts the malware execution on hold until a debugger is

attached to it on port 1234/TCP. On the remote system with IP address ‘192.168.56.1,’

the IDA debugger was configured to connect to the Ubuntu VM having IP address

‘192.168.56.101’ on port 1234. Once the attachment to the malware process was

successful, the debugging session began.

Analysis of a MIPS Malware 8

M. J. Bohio, mjbohio@gmail.com

In this section, functions related to C2 operations, communication mechanisms, and

malware persistence will be discussed. The important code instructions have been

explained using comments on their right side; however, further information on MIPS

instructions can be found in Frenzel (1998) and MIPS instruction set (n.d.).

When the malware is started, it checks if its command-line has any arguments. If none

are found then it assumes it is running for the first time on the target system. It then calls

function _Z8autobootPc, which attempts to run the following commands in order to set

up system persistence (reboot survival):

sed -i -e '/exit/d' /etc/rc.local

sed -i -e '/^\r\n|\r|\n$/d' /etc/rc.local

sed -i -e '/%s/d' /etc/rc.local

sed -i -e '2 i%s/%s' /etc/rc.local

sed -i -e '2 i%s/%s start' /etc/rc.d/rc.local

sed -i -e '2 i%s/%s start' /etc/init.d/boot.local

The main function of this malware calls function ‘_Z14_ConnectServerv’ which connects

to one of the C2 servers with IP address 60.169.80.91 and port 48080/TCP. The

information concerning this control server is stored in global variable ‘m_OnlineInfo’

using a simple obfuscated format. The malware adds a constant value of 0x4E20 (20000)

to compute the actual aforementioned IP address and port. The following code/data

snippets in Figures 3 and 4 demonstrate this behavior:

Figure3:m_OnlineInfo data structure.

Analysis of a MIPS Malware 9

M. J. Bohio, mjbohio@gmail.com

Figure 4: IP/Port de-obfuscation and connect call.

If the malware cannot connect to the aforementioned control server, it may try connecting

to another server with IP address 183.60.149.199 on the same port. However, it does not

perform any obfuscation of this secondary control server’s IP address. This will be

demonstrated while discussing one of the program threads (pthreads) started by the

malware.

In function main, the malware sets some signals and creates the program threads as

shown in Figure 5:

Figure 5: pthreads called in main function.

Analysis of a MIPS Malware 1
0

M. J. Bohio, mjbohio@gmail.com

The functionalities of the above threads are described in the following subsections.

3.2.1 ‘SendInfo’ thread

This thread is implemented in function “_Z8SendInfoPv”. It attempts to calculate the

network/CPU speeds and periodically updates the control server about this information.

This information is believed to be used by attackers to evaluate the operational

capabilities of their bots and thus will assign DDoS tasks according to their CPU power

and network bandwidth/speed.

This function also checks ifconfig information for Ethernet interfaces ranging from ‘eth0’

through ‘eth9’. It reads data from pseudo-file /proc/net/dev and computes network speed

in Mbps. This file provides statistics on each network interface regarding the number of

bytes sent/received, number of inbound/outbound packets, and more. Please refer to

Figures 6, 7, and 8 which depict the code where this information is collected:

Figure 6: Construct interface ‘ethN’ and call my_ipconfig.

Analysis of a MIPS Malware 1
1

M. J. Bohio, mjbohio@gmail.com

Figure 7: Open /proc/net/dev.

Figure 8: Print network interface speed.

The malware also calculates the percentage of CPU usage by reading and processing

values in /proc/stat. This pseudo-file keeps various statistics about the system since it was

last run. The following figure shows two calls to a function that reads /proc/stat:

Figure 9: Two function calls for reading /proc/stat.

Analysis of a MIPS Malware 1
2

M. J. Bohio, mjbohio@gmail.com

Next, Figure 10 shows a part of the code inside function “_Z10get_occupyP6occupy”:

Figure 10: Read /proc/stat.

The malware then prints the CPU usage percentage and network speed information into a

pre-defined format. If the socket has been created, it sends out that data to its control

server. Figure 11 demonstrates this behavior:

Figure 11: Print INFO data and send to the server.

Analysis of a MIPS Malware 1
3

M. J. Bohio, mjbohio@gmail.com

The periodic speed information sent by this thread to its control server is shown in Figure

12 that represents the traffic captured through Wireshark:

Figure 12: INFO packets sent by the malware.

3.2.2 ‘backdoorA’ Thread

This thread collects system information and sends it out to the control server. The

information sent out by this thread includes OS Kernel version, CPU speed, total memory

size, used memory size, and some hard-coded strings such as ‘VERSONEX’ and

‘Hacker.’ These strings have been observed in several samples of this malware family.

The following figure shows the initial request captured through Wireshark:

Analysis of a MIPS Malware 1
4

M. J. Bohio, mjbohio@gmail.com

Figure 13: backdoorA thread identifying to the server with system information.

This thread contains information about a secondary control server that could be contacted

in case the primary control server is not available. The following figure shows the code

containing IP and port number of the secondary control server:

Figure 14: Secondary control server’s IP and port information.

Analysis of a MIPS Malware 1
5

M. J. Bohio, mjbohio@gmail.com

The following code snippet is used to construct and send the data shown above in Figure

13. The payload size of the packet is fixed to 0x400 (1024) bytes.

Figure 15: Print and send system information.

In response to the above request, the server sent the following command/data that is

captured and parsed by Wireshark:

Analysis of a MIPS Malware 1
6

M. J. Bohio, mjbohio@gmail.com

Figure 16: Server response to the request by backdoorA thread.

In the above response, the first DWORD ’07 00 00 00’ is the command code. The

payload size of the server response is 0x19D; however, the malware parses only the fixed

size 0x19C (412) bytes of it. The command codes expected by this thread are 5, 6, and 7.

The following code snippet demonstrates how the server response is received and parsed:

Analysis of a MIPS Malware 1
7

M. J. Bohio, mjbohio@gmail.com

Figure 17: Server response parsing.

Thus, the commands supported by this thread are:

x CmdShell (0x05)

x DealwithDDoS (0x06)

x Kill a process OR continue (0x07)

Analysis of a MIPS Malware 1
8

M. J. Bohio, mjbohio@gmail.com

Each of the above commands and its functionality are described in the following

subsections.

3.2.2.1 CmdShell (0x05) Command

If the command code matches 0x05, the malware copies data after the first DWORD in

the server response to a buffer. It then calls function “_Z8CmdshellP8_MSGHEAD”,

which then calls the ‘System’ function to execute a command. The malware locates the

shell command at offset 0x100 (256) within the data part of the server response. The

command string has to be Null-terminated, whereas the rest of the data in the server

response was redundant and not used while executing command 0x05. The following

code snippets demonstrate this behavior:

Figure 18: Call Cmdshell function.

Figure 19: Inside Cmdshell runs command at offset 0x100.

Since the control server did not send command 0x05 at the time of this research, a Python

script (see Appendix A for details) was written by the author that listened for a message

from the malware and sent the command 0x05. For this purpose, the response containing

Analysis of a MIPS Malware 1
9

M. J. Bohio, mjbohio@gmail.com

command 0x07, which was received earlier from the actual control server, was modified

to command code 0x05 and a shell command at offset 0x100 (starting from the command

data part) was sent to the malware. As a result of sending that command, the malware

created a text file with the string that is written to it via the ‘echo’ shell command. The

following figure demonstrates the shell command that was sent to the malware using the

Python script:

Figure 20: Modified response sent with Shell command.

3.2.2.2 DealwithDDoS (0x06) Command

When command code 0x06 is found, the malware performs AES decryption of the data

that is sent in the server response. It then performs expansion of the decryption key and

then calls function ‘_ZN3AES9InvCipherEPh’ or ‘AES::InvCipher(uchar *)’ in a loop. In

each round, 16 bytes of data is decrypted. Once decryption is completed, the malware

calls function ‘DealwithDDoS(_MSGHEAD *)’. The following code snippets are used in

these operations:

Analysis of a MIPS Malware 2
0

M. J. Bohio, mjbohio@gmail.com

Figure 21: AES key expansion/initialization.

Figure 22: Decrypt DDoS command and call DealwithDDoS.

Based on the static code analysis, when the ‘DealwithDDoS’ function is started, it calls

various flooding pthreads depending on the instructions received from the control server.

Since at the time of this research the control server did not send DDoS command 0x06,

the complete structure of this command is not known. The flooding attacks supported by

this function are found in the following pthreads:

x TCP_Flood

x CC_Flood

x CC2_Flood

x CC3_Flood

The following code snippets show some of the pthreads started by the DDoS function:

Analysis of a MIPS Malware 2
1

M. J. Bohio, mjbohio@gmail.com

Figure 23: TCP_Flood pthread.

Figure 24: CC_Flood pthread.

Figure 25: CC2_Flood pthread.

Figure 26: CC3_Flood pthread.

Based on the static code analysis, in the case of CC_Flood (Figure 24) DDoS, the

malware sends out HTTP GET requests until the ‘StopFlag’ is set to 1. The following are

some of the headers used in building such requests:

Analysis of a MIPS Malware 2
2

M. J. Bohio, mjbohio@gmail.com

Accept-Language: zh-cn

User-Agent: Mozilla/5.0 (compatible; MSIE 10.0; Windows NT 6.1; WOW64;

Trident/6.0)

Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, ascii

"application/x-shockwave-flash, application/vnd.ms-excel, application/vnd.ms-

powerpoint, application/msword, */*

The CC2_Flood (Figure 25) and CC3_Flood (Figure 26) DDoS also send out HTTP

GET requests with some minor differences. For example, headers used with CC2_Flood

requests are as follows:

Accept-Language: zh-CN

User-Agent: Mozilla/5.0 (compatible; MSIE 10.0; Windows NT 6. 1; WOW64;

Trident/6.0)

Accept: text/html, application/xhtml+xml, */*\r\n

3.2.2.3 Kill a Process or Continue (0x07) Command:

This command checks if the value of its ‘pid’ global variable is non-Null; then it attempts

to terminate the process with that process ID. If the value is Null, the malware continues

to the beginning of the loop and sends the next request to the server. Notice that the

functionality of this command does not require a large amount of data (0x19C bytes) to

be sent by the server. However, since the length of the received data is hard-coded in

several places, the control server appears to be sending garbage data along with command

0x07. The following code snippet demonstrates the functionality of this command:

Analysis of a MIPS Malware 2
3

M. J. Bohio, mjbohio@gmail.com

Figure 27: Command 0x07 – kill a process and/or continue.

3.2.3 ‘backdoorM’ Thread

This thread performs very similar functions to the ‘BackdoorA’ thread with the exception

that it has one additional command 0x01. This command updates flag value ‘statM’ to

zero. This flag found at the beginning of the function is used to determine whether to

sleep for a certain amount of time or continue operations if it is zero. This is shown in the

following figure:

Figure 28: Command 0x01 – unset a flag.

Analysis of a MIPS Malware 2
4

M. J. Bohio, mjbohio@gmail.com

3.2.4 Detection and Indicators of Compromise (IoC)

3.2.4.1 Traffic Detection

As described earlier, the first request sent out by the malware with system information

has a fixed payload size of 0x400 (1024) bytes. This value can be checked as a ‘dsize’

value along with other patterns in a Snort signature. The following is a Snort signature

that can be used to detect a malware request sent to its control server:

alert tcp $HOME_NET any -> $EXTERNAL_NET any (msg:"SpikeDDoS

Malware Detection"; dsize:1024; content:"VERSONEX|3a|"; nocase; offset:0;

depth:9; content:"MHz|7c|"; nocase; distance:4; within:48; content:"MB|7C|";

nocase; distance:3; within:8; content:"|00 00 00 00 00 00|"; distance:32;

within:32; classtype:Botnet; sid:1100110010; rev:1;)

The server response sent to the malware must also be at least 0x19C (412) bytes. The first

4 bytes are command codes including 1, 5, 6, and 7. A signature for the server response is

also possible but since the malware request has several options for pattern detection, it is

sufficient for traffic detection and would be more efficient compared to signature

detection for the server response.

3.2.4.2 Indicators of Compromise (IoC)

When the malware is started, it checks the number of its command-line parameters. If it

does not have any parameters, it calls function ‘_Z8autobootPc’. In this function the

malware sets up its reboot survival mechanism. It attempts to add itself to the following

files:

x /etc/rc.local

x /etc/rc.d/rc.local

x /etc/init.d/boot.local

In the case of /etc/rc.local, the malware removes any lines containing string “exit”. As a

result of this, a line containing string “exit 0” was deleted from the /etc/rc.local file on

the infected system. Furthermore, the malware also removes any empty lines from this

Analysis of a MIPS Malware 2
5

M. J. Bohio, mjbohio@gmail.com

file. Commands that perform these operations were previously examined. The malware

then adds itself with parameter “reboot” to file /etc/rc.local as shown in the following:

#!/bin/sh -e

/home/username/openwrt/staging_dir/target-mips_34kc_uClibc-0.9.33.2/root-

ar71xx/MalwareFileName reboot

rc.local

[…truncated…]

In the case of /etc/rc.d/rc.local and /etc/init.d/boot.local an error occurred when passing a

parameter pointer to the malware filename string. However, when the parameter was

passed correctly by modifying register ‘a3’ value after instruction at address

0x0040AF40, the malware created the following entry in /etc/rc.d/rc.local with parameter

“start”. It uses the same format string for adding itself to /etc/init.d/boot.local as well, as

shown below.

/home/username/openwrt/staging_dir/target-mips_34kc_uClibc-0.9.33.2/root-

ar71xx/MalwareFileName reboot start

Please note that these target configuration files may not exist on all systems. The

malware does not check for the existence of these files before attempting to write its

command-line to them.

4. Debugging Challenges and Workarounds

The malware sample under analysis frequently uses forks and pthreads. As a result,

multiple threads and instances of the malware are instantiated. In order to analyze such a

code flow, gdb debugger provides various custom options such as setting follow-fork-

mode and non-stop mode. However, through IDA Pro debugger these custom options for

remote gdb debugging could not be enabled. As a workaround, a fork call in the main

function was deactivated with NOP instructions. Figures 28 and 29 demonstrate the code

Analysis of a MIPS Malware 2
6

M. J. Bohio, mjbohio@gmail.com

where the fork was disabled in order to continue debugging the subsequent operations of

the malware:

Figure 29: Original code with fork call.

Figure 30: Disabled fork call.

After bypassing the fork call and some flag checks, when the first ‘pthread’ call reached

the ‘SendInfo’ function, the debugging session with IDA debugger was terminated. Since

IDA Pro was configured to use gdb debugger for remote debugging of the MIPS binary,

the default operation of gdb is the ‘stop-all’ (all threads stopped) mode. Whereas for

debugging asynchronous multi-threaded code, it requires operating in the ‘non-stop’

mode to allow threads other than the debugged thread to continue running. With very

limited command line options supported via IDA Pro Command-line for gdb, it could not

be determined whether any other method could be used to enable these custom options

for use of the gdb debugger via IDA Pro. To address this issue, it was attempted to use

gdb directly and to configure it to operate in the non-stop mode. As such, an instance of

gdb compiled for the MIPS architecture was used to attach to the malware sample

running within QEMU. However, when gdb with the non-stop mode attempted to attach

to the remote process, it presented the following error message stating that the remote

Analysis of a MIPS Malware 2
7

M. J. Bohio, mjbohio@gmail.com

process does not support the non-stop mode. Thus, this attempt was not successful either.

Figure 31 depicts this error message:

Figure 31: Non-stop mode attempt via MIPS gdb.

Thus, for the debugging of threads, the binary was patched and pthread calls were

replaced with direct function calls to thread functions. The following figure shows the

modified calls to the thread functions:

Figure 32: Modified calls to thread functions.

When each of the pthread functions was analyzed, it was found that they ran

asynchronously in their respective infinite loops. However, certain information such as

socket creation and the ability to start/stop certain operations are communicated through

global flag variables. When asynchronous thread functions were executed in ‘all-stop’

Analysis of a MIPS Malware 2
8

M. J. Bohio, mjbohio@gmail.com

mode, it required the modification of certain jump instructions in order to debug the

subsequent function.

As described in MIPS instruction set (n.d.) and various other documentations, the J-type

or Jump instructions on the 32-bit MIPS architecture are comprised of 6-bit

Opcode/Instructions and 26-bit jump target addresses. Since a 32-bit address value can

only be represented within 26-bits of a jump instruction, the address is divided by 4

before using it with a jump instruction. In order to modify a jump value to be used in a

MIPS instruction, the following formula is used:

Operand Address (26-bits) = (target destination address) / 4 = quotient &

0x03FFFFFF

The ‘Operand Address’ of the jump target address is then prepended to the instruction

opcode. The prepending is done in the Little Endian format due to the fact that the binary

being analyzed is in Little Endian format. For example, the modified function call for

pthread function ‘_Z8SendInfoPv’ in the aforementioned code is set to, in hexadecimal,

‘DF 25 10 0C’. The actual address of the ‘_Z8SendInfoPv’ function is 0x0040977C

which is shown in the following code snippet:

Figure 33: Start address of ‘_Z8SendInfoPv’function

Hence, the Operand Address with the ‘jal’ command is calculated as:

Operand Address = 0x0040977C/4 = 0x1025DF & 0x03FFFFFF = 0x1025DF

Analysis of a MIPS Malware 2
9

M. J. Bohio, mjbohio@gmail.com

Thus, prepending the above value (0x1025DF) to the ‘jal’ instruction code (‘0x0C’) as in

‘DF 25 10 0C’ results in a call to the target function at the given address and is resolved

by IDA Pro as “jal _Z8SendInfoPv” that is shown in Figure 32 above. By modifying the

pthread calls, the thread functions can be analyzed without causing termination of the

debugging session.

4.1 Jump to Self
When debugging malware on the x86 platform, a commonly useful instruction is ‘Jump

to Self’ or 0xEBFE. This instruction is typically used when a researcher wants to pause

code execution at a certain point while the debugger is not attached to it -- for example, in

the case of code injection into a suspended process. With various tests it has been

determined that on the 32-bit Little Endian MIPS platform, a jump instruction can be

modified to ‘FF FF 00 10’ that causes it to branch-to-self.

5. Conclusion

In this paper, we have discussed debugging and code analysis of a Backdoor/DDoS

malware sample for the MIPS architecture. The Spike DDoS malware supports various

DDoS functions as well as allows the execution of Shell commands. In our research, we

have observed that a majority of the malware for the MIPS platform, including a known

APT malware, focus on DDoS functionality. Moreover, backdoor access, modification of

DNS settings, and other spying mechanisms have also been used by some of these

malware. These functionalities can be effectively leveraged by cyber criminals as well as

nation-state actors to achieve their various agendas.

The current state of security for the majority of home routers lacks the fundamental

mechanisms of scanning and eradicating malicious programs. Moreover, the awareness

among end-users regarding the possible malicious usage of their network devices is

minimal. As such, an infected home router often remains infected until replaced. This

requires that Anti-Virus products, in addition to PCs and laptops, protect other home

network devices as well. Both network device vendors and AV vendors need to provide

Analysis of a MIPS Malware 3
0

M. J. Bohio, mjbohio@gmail.com

mechanisms for auto-updating their devices’ firmware and eradicating malicious

programs from them as well. This could perhaps help in minimizing these agents of

DDoS and other malicious activities.

Analysis of a MIPS Malware 3
1

M. J. Bohio, mjbohio@gmail.com

6. References

Adrian, H. (2014a). Linux/AES.DDoS (alias Dofloo). Retrieved from

http://www.kernelmode.info/forum/viewtopic.php?f=16&t=3099

Adrian, H. (2014b). Linux/GoARM.Bot. Retrieved from

http://www.kernelmode.info/forum/viewtopic.php?f=16&t=3491&p=23910#p2391

0

Akamai. (2014). Spike DDoS Toolkit. Retrieved from

http://www.prolexic.com/kcresources/prolexic-threat-advisories/prolexic-threat-

advisory-spike-ddos-toolkit-botnet/spike-ddos-toolkit-cybersecurity-US-

092414.pdf

Baumgartner, K., & Garnaeva, M. (2014). BE2 custom plugins, router abuse, and target

profiles. Retrieved from http://securelist.com/blog/research/67353/be2-custom-

plugins-router-abuse-and-target-profiles/

Blinka, H. (2014). Linux.Aidra vs Linux.Darlloz: War of the Worms. Retrieved from

http://now.avg.com/war-of-the-worms/

Constantin, L. (2014). There's now an exploit for 'TheMoon' worm targeting Linksys

routers. Retrieved from http://www.computerworld.com/article/2487778/malware-

vulnerabilities/there-s-now-an-exploit-for--themoon--worm-targeting-linksys-

routers.html

Craig (2011). Exploiting Embedded Systems – Part 3. Retrieved from

http://www.devttys0.com/2011/09/exploiting-embedded-systems-part-3/

Fitsec. (2012). New piece of malicious code infecting routers and IPTV’s. Retrieved from

http://www.fitsec.com/blog/index.php/2012/02/19/new-piece-of-malicious-code-

infecting-routers-and-iptvs/

Frenzel, J. (1998). MIPS Instruction Reference. Retrieved from

http://www.mrc.uidaho.edu/mrc/people/jff/digital/MIPSir.html

Hayashi, K. (2013). Linux.Darlloz. Retrieved from

http://www.symantec.com/security_response/writeup.jsp?docid=2013-112710-

1612-99&tabid=2

Analysis of a MIPS Malware 3
2

M. J. Bohio, mjbohio@gmail.com

Hayashi, K. (2014). IoT Worm Used to Mine Cryptocurrency. Retrieved from

http://www.symantec.com/connect/blogs/iot-worm-used-mine-cryptocurrency

Infodox (2011). Hydra IRC bot, the 25 minute overview of the kit. Retrieved from

http://insecurety.net/?p=90

Janus, M. (2011). Heads of the Hydra. Malware for Network Devices. Retrieved from

http://securelist.com/analysis/publications/36396/heads-of-the-hydra-malware-for-

network-devices/

Kernelmode.info Forum. (2013). Linux/Elknot (Windows DDoS botnet, alias DnsAmp).

Retrieved from http://www.kernelmode.info/forum/viewtopic.php?f=16&t=3099

McMillan, R. (2010). Chuck Norris botnet karate-chops routers hard. Retrieved from

http://www.computerworld.com/article/2521061/computer-hardware/chuck-norris-

botnet-karate-chops-routers-hard.html

MIPS architecture. (n.d.). In Nikochan SGI Wiki. Retrieved February 9, 2015, from

http://www.nekochan.net/wiki/MIPS_architecture

MIPS instruction set. (n.d.). In Wikipedia. Retrieved February 9, 2015, from

http://en.wikipedia.org/wiki/MIPS_instruction_set

Psyb0t. (2013). In Wikipedia. Retrieved February 9, 2015, from

http://en.wikipedia.org/wiki/Psyb0t

Ullrich, J. (2014a). Linksys Worm ("TheMoon") Captured. Retrieved from

https://isc.sans.edu/forums/diary/Linksys+Worm+TheMoon+Captured/17630

Ullrich, J. (2014b). More Device Malware: This is why your DVR attacked my Synology

Disk Station (and now with Bitcoin Miner!). Retrieved from

https://isc2.sans.org/forums/diary/More+Device+Malware+This+is+why+your+DV

R+attacked+my+Synology+Disk+Station+and+now+with+Bitcoin+Miner/17879

Võsandi, L. (2013). Compiling C code for MIPS and running it on x86. Retrieved from

http://lauri.võsandi.com/tub/computer-architecture/building-mips-toolchain.html

Analysis of a MIPS Malware 3
3

M. J. Bohio, mjbohio@gmail.com

Appendix A

The following script was used to listen for the malware’s message containing system

information. It then sends a shell command to execute on the infected system. The

malware traffic was redirected by modifying the IP address of the secondary control

server that is shown in Figure 14.

import socket, re, sys, thread

def sendCmd(botconn, botaddr, shellcmd):

 data = botconn.recv(1024)

 if re.search("VERSONEX", data):

 botconn.sendall(shellcmd)

 botconn.close()

if __name__ == "__main__":

 HOST=''

 PORT=48080

 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

 try:

 s.bind((HOST, PORT))

 except:

 print "\nBind failed!"

 sys.exit()

 s.listen(2)

 shellcmd =

 "\x05\x00\x00\x00\x72\xf8\xf6\x64\x86\x68\x98\x16\xd4\xa4\x5c\xcc" + \

 "\x60\xea\x6d\x01\x01\x00\x00\x00\x25\x9e\x95\x7c\xb0\x92\xd0\x00" + \

 "\x40\xeb\x6d\x01\xad\x9d\x95\x7c\x48\x0d\xd0\x00\xc9\x9d\x95\x7c" + \

 "\x00\x00\x00\x00\xb8\x92\xd0\x00\xd0\x6e\xd0\x00\xc9\x9d\x95\x7c" + \

Analysis of a MIPS Malware 3
4

M. J. Bohio, mjbohio@gmail.com

 "\x00\x00\x00\x00\x78\x01\xd0\x00\x24\x00\x00\x00\x97\xf2\xcf\xce" + \

 "\x05\x00\x00\x00\x96\xac\x74\x22\x00\x00\x00\x00\xac\xea\x6d\x01" + \

 "\x10\xa3\xd0\x00\x00\x00\x00\x00\x48\xcb\xd0\x00\x20\x01\x00\x00" + \

 "\x78\x01\x00\x00\x00\x00\xd0\x00\xb4\xe8\x6d\x01\x00\x00\x00\x00" + \

 "\xd4\xeb\x6d\x01\xe0\x80\x95\x7c\x70\x9f\x95\x7c\xff\xff\xff\xff" + \

 "\x6c\x9f\x95\x7c\x7d\x47\x45\x00\x01\x00\x00\x00\x00\x00\x00\x00" + \

 "\xfc\xea\x6d\x01\x0f\x3a\x45\x00\x20\xa3\xd0\x00\xb4\x84\x4a\x00" + \

 "\x01\x00\x00\x00\xec\xd1\xe2\x77\x08\x19\xe2\x77\x8e\x00\x01\x00" + \

 "\x06\x10\x00\x00\x00\x00\x00\x00\x64\xeb\x6d\x01\x00\x00\x00\x00" + \

 "\xb0\x02\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x06\x10\x00\x00" + \

 "\xd0\x6e\xd0\x00\x8e\x00\x01\x00\xa8\x06\x4c\x00\x4c\xeb\x6d\x01" + \

 "\xe9\xce\xe1\x77\xec\xd1\xe2\x77\xec\xd1\xe2\x77\x08\x19\xe2\x77" + \

 "\x8e\x00\x01\x00" + \

 "echo \"Shell command 0x05 test\" > /home/username/shellcmd.txt" + \

 "\x00\x00\x00\x00\xec\xd1\xe2\x77\x9c\x18\xe2\x77\xf4\x00\x01\x00" + \

 "\xf0\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" + \

 "\xb0\x02\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\xf0\x00\x00\x00" + \

 "\xd0\x6e\xd0\x00\xf4\x00\x01\x00\x70\x0b\x4c\x00\xdc\xeb\x6d\x01" + \

 "\xe9\xce\xe1\x77\xa0\xc6\x6a\x00\xf0\x00\x00\x00\x00\x00\x00\x00" + \

 "\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\xe0"

 while 1:

 botconn, botaddr = s.accept()

 thread.start_new_thread(sendCmd, (botconn, botaddr, shellcmd))

 s.close()

