
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Reverse-Engineering Malware: Malware Analysis Tools and Techniques (Forensics 610)"
at http://www.giac.org/registration/grem

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/grem


Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Reverse-Engineering Malware: Malware Analysis Tools and Techniques (Forensics 610)"
at http://www.giac.org/registration/grem



 
 

 
 

[VERSION June 2012] 
 

  

 

Using IOC (Indicators of Compromise) in 
Malware Forensics 

GIAC (GREM) Gold Certif ication 

Author: Hun-Ya Lock, hylock@gmail.com 
Advisor: Adam Kliarsky  

Accepted: February 21st 2013  
 

Abstract 
 
Currently there is a multitude of information available on malware analysis.  Much of 
it describes the tools and techniques used in the analysis but not in the reporting of 
the results. However in the combat of malware, the reporting of the results is as 
important as the results itself.  If the results can be reported in a consistent, well-
structured manner that is easily understood by man and machine, then it becomes 
possible to automate some of the processes in the detection, prevention and 
reporting of malware infections.  This paper would study the benefits of using 
OpenIOC framework as a common syntax to describe the results of malware analysis. 
  
 
 
 

 

 



 
Using IOC in Malware Forensics 2 

 

Hun-Ya Lock, hylock@gmail.com   

1. Introduction 

1.1. Enterprise Malware Management 

In the IT operations of an enterprise, malware forensics is often used to support 

the investigations of incidents.  This could be due to end-user ignorance and carelessness, 

like drive-by-downloads as a result of careless web access, mistakes and oversights by 

administrators and their tools (Leydon, 2012) as well as Advanced Persistence Threat 

(APT) attacks.  The objective of incident handling is to manage and control faults and 

disruptions to IT services.  It includes both reactive and proactive measure.  Table 1 lists 

the 6-Step process in incident handling (Murray, 2012) as describe by SANS. 

Incident Handling Step Type of Measure 

1. Preparation Proactive measure 

2. Identification Reactive measure 

3. Containment    Reactive measure 

4. Eradication  Reactive measure 

5. Recovery    Reactive measure 

6. Lessons Learned  Proactive measure 

Table 1: SANS 6-steps process in incident handling (Murray, 2012) 

Malware forensics falls under step 6.  In the event of a new variant of malware, 

malware forensics can also take place in steps 3 to 5.  Aquilina et. al. describes the 

objectives of malware investigations as follows: 

Malware Forensics Investigation Objectives 

1. Discover nature and purpose of program. 

2. Determine the infection mechanism. 

3. Determine how program interact with the host system. 

4. Determine how program interact with network. 

5. Determine how the attacker interact with the program. 



 
Using IOC in Malware Forensics 3 

 

Hun-Ya Lock, hylock@gmail.com   

Malware Forensics Investigation  Objectives 

6. Determine the profile and sophistication level of the attack. 

7. Determine the extent of infection and compromise of the host machine and 

beyond. 

Table 2: Malware Forensics Investigation Objectives (Aquilina, Malin & Casey, 2010) 

The purpose of the investigation is to characterize malware in terms of its 

attributes (static) and behaviors (dynamic) (Kirillov, 2012).   This leads to 2 broad 

approaches towards malware forensics investigation: static and dynamic analysis. By 

performing static and dynamic analysis, objectives 3 and 4 would be met respectively.  

These describe the most basic characteristics of a malware.  The rest of the objectives (1, 

2 and 5 to 7) can be derived from these low-level attributes.   

1.2. Incident Handling & Malware Forensics 

Many enterprises are profit-drive environment and will strive to streamline and 

simplify its incident handling process. Hence, malware forensics investigation objectives 

in Table 2 can be further simplified to the following: 

Simplified Malware Forensics 

Investigation  Objectives (SMFIO) 

Malware Forensics Investigation  

Objectives 

1. Detecting possible infection. 3 & 4 

2. Preventing further infection. 2 

3. Profiling infection 1, 5 & 6 

Table 3: Simplified Malware Investigation Objectives 

In the process of malware forensics investigations, the specimen needs to be 

analyzed in a forensically sound manner that ensures authenticity of the evidence with an 

analysis process that is reliable and repeatable.  The investigation must also be well-

supported with documentation (Casey 2011). OpenIOC (Indicators of Compromise) is an 

open source framework developed by Mandiant1 for sharing threat intelligence 

(Sophisticated indicators for the modern threat landscape: an instruction to OpenIOC, 

2011).  It can be used to improve the reliability and repeatability of the malware forensics 

                                                
1http://www.mandiant.com/news/release/mandiant-releases-openioc-standard-for-sharing-threat-

intelligence/ 



 
Using IOC in Malware Forensics 4 

 

Hun-Ya Lock, hylock@gmail.com   

investigation process by providing a standard documentation syntax.  The OpenIOC 

framework can be used in the investigation report.  As the framework utilizes 

XML(eXtensible Markup Langu age)  to describe threat information, the derived 

OpenIOC indicators can be used as input to various security controls as part of the 

“Lessons Learned” phase of SANS 6-step process in incident handling (Table1).  This is 

because XML has the advantage of being both machine and human readable. 

2. Malware Forensics 

2.1. Clean Room Setup 

When investigating a malware specimen, it is important to do so in an isolated, 

“clean room” environment.  The machines and network used in the analysis have to be 

isolated away from the production environment to prevent any possibility of malware 

outbreak.  The behavior of the specimen should be analyzed in a cleanly installed 

machine that is not connected to external networks.  By setting up a such a baseline 

environment, any changes made to the machines' state can be attributed to the malware. 

The setup used in this paper takes reference from SANS FOR610 ( Reverse-

Engineering Malware: Malware Analysis Tools and Techniques)2 training.  The diagram 

above shows the logical setup.  In this setup, the malware will be executed in a Windows 

7 SP1 machine.  Various analysis tools are used to monitor and analyze its behavior.  The 

                                                
2http://computer-forensics.sans.org/training/course/reverse-engineering-malware-malware-analysis-tools-

techniques#section_with_details_laptop_description 

 

Diagram 1: Malware analysis logical setup 



 
Using IOC in Malware Forensics 5 

 

Hun-Ya Lock, hylock@gmail.com   

tools on Windows 7 and REMnux3 machines are listed in Appendix 1.     

 The Windows 7 and REMnux machines are attached to the same subnet 

(192.168.56.0/24) to allow REMnux to monitor potential network traffic generated by the 

malicious specimen.  In order to facilitate such a setup, all NIC (Network Interface 

Controller) cards on the machines and the switch need to be set to promiscuous mode.  In 

addition, the Windows 7 client must be restored to its pristine state after each analysis or 

even during the analysis to ensure the reliability of the results obtained.  The restoration 

of the Windows machine can be a time-consuming affair, so in practice this setup would 

be implemented in a virtual environment using VMware4, VirtualBox5 or even QEMU6.  

Besides using a single machine to host the setup, virtualization software has the 

advantage of supporting snapshots.  Hence, the machine state at various stages of the 

investigations can be saved to facilitate rollbacks or the review of analysis results.  For 

the paper, the visualization software used is VirtualBox version 4.2.4. 

2.2. Static Analysis 

 In static analysis, the specimen's binary is examined without executing it.  The 

tools commonly used for static analysis is documented in Appendix 1. 

The first step in static analysis is file profiling which is done to obtain an initial 

assessment of the specimen's functionalities.  Information such as strings, library 

dependencies, meta data and anti-virus signatures can be extracted from the executable 

file.  The purpose of file profiling is reconnaissance, (Aquilina, Malin & Casey, 2010) in 

order to make an intelligent decision on the type of file and how to approach the analysis.  

It can also serve to fulfill step 1(detecting possible infection) of Simplified Malware 

Forensics Investigations Objectives (SMFIO) 

The first step in file profiling is to obtain a cryptographic hash value of the 

specimen file, which is its digital fingerprint.  This is easily obtained using Microsoft File 

Checksum Integrity Verifier (FCIV)7.  Next, Linux file command would provide a 

                                                
3http://zeltser.com/remnux/ 
4http://www.vmware.com/ 
5https://www.virtualbox.org/ 
6http://www.qemu.org/ 
7http://www.microsoft.com/en-us/download/details.aspx?id=11533 



 
Using IOC in Malware Forensics 6 

 

Hun-Ya Lock, hylock@gmail.com   

quick overview of the type of file (eg PE executable, DLL, kernel mode driver, 

documents, etc).  The file's entropy is measured to determine the likelihood of it being 

packed and the export and import tables are viewed to get a sense of the functionalities of 

the specimen.  There are many tools that can accomplish this, such as PEiD8, xPELister9 

and  PEBrowse10. 

2.3. Dynamic Analysis 

In dynamic analysis, the behavior of the specimen is observed through its 

interaction with the host, as well as external system like web servers, IRC networks. 

There are a wide variety of tools available for dynamic analysis and the challenge is to 

decide on the most appropriate tools.  Assuming that the malware specimen does not 

implement any anti-forensics measures, one of the most comprehensive tools to monitor 

behavior of a malware is SysInternal's Process Monitor11.  A malware in its most basic 

form is essentially a Windows executable that, when run, would manifest as a Windows 

process, a child of Windows process or as a part of a process, in the case of code 

injection.  This running process would interact with the host system in 5 main areas: 

Main Areas of Interaction with Host System 

1. Processes 

2. File system 

3. Registry 

4. Network activity 

5. API calls 

Table 4: Main areas of interaction with host (Aquilina, Malin & Casey, 2010) 

  Process Monitor is able to monitor all of these interactions but often produces a 

very noisy set of data.  In order to build to filters to remove unnecessary data from 

Process Monitor,  RegShot12 is used at the start of the investigations to sift through the 

noisy windows events and filter out potential malicious activities.  RegShot is an open 

source Windows registry and file system comparison tool.  Windows registry is a system-

                                                
8http://peid.has.it/ 
9http://tuts4you.com/request.php?426 
10http://www.smidgeonsoft.prohosting.com/pebrowse-pro-file-viewer.html 
11http://technet.microsoft.com/en-us/sysinternals/bb896645 
12http://sourceforge.net/projects/regshot 



 
Using IOC in Malware Forensics 7 

 

Hun-Ya Lock, hylock@gmail.com   

defined database where applications and system components read and write configuration 

data.  (Registry, 2012)  Malware often uses the registry to find out the installed 

components and other capabilities of the target host as well as to store its own 

configuration.  By comparing the registry before and after infection, evidence left by the 

malware can be used to build filters for Process Monitor. 

  Network activities also contain important information.  If the malware attempts to 

“phone home”, information of the remote attacker, as well as potential sources of 

malicious payload may be revealed.  REMnux provides a variety of tools to emulate 

network services and wireshark13 is available to monitor the network traffic.  

2.4. Reporting 

In digital forensics investigations, digital impression evidence and trace evidence 

are collected.  Digital impression evidence are artifacts left in the physical memory, file 

system and registry as a result of the execution.  Digital trace evidence are files and other 

artifacts that are typically introduced through the victim's online activity and are of a 

more temporary nature. (Aquilina, Malin & Casey, 2010)    

When investigating malware infections, digital impression evidence are those that 

are associated with the infection and the self-preservation mechanisms and can be 

reproduced and observed in the “clean room” setup and compared with the victim’s 

machine.  These are classified as mandatory attributes.  On the other hand, trace evidence 

depends on the environment that the malware is running in and the user's interaction with 

the infected system.  Investigators may not always be able to reproduce them in the 

“clean room” setup and are classified as optional attributes. 

When using OpenIOC framework to report the findings of the investigations, the 

mandatory and optional attributes can be expressed as AND and OR operators. 

                                                
13http://www.wireshark.org/ 



 
Using IOC in Malware Forensics 8 

 

Hun-Ya Lock, hylock@gmail.com   

3. OpenIOC Framework 

3.1. Open IOC 

 Currently, there is no common language to describe the capabilities of malware.  

The hash value of the binary sample only identifies the specimen and little else.  

Furthermore, polymorphic and metamorphic codes (Paxson, 2011) result in multiple hash 

identities for the same class of malware.  Hence there is a need to shift from identification 

of malware through its syntax (appearance of instructions) to its semantics (effect of 

instructions).  OpenIOC is ideally suited for this purpose as the XML-based framework 

provides a flexible way of describing the complex semantics of a malware's behavior. 

 “Indicators of Compromise (IOCs) are forensic artifacts of an intrusion that can 

be identified on a host or network” (Sophisticated indicators for the modern threat 

landscape, 2012).  It is similar to Mitre's CybOX's14 (Cyber Observable eXpression) 

which uses XML schema for describing cyber observables.  A cyber observable is a 

measurable event or stateful property in the cyber domain (Barnum, 2011). A standard 

manner of describing cyber observables, would allow for better communications amongst 

cyber security teams and potential interoperability of deployed tools and processes.  

According to Mandiant blog's15, the CybOX team has included OpenIOC into its 

framework.   

 The motivations for developing OpenIOC, Mitre's CybOX and MAEC16(Malware 

Attribute Enumeration and Characterization) are similar, which is to find a common 

language to describe malware infection and other cyber events.  OpenIOC is focused on 

describing technical characteristics of a threat through an extensible XML schema.  It  

has a comprehensive vocabulary for describing low level attributes which can be easily 

translated into machine-understandable formats.  These can then be used as input to 

configure various IT security monitoring and detection tools like anti-virus, IDS 

(Intrusion Detection System), IPS (Intrusion Prevention System), firewalls, OS 

(Operating System) security controls and policies.  Similarly, logs and other forms of 

                                                
14http://cybox.mitre.org/ 
15https://blog.mandiant.com/archives/766 
16http://maec.mitre.org/ 



 
Using IOC in Malware Forensics 9 

 

Hun-Ya Lock, hylock@gmail.com   

outputs from these tools maybe translated into OpenIOC documents to be shared amongst 

other tools and systems.  In this way, the intelligence gathered from an incident may be 

used to protect and prevent compromise of the entire environment.  This would map to 

objectives 1 and 2 (detecting possible infection and preventing further infection) of 

SMFIO (Table 3).  This method of malware investigation is illustrated by OpenIOC in the 

diagram below. 

   

 Malware investigation is an iterative process.  It begins with developing OpenIOC 

indicators based on the low-level attributes of the malware's interaction with the host and 

network.  The OpenIOC can then be used as inputs to the enterprise monitoring tools and 

used for further analysis.  The table below applies OpenIOC framework to an enterprise 

incident handling process, more specifically the proposed SMFIO (Simplified Malware 

Forensics Investigation Objective).  

 

Diagram 2: Malware investigation lifecycle 

taken from (Sophisticated indicators for the modern threat landscape, 2012) 



 
Using IOC in Malware Forensics 10 

 

Hun-Ya Lock, hylock@gmail.com   

 

Simplified Objective SANS Incident 

Handling Step 

Explanation 

- Step 1: Preparation This step takes place prior to an incident 

and does not take OpenIOC into account. 

(1) Detecting possible 

infection. 

Step 2: Identification OpenIOC is used to describe the 

malware.  It could be based on its file 

profile and network traffic signature. 

(2) Preventing further 

infection. 

Step 3: Containment 

Step 4: Eradication 

OpenIOC is used to document the 

changes made to the infected host's file 

system and registry configurations; kernel 

and other program hooks; network 

protocols and ports.  With this 

information, network and the host IPS 

could be configured for the purpose of 

containment and eradication. 

- Step 5: Correction In the correction phases the IT system is 

placed back into production mode with 

all the business processes in place.  This 

is beyond the scope of OpenIOC. 

(3) Profiling infection. Step 6: Lessons 

Learned 

These consist of OpenIOCs that could 

describe the profile of the attacks in order 

to determine if it is a targeted attack. 

More robust containment and eradication 

steps would be required to prevent or at 

least reduce the damage from such 

attacks.   

Table 5:OpenIOC for Incident Handling 

3.2. Using IOC 

A sample OpenIOC is shown below.  It documents the low-level attributes that are 

observed when a host is infected by the Zeus virus.  A full listing is presented in 

Appendix 3. The verbose nature of XML makes the IOC self-explanatory. 



 
Using IOC in Malware Forensics 11 

 

Hun-Ya Lock, hylock@gmail.com   

The malware's low-level behavior attribute is documented using 

<IndicatorItem> tag.  Multiple <IndicatorItem> tags may be grouped together using 

<Indicator> tag. They may be grouped according to logical AND or OR operators as 

seen in the diagram above.  A rule of thumb would be to group attributes associated with 

a behavior into using <Indicator> tag with AND attribute.  Groups of behavior can then 

be associated with the OR operator.  This set of indicators only describe the processes and 

handles that are created with the Zeus infection and can only achieve step 1 (detecting 

possible infection) of SMFIO. 

The next section would analyze a malware specimen using SMFIO and use 

OpenIOC to document the results.  It would then explore how to use the resulting 

OpenIOC in the management of the IT system in an enterprise. 

Diagram 3: OpenIOC sample 

(taken from http://openioc.org/iocs/6d2a1b03-b216-4cd8-9a9e-8827af6ebf93.ioc) 



 
Using IOC in Malware Forensics 12 

 

Hun-Ya Lock, hylock@gmail.com   

4. Case Study 

4.1. Background 

 
A suspicious file would have one or more of the following characteristics, an 

unknown origin, located in system folders or unusual or hidden locations in the system, 

has unusual or misspelt names and contains obfuscated code.  Suspicious files are often 

investigated to determine its damage potential and derive prevention mechanisms against 

it.  This section examines a malware (hash value:  aada169a1cbd822e1402991e6a9c9238) 

that was caught by a private honeypot.  To facilitate the discussion, a random name of 

“ada.exe” was given to the specimen.  The “clean room” set up discussed in section 2.1 

was used.   

4.2. File Profiling 

Microsoft File Checksum Integrity Verifier was used to obtain the MD5 hash of 

the specimen.  Linux file command, xPELister and PEBrowse were used in the initial 

assessment of the file type   

From file command and PEiD, it was quite clear that this was a packed file 

with an high entropy level of 7.98.  PECompact was the packer used. 

 

 

 

 

 

 

 

 

 

 

Diagram 4: Output from Linux file command 



 
Using IOC in Malware Forensics 13 

 

Hun-Ya Lock, hylock@gmail.com   

 

 

 

 

 

 

 

 

 

 

Given that this is a packed file, the information from its PE header such as section 

 

Diagram 6: PE header information of the obfuscated file 

Diagram 5: Output from PEiD 



 
Using IOC in Malware Forensics 14 

 

Hun-Ya Lock, hylock@gmail.com   

information, entry point and other file characteristics will be changed for the de-

obfuscated malicious executable.  Hence, the information gathered so far, was useful in 

identifying the infection, which is the obfuscated payload.  Unfortunately with unlimited 

iterations of obfuscation, it would not be feasible to make use of this information to 

configure anti-virus scanners and IDS systems. 

 PEBrowse interpreted the PE header and showed that it was a 32bit Windows 

executable.  The import table only contained 4 functions from Kernel32.dll: 

GetProcAddress, LoadLibraryA, VirtualAlloc and VirtualFree, a characteristics of packed 

files.  Without further information, it would be difficult to determine the damage potential 

of the file. 

SMFIO 1: Detecting possible infection 

 The information obtained so far can be used for objective 1 (detecting possible 

infection) of SMFIO.  The propose OpenIOC indicators are listed below.  

 

 

Diagram 7: Output from PEBrowse 



 
Using IOC in Malware Forensics 15 

 

Hun-Ya Lock, hylock@gmail.com   

 

 

 

 

 

The approach taken is to list attributes associated with digital impression evidence 

using the AND operator and put trace evidence under the OR operator.  Although, all the 

attributes listed in diagram 8 can be observed in an infection, file compile time is 

subjected to time zone configuration on the development and infected machines and 

requires careful handling. With other more reliable identifiers, file compile time is put in 

as an optional attribute. 

4.3. Dynamic Analysis 

Obtaining Snapshots of Changes using Regshot 

Initially, RegShot was used to compare the registry and file system before and 

after infection.  The most obvious indication of malware infection was the addition of a 

file named “serivces.exe” in “C:\Windows\System32” directory and as well as the 

deletion of the original malicious code.  The file name “serivces” stood out as it was a 

misspelling of the word “services” which is a system component in Windows.    

 

Diagram 8: OpenIOC of file profile. 



 
Using IOC in Malware Forensics 16 

 

Hun-Ya Lock, hylock@gmail.com   

 

 

Further analysis of RegShot's output showed that “services.exe” was installed as a 

Windows service with a seemingly legitimate service name “Plug and Play Manager”.  In 

reality, the Windows service that supported Plug and Play was called “PlugPlay”. 

 

 

 

 

 

 

Diagram 11: Regshot output showing suspicious keys. 

Diagram 9: RegShot output showing addition of serivces.exe 

Diagram 10: Regshot output showing malware deleted 



 
Using IOC in Malware Forensics 17 

 

Hun-Ya Lock, hylock@gmail.com   

The start key with value of 0x2 indicated that this service would start 

automatically.  The type key with value of 0x110 indicated that this was a Win32 program 

that ran in a process by itself (JSI Tip 0324, 1997).  This was the specimen's self-

preservation mechanism.   

Monitoring Interaction with Host System using Process Monitor & 

CaptureBat 

After reverting back to its pristine stage, the system is reinfected and monitored 

by Process Monitor.  Using the process names “ada.exe” and “serivces.exe” as a filter, 

here is the sequence of significant events that occurred: 

Diagram 12: Regshot output showing suspicious values added 



 
Using IOC in Malware Forensics 18 

 

Hun-Ya Lock, hylock@gmail.com   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The malicious specimen stopped Windows Security Center17 which then stopped 

alerts and notifications from several Windows security components including the 

firewall, anti-virus, Windows Update, Internet options.  As a result, Windows 

SharedAccess service that controlled Internet-connection sharing18, which included 

firewall configuration, was stopped. The file “a.bat” contained scripts that modified 

                                                
17http://windows.microsoft.com/is-IS/windows-vista/Using-Windows-Security-Center 
18http://technet.microsoft.com/en-us/library/cc766190%28v=ws.10%29.aspx 

 

Diagram 13: Process flow of specimen 



 
Using IOC in Malware Forensics 19 

 

Hun-Ya Lock, hylock@gmail.com   

registry settings to disable firewall, Windows Automatic Update, Windows Security 

Centre services.  It also contained entries that modified the TCP/IP parameters.  As a 

result, when Windows SharedAccess was started, these services were no longer available. 

After modifying the registry settings “a.bat” was deleted.  A copy of “a.bat” was 

recovered using CaptureBat19 and documented in Appendix 4.   

Finally, “serivces.exe” was created and was installed as a service with a service 

name “PlugPlayCM”. After the service started, “ada.exe” was deleted.   

Monitoring Interaction with Network using REMnux 

REMnux was used to draw network traffic out from the malicious specimen.  The 

first step was to use wireshark20 to monitor network traffic from the malicious specimen, 

in order to determine the type of network services that it was seeking.  The specimen 

initially sent TCP SYN requests to ip address 60.10.179.100, connecting to a range of 

ports which included 8684 – 8689, 9051, 137(WINS registry), 12032, 8680 – 8689, 1709 

and 343.  A snapshot of the SYN request is presented below. 

Of course, REMnux acting as the gateway to nowhere, was not able to connect to 

                                                
19http://www.nz-honeynet.org/capture-standalone.html 
20http://www.wireshark.org 

 

Diagram 14: Wireshark output of initial TCP SYN request 



 
Using IOC in Malware Forensics 20 

 

Hun-Ya Lock, hylock@gmail.com   

IP address 60.10.179.100.  A check with Robtex21 reverse DNS service website, revealed 

that this ip address was blacklisted. 

Next the specimen, made domain name resolution requests to ringc.strangled.net, 

checkip.dyndns.org and www.ip138.com.  fakedns22 was used to resolved all domain 

names requested by the malicious specimen to the REMnux machine.  With the domain 

names resolved to REMnux machine's ip address, the specimen then sent HTTP Get 

requests to checkip.dyndns.org and www.ip138.com.  Both sites were visited 

anonymously using the TOR23 browser.  It was found that they would both return the ip 

address of the requesting client so it can be assumed that the specimen was attempting to 

acquire the ip address of the host it had infected.  A screenshot of www.ip138.com is 

displayed below: 

The most significant network requests were TCP SYN requests to port 8684.   

netcat24 was used to start a port 8684 in listening state in REMnux.  With this simple 

setup, the network requests to port 8684 was captured and examined.  The output from 

netcat is shown below: 

                                                
21http://www.robtex.com 
22http://code.activestate.com/recipes/491264-mini-fake-dns-server/ 
23https://www.torproject.org/projects/torbrowser.html 
24http://netcat.sourceforge.net/ 

 

Diagram 15: Screenshot of web site www.ip138.com 



 
Using IOC in Malware Forensics 21 

 

Hun-Ya Lock, hylock@gmail.com   

 

 

 

It turned to be an IRC request.  The specimen used details from the infected host 

to generate the user and nick login details.  The host operating system was Windows 7 

Service Pack 1 with system locale, keyboard and location set to USA.  The Windows 

login username was Win7_REM.  This might explain the phrases “USA”, “SP1” and 

WIN7_REM” in the IRC connection request. 

To probe further, ircd service in REMnux was configured to listen to a range of 

ports 8684-8689, which included 8684.   After sometime, it was observed in wireshark 

that the specimen joined IRC channel “#blue3”.  The wireshark output is shown below: 

 

 From monitoring the behavior of the specimen, the following OpenIOC indicators 

are proposed. 

Diagram 17: Wireshark output for REMnux with ip of 60.10.169.100 

 

Diagram 16: netcat output 



 
Using IOC in Malware Forensics 22 

 

Hun-Ya Lock, hylock@gmail.com   

SMFIO 1: Detecting possible infection 

The changes to the host file system and registry are mandatory attributes (AND 

operator). 

 

 

 

SMFIO 2: Preventing further infection 

 These OpenIOC indicators describe the changes made to the host and the network 

traffic generated after an infection.  These indicators suggest how the host system could 

be hardened in order to prevent further and future infections.  For example, for this 

specimen a host firewall could be configured to prevent outgoing network traffic to IP 

address 60.10.179.100,  connections to the port8680 to 8689 are put in as optional (OR 

operator) as they are dependent on the infected host's network settings.   

   

 

Diagram 18: OpenIOC from dynamic analysis 1 

 

Diagram 19: OpenIOC from dynamic analysis 2 



 
Using IOC in Malware Forensics 23 

 

Hun-Ya Lock, hylock@gmail.com   

On the other hand, the OpenIOC indicators for the changes to the registry are mandatory 

(AND operator).  This is because these indicators describe the infection and self-

preservation mechanisms. 

Diagram 20: OpenIOC from dynamic analysis 3 



 
Using IOC in Malware Forensics 24 

 

Hun-Ya Lock, hylock@gmail.com   

SMFIO 3: Profiling Infection 

 Outbound network traffic sometimes provides identity of the attacker that can be 

used in developing the profile of the attack.  In this case, remote IRC server that the 

specimen tried to connect to may provide a link to the attacker.  As they are trace 

evidence, the OR operator is used. 

 

 

 

 

4.4. Static Analysis 

From the dynamic analysis, the infection and self-preservation mechanism was 

found.  In addition, it was found that the specimen was most likely an IRC bot but 

without connecting the IRC bot to its C&C (Command and Control), it was difficult to 

determine it functionalities.  Hence, static analysis was carried out to probe further into 

the specimen. 

Gathering Strings 

The first step into static analysis is to gather a list of strings from the binary 

executable.  The Linux strings command was used.  From file profiling done earlier, it 

was known that this was a packed specimen and the strings command would not 

produce many strings of interest.  The results correspond to that from the file profiling 

stage. 

 

 

 

 

Diagram 21: OpenIOC from dynamic analysis 4 

 

Diagram 22: List of strings from specimen 



 
Using IOC in Malware Forensics 25 

 

Hun-Ya Lock, hylock@gmail.com   

Debugging with OllyDbg 

The specimen had various anti-forensics strategies which had to be overcome 

before the malicious code could be analyzed in OllyDbg25.  As discovered earlier, the 

specimen was packed using PECompact version 226.  This was a common packer which 

would compress and in doing so obfuscate the code as well as the import table.  When the 

executable was run, the decompression stub was loaded and it would restore the image of 

malicious code to an executable state that was loaded only onto the memory without 

writing to disk.  The process of loading the de-obfuscated code in OllyDbg with the 

correct OEP (Original Entry Point) is well documented (Collake, 2005) and presented in 

Appendix 5.    

 The OEP of the malicious code is 0x415F64.  Before running the specimen in 

OllyDbg, IDA27 was used to generate the specimen's call flow. 

As can be seen from the call flow above, the code has a complex structure.  To 

reverse it completely back to its original state might not be feasible for an enterprise IT 

department.  However if the scope of the analysis is restricted to SMFIO, the 

                                                
25http://www.ollydbg.de/ 
26http://bitsum.com/pecompact.php 
27http://www.hex-rays.com/products/ida/index.shtml 

Diagram 23: Partial call flow of specimen 



 
Using IOC in Malware Forensics 26 

 

Hun-Ya Lock, hylock@gmail.com   

investigation would be more feasible.   

The initial portion of the code, when analyzed in OllyDbg, had numerous 

segments that checked if it was being monitored.  On detection of a debugger, it would 

terminate prematurely.  The flow charts of the anti-forensics are presented below. 

 

Flow chart 1 shows the initialization phase of the specimen.  At the start it 

gathered a handle to itself and the command line parameters and passed them to 

WinMain28 function. 

 

 

 

 

 

 

                                                
28http://msdn.microsoft.com/en-us/library/windows/desktop/ms633559%28v=vs.85%29.aspx 

 

Diagram 24: Flow chart 1 



 
Using IOC in Malware Forensics 27 

 

Hun-Ya Lock, hylock@gmail.com   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In WinMain, the specimen launched into several anti-forensics strategies.  Firstly, 

it checked if the username of the machine was “CurrentUser” or contained the strings 

“sandbox”, “honey”, “vmware” or “currentuser”.  These would be easily defeated by 

ensuring that the username of the machine did not contain these strings. 

 

 

Diagram 25: Flow chart 2 



 
Using IOC in Malware Forensics 28 

 

Hun-Ya Lock, hylock@gmail.com   

Next at 0x4013B6, it checked if “dbghelp.dll” and “sbie.dll” DLL (Dynamic Link 

    

Diagram 26: Flow Chart 3 



 
Using IOC in Malware Forensics 29 

 

Hun-Ya Lock, hylock@gmail.com   

Library) were loaded.  This was done through GetModuleHandleA29 at address 

0x4013BE.  The presence of “sbie.dll” would indicate that Sandboxie30 was running and 

it could potentially limit the specimen's malicious functions.  “dbghelp.dll” was used by 

Microsoft DbgHelp library31 and its presence would alert the specimen that it was 

debugged.  If the specimen detected that these DLLs were loaded, it would end its 

process.  Otherwise, it would continue on to function 0x4011E6 where it further checked 

for the presence of debugger through the use of ZwQuerySystemInformation32 and 

ZwQueryInformationProcess33. 

Next at 0x401388, the specimen tested to see if it was ran in a VMware virtual 

machine.  This was done through detecting the presence of the port 5658 (Liston, 2006).  

Liston and Skoudis had describe in their research that VMWare monitors port 5658 when 

EAX was set to the magic number 0x564D5868 (“VMXh”).  If the specimen was ran in 

VMware, EBX would be set to 0x564D5868 after the command “IN EAX, EDX”, else 

there would be an exception.  In order to bypass this anti-forensics measure, “IN EAX, 

EDX” is modified to “NOP” and EBX is setup to the expected value. 

After a series of anti-debugging steps, the specimen then installed itself as a 

Windows Service.  In 0x407331 of WinMain, the specimen setup up the 

SERVICE_TABLE_ENTRY34 which would contain the address to ServiceMain of a 

service.  In this case, ServiceMain of the malicious service was at 0x40A8D3.  At 

0x40A970, CreateServiceA was called to install the service with service name 

“PlugPlayCM” and display name “Plug and Play Manger” which were seemingly 

legitimate service name.  After StartServiceA was called at 0x40AA4C, it would call 

StartServiceCtrlDispatcherA35 at 0x4073FF to connect the main thread of the malicious 

service to service control manager so that it would be the service control dispatcher 

thread for the calling process.   When that specimen was run in a debugger, 

StartServiceCtrlDispatcherA would fail with error code of 

                                                
29http://msdn.microsoft.com/en-us/library/windows/desktop/ms683199%28v=vs.85%29.aspx 
30http://www.sandboxie.com/ 
31http://msdn.microsoft.com/en-us/library/windows/desktop/ms679294%28v=vs.85%29.aspx 
32http://msdn.microsoft.com/en-us/library/windows/desktop/ms725506%28v=vs.85%29.aspx 
33http://msdn.microsoft.com/en-us/library/windows/desktop/ms687420%28v=vs.85%29.aspx 
34http://msdn.microsoft.com/en-us/library/windows/desktop/ms686001%28v=vs.85%29.aspx 
35http://msdn.microsoft.com/en-us/library/windows/desktop/ms686324%28v=vs.85%29.aspx 



 
Using IOC in Malware Forensics 30 

 

Hun-Ya Lock, hylock@gmail.com   

ERROR_FAILED_SERVICE_CONTROLLER_CONNECT. This was because OllyDbg 

ran the specimen as a console program rather than a service.  After calling 

StartServiceCrtlDispatcherA, the process would end.  If the PlugPlayCM service had 

been started properly, the specimen would continue its activities in the service. 

In order to continue debugging the specimen, it was executed without the use of a 

debugger.  All the anti-forensics techniques used by the specimen would not be effective 

as it was not debugged and not ran in VMware.  In this case, PlugPlayCM service could 

be started.  At this point, OllyDbg could then be launched and attached to the running 

process “serivces.exe”.   

In OllyDbg, the process would pause at ntdll.DbgBreakPoint.  By reviewing the 

Threads window in OllyDbg, the following was observed. 

“serivces.exe” spawned 3 threads with starting addresses at 0x40740C, 

0x40AA6D and 0x410246. 

Thread 0x4AA6D 

Thread 0x40AA6D was created in ServiceMain (0x40A8D3) at address 

0x40A94E.  The diagram below showed the code snippet.  The create flag 

(dwCreateFlags) was set to 0 this would cause the thread to run immediately after 

creation.  The register ESI is set to 0 previously at 0x40A8D8 with the command “XOR. 

ESI. ESI”. 

Diagram 27: Threads spawned by serivces.exe 



 
Using IOC in Malware Forensics 31 

 

Hun-Ya Lock, hylock@gmail.com   

The main function of thread 0x40AA6D was to create and start thread 0x40740C.  

Similarly to the ServiceMain, the create flags (dwCreateFlags) is set to 0 at 0x40AA74 

and so the thread 0x40740C would run immediately after creation. 

  

Thread 0x40740C 

 Thread 0x40740C, contains several notable functions.  First, a mutex 

“gregHDGHRTEfghRTHNNBMJKR!!EADSVXDFSWEdhstoio4io34o432m19” was 

created at 0x407418.  If the mutex already existed], it would indicate that another 

instance of the malware was already running, the process would exit. 

 

Diagram 29: Thread 0x40AA6D 

 

Diagram 28: Start thread 0x40AA6D 



 
Using IOC in Malware Forensics 32 

 

Hun-Ya Lock, hylock@gmail.com   

At 0x0x4074DD, the thread called WSAStartup requesting to use winsock version 

2.2.  If it failed, the process will exit. 

At 0x407519, thread 0410246 is created. 

Then it makes an interesting call to 0x40A391, where several IRC commands and 

IRC server numerics are listed.  This further confirmed that the specimen is an IRCbot. 

Diagram 30: Thread 0x40740C 

Diagram 32: Thread 0x40740C 

 

Diagram 31: Thread 0x40740C 



 
Using IOC in Malware Forensics 33 

 

Hun-Ya Lock, hylock@gmail.com   

The IRC-related terms are listed in Appendix 6. 

Function 0x40A391, is a simple function that calls 0x4077F2 multiple times, each 

with a different set of parameters.  The parameters are a pointer to function and an IRC 

command.  The functions associated with the commands “PRIVMSG” and “TOPIC” are 

0x409D43 and 0x40A08E respectively.  Both functions would make calls to 0x4014B0.  

The process flow from ServiceMain to 0x40AA6D to 0x40740C to 0x40A391 and finally 

down to 0x4014B0 is illustrated below. 

Diagram 33: Function @ 0x40A391 



 
Using IOC in Malware Forensics 34 

 

Hun-Ya Lock, hylock@gmail.com   

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Function 0x4014B0 contained a list of IRC commands which is documented in 

Appendix 6.  The list of commands suggests that the specimen had Denial of Service 

(DOS) capabilities.  Each IRC command was paired with its own thread which would be 

launched when the command was issued. 

Taking command “trollflood” as an example, it would launch thread 0x4153D3.  

The most significant function in this thread is a loop segment starting at 0x4154FC that 

would continuously open a socket and connect to a random location. 

 

 

Diagram 34: Flow chart of main function calls 



 
Using IOC in Malware Forensics 35 

 

Hun-Ya Lock, hylock@gmail.com   

 

 

 
 
 
 

 

 

 

Thread 0x40740C 

 

Thread 0410246 is started by Thread 0x40740C. 

 

 

 

 

SMFIO 3: Profiling infection 

 The bulk of the investigation effort was spent in static analysis.  The mutex, 

strings and malware capabilities discovered would be useful for profiling the attack.  

From the analysis, the specimen is capable of : 

• performing anti-forensics strategies. 

• accessing sensitive system settings like registry, system folders. 

• contacting an external C&C server. 

• performing DOS attacks 

• downloading external data 

The proposed OpenIOC indicators are listed below. 

Diagram 35: trollflood function 



 
Using IOC in Malware Forensics 36 

 

Hun-Ya Lock, hylock@gmail.com   

These indicators only described what can be observed from an infected machine 

but not the capabilities and damage potential of the malware. 

Diagram 36: OpenIOC for static analysis 



 
Using IOC in Malware Forensics 37 

 

Hun-Ya Lock, hylock@gmail.com   

5. Conclusion 

The Simplified Malware Forensics Investigation Objectives was used when 

performing malware analysis and the results were documented in OpenIOC.   The result 

is presented in Appendix 7.  This provides a reliable and consistent manner of reporting 

the infection.  IT systems monitoring tools can be configured with the OpenIOC 

indicators.  For example, a OpenIOC to yara36 conversion might look like this. 

 

 

 

 

                                                
36http://code.google.com/p/yara-project/ 

Diagram 37: OpenIOC to yara conversion 



 
Using IOC in Malware Forensics 38 

 

Hun-Ya Lock, hylock@gmail.com   

A OpenIOC to snort37 conversion might look like this. 

However the OpenIOC indicators proposed so far, only describes the low-level 

file, host and network attributes but lack the syntax to provide the semantics behind the 

attributes.  A simple way to overcome this is to include an attribute for describing the 

objective of the set of indicators. 

To conclude, OpenIOC provides a simple and effective way of describing a 

malware infection.  As its syntax is based on XML, it can be easily transformed to a 

format that can be used by IT monitoring tools like yara and snort.  However, the current 

OpenIOC lacks the ability to provide semantics behind the attributes but this can be 

overcome by providing additional attributes to the XML syntax. 

                                                
37http://www.snort.org 

Diagram 39: Modified OpenIOC indicators 

Diagram 38: OpenIOC to snort conversion 



 
Using IOC in Malware Forensics 39 

 

Hun-Ya Lock, hylock@gmail.com   

6. References 

Aquilina, J. M., Malin, C. H., & Casey, E. (2010). Malware forensic field guide for 

windows systems, digital forensics field guides. New York: Syngress. 

 

Barnum, S. (2011, Nov. 2). Cyber Observable eXpression (CybOX) Use Cases. Retrieved 

from 

http://cybox.mitre.org/documents/Cyber%20Observable%20eXpression%20(Cyb

OX)%20Use%20Cases%20-%20(ITSAC%202011)%20-

%20Sean%20Barnum.pdf 

 

Casey, E. (2011). Handbook of digital forensics and investigation. Burlington: Academic 

Press. 

 

JSI Tip 0324 - Registry entries for services (1997, Nov 24). Retrieved from 

http://www.windowsitpro.com/article/registry2/jsi-tip-0324-registry-entries-for-

services-. 

 

Kirillov, I. (2012, Febuary 08). An introduction to the malware attribute enumeration and 

characterization white paper. Retrieved from 

https://maec.mitre.org/about/docs/Introduction_to_MAEC_white_paper.pdf 

 

Leydon, John. (2012, September 20). Sophos antivirus classifies its own update kit as 

malware. Retrieved from 

http://www.theregister.co.uk/2012/09/20/sophos_auto_immune_update_chaos/. 

 

Liston,  Tom. (2006). On the cutting edge: thwarting virtual machine detection. Retrieved 

from http://handlers.sans.org/tliston/ThwartingVMDetection_Liston_Skoudis.pdf 

 

Murray,  Jim. (2012, October 16). Analysis of the incident handling six-step process . 

Retrieved from http://www.giac.org/cissp-papers/17.pdf 

 



 
Using IOC in Malware Forensics 40 

 

Hun-Ya Lock, hylock@gmail.com   

 

Paxson, V. (2011, April 19). Viruses and worms. Retrieved from 

http://inst.eecs.berkeley.edu/~cs161/sp11/slides/4.19.virus-worms.pdf 

 

Collake, J. (2005, April 25).   PECompact v2.0 Anti-Virus Interoperability Technical 

Document.  Retrieved from http://www.bitsum.com/pec2av.htm 

 

Sophisticated indicators for the modern threat landscape: an instruction to OpenIOC 

(2011). Retrieved from 

http://openioc.org/resources/An_Introduction_to_OpenIOC.pdf 

 



 
Using IOC in Malware Forensics 41 

 

Hun-Ya Lock, hylock@gmail.com   

Appendix 1: Analysis Tools 

Windows 7 

• CaptureBat 

• IDA 

• OllyDbg 

• PEBrowse 

• PEiD 

• Regshot 

• Sysinternals Process Explorer 

• Sysinternals Process Monitor 

 

REMnux 

• fakedns 

• ircd server 

• wireshark 

 



 
Using IOC in Malware Forensics 42 

 

Hun-Ya Lock, hylock@gmail.com   

Appendix 2: IOC Terms 

The full list of IOC indicator terms retrieved on 10 Oct 2012 are listed below 

(http://openioc.org/terms/Current.iocterms): 

Indicator Name 

ArpEntryItem 

CookieHistory 

DiskItem 

DnsEntryItem 

DriverItem 

Email 

EventLogItem 

FileDownloadHistoryItem 

FileItem 

FormHistoryItem 

HiveItem 

HookItem 

ModuleItem 

Network 

PortItem 

PrefetchItem 



 
Using IOC in Malware Forensics 43 

 

Hun-Ya Lock, hylock@gmail.com   

ProcessItem 

RegistryItem 

RouteEntryItem 

ServiceItem 

SystemInfoItem 

SystemRestoreItem 

TaskItem 

UrlHistoryItem 

UserItem 

VolumnItem 

 

 



 
Using IOC in Malware Forensics 44 

 

Hun-Ya Lock, hylock@gmail.com   

Appendix 3: Zeus IOC 
<?xml version="1.0" encoding="us-ascii"?> 

<ioc xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema" 

id="6d2a1b03-b216-4cd8-9a9e-8827af6ebf93" last-modified="2011-10-28T19:28:20" 

xmlns="http://schemas.mandiant.com/2010/ioc"> 

  <short_description>Zeus</short_description> 

  <description>Finds Zeus variants, twexts, sdra64, ntos</description> 

  <keywords /> 

  <authored_by>Mandiant</authored_by> 

  <authored_date>0001-01-01T00:00:00</authored_date> 

  <links /> 

  <definition> 

    <Indicator operator="OR" id="9c8df971-32a8-4ede-8a3a-c5cb2c1439c6"> 

      <Indicator operator="AND" id="0781258f-6960-4da5-97a0-ec35fb403cac"> 

        <IndicatorItem id="50455b63-35bf-4efa-9f06-aeba2980f80a" condition="contains"> 

          <Context document="ProcessItem" search="ProcessItem/name" type="mir" /> 

          <Content type="string">winlogon.exe</Content> 

        </IndicatorItem> 

        <IndicatorItem id="b05d9b40-0528-461f-9721-e31d5651abdc" condition="contains"> 

          <Context document="ProcessItem" search="ProcessItem/HandleList/Handle/Type" type="mir" /> 

          <Content type="string">File</Content> 

        </IndicatorItem> 

        <Indicator operator="OR" id="67505775-6577-43b2-bccd-74603223180a"> 

          <IndicatorItem id="c5ae706f-c032-4da7-8acd-4523f1dae9f6" condition="contains"> 

            <Context document="ProcessItem" search="ProcessItem/HandleList/Handle/Name" type="mir" /> 

            <Content type="string">system32\sdra64.exe</Content> 

          </IndicatorItem> 

          <IndicatorItem id="25ff12a7-665b-4e45-8b0f-6e5ca7b95801" condition="contains"> 

            <Context document="ProcessItem" search="ProcessItem/HandleList/Handle/Name" type="mir" /> 

            <Content type="string">system32\twain_32\user.ds</Content> 

          </IndicatorItem> 

          <IndicatorItem id="fea11706-9ebe-469b-b30a-4047cfb7436b" condition="contains"> 

            <Context document="ProcessItem" search="ProcessItem/HandleList/Handle/Type" type="mir" /> 

            <Content type="string">\WINDOWS\system32\twext.exe</Content> 

          </IndicatorItem> 

          <IndicatorItem id="94ac992c-8d6d-441f-bfc4-5235f9b09af8" condition="contains"> 

            <Context document="ProcessItem" search="ProcessItem/HandleList/Handle/Name" type="mir" /> 

            <Content type="string">system32\twain32\local.ds</Content> 

          </IndicatorItem> 

          <IndicatorItem id="bc12f44e-7d93-47ea-9cc9-86a2beeaa04c" condition="contains"> 

            <Context document="ProcessItem" search="ProcessItem/HandleList/Handle/Name" type="mir" /> 

            <Content type="string">system32\twext.exe</Content> 

          </IndicatorItem> 

          <IndicatorItem id="1c3f8902-d4e2-443a-a407-15be3951bef9" condition="contains"> 

            <Context document="ProcessItem" search="ProcessItem/HandleList/Handle/Name" type="mir" /> 

            <Content type="string">system32\lowsec\user.ds</Content> 

          </IndicatorItem> 

          <IndicatorItem id="7fab12d1-67ed-4149-b46a-ec50fc622bee" condition="contains"> 

            <Context document="ProcessItem" search="ProcessItem/HandleList/Handle/Name" type="mir" /> 

            <Content type="string">system32\lowsec\local.ds</Content> 

          </IndicatorItem> 

        </Indicator> 

      </Indicator> 

      <Indicator operator="AND" id="9f7a5703-8a26-45cf-b801-1c13f0f15d40"> 

        <IndicatorItem id="cf77d82f-0ac9-4c81-af0b-d634f71525b5" condition="contains"> 

          <Context document="ProcessItem" search="ProcessItem/HandleList/Handle/Type" type="mir" /> 

          <Content type="string">Mutant</Content> 

        </IndicatorItem> 

        <Indicator operator="OR" id="83f72cf7-6399-4620-b735-d08ce23ba517"> 



 
Using IOC in Malware Forensics 45 

 

Hun-Ya Lock, hylock@gmail.com   

          <IndicatorItem id="a1250d55-cd63-46cd-9436-e1741f5f42c7" condition="contains"> 

            <Context document="ProcessItem" search="ProcessItem/HandleList/Handle/Name" type="mir" /> 

            <Content type="string">__SYSTEM__</Content> 

          </IndicatorItem> 

          <IndicatorItem id="e033b865-95ba-44ab-baa5-3b1e8e5f348c" condition="contains"> 

            <Context document="ProcessItem" search="ProcessItem/HandleList/Handle/Name" type="mir" /> 

            <Content type="string">_AVIRA_</Content> 

          </IndicatorItem> 

        </Indicator> 

      </Indicator> 

    </Indicator> 

  </definition> 

</ioc> 

 



 
Using IOC in Malware Forensics 46 

 

Hun-Ya Lock, hylock@gmail.com   

Appendix 4: a.bat 

 
 

 
 

Diagram 40: A copy of a.bat 



 
Using IOC in Malware Forensics 47 

 

Hun-Ya Lock, hylock@gmail.com   

Appendix  5 : De-obfuscating PECompact 

 
 

PECompact uses SEH (Structured Exception Handling) mechanism to hide the 

OEP of the malicious code.  The OEP of the obfuscated code contains very few lines of 

code.  In x86 machines, FS:[0]38 points to the head of the EXCEPTION_RECORD list.  

At 0x40100D, the address 0x478CB0 is move to FS:[0].  The “XOR EAX, EAX” 

command set the value of EAX register to 0.  An exception is generated at 0x401016, 

when there is a move to address DS:[EAX].  The key press “Shift+F9” will return control 

to address 0x478CB0. 

                                                
38http://msdn.microsoft.com/en-us/library/ms253960(v=vs.80).aspx 

 

Diagram 41: OEP of obfuscated code 



 
Using IOC in Malware Forensics 48 

 

Hun-Ya Lock, hylock@gmail.com   

0x478CB0 contains the de-obfuscation routines which ends at 0x0x478D7D with 

a “JMP EAX” which jumps to the OEP at 0x0415F64. 

 

Diagram 42: JMP to OEP 



 
Using IOC in Malware Forensics 49 

 

Hun-Ya Lock, hylock@gmail.com   

Appendix 6: IRC & Malicious Commands 

 

IRC Term39 Remarks 

ERROR Use by servers to report serious errors to 

operators. 

PRIVMSG Use to send private messages between 

users. 

KICK Use to forcibly remove a user from a 

channel. 

TOPIC Use to change or view the topic of a 

channel. 

001 Send to all clients when a connection is 

established. 

332 Server reply  to a TOPIC message.  

Indicates that a topic is set. 

366 Server returned at the end of a NAMES list 

. 

005 Server reply to a MAP command. The 

reply will contain a string showing the 

relative position of a server. 

376 Server reply to a MOTD (Message Of The 

Day) request.  This is sent after message of 

the day string is sent. 

422 Server reply is a MOTD file is missing. 

433 Server reply when the user is being invited 

into a channel that it is already on. 

Table 6: IRC Command at 0x40A391 

 

Strings Remarks 

l.in Change to channel #2k38 

log.in Change to channel #2k38 

l.out - 

lo - 

rmcc.die Delete service “PlugPlayCM” and release 

                                                
39https://tools.ietf.org/html/rfc1459#section-4.1.4 



 
Using IOC in Malware Forensics 50 

 

Hun-Ya Lock, hylock@gmail.com   

Strings Remarks 

mutex 

rmcc.now Delete service “PlugPlayCM” and release 

mutex 

advscan - 

asc - 

threads - 

t - 

ipcc.wget - 

ipcc.download - 

r0flzcc.updt - 

r4wrcc.nb - 

tcp - 

tfn2ksyn - 

akudp - 

aksyn - 

sky - 

ddosstop - 

bandwidthflood - 

udpx - 

udp - 

ping - 

trollflood Launch thread 0x4153D3 which would 

continuously open a socket and connect to 

a random location. 

ccflood - 

ccgetflood - 

tcpsyn - 

visit - 

akicmp - 

patcher - 



 
Using IOC in Malware Forensics 51 

 

Hun-Ya Lock, hylock@gmail.com   

Strings Remarks 

opentem - 

Table 7: Malicious commands at 0x4014B0 



 
Using IOC in Malware Forensics 52 

 

Hun-Ya Lock, hylock@gmail.com   

Appendix 7: IOC Terms 

<?xml version="1.0" encoding="us-ascii"?> 

<ioc xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

xmlns:xsd="http://www.w3.org/2001/XMLSchema" id="26184e25-a226-442a-9a0c-81f553afd7ea" 

last-modified="2012-12-01T23:39:44" xmlns="http://schemas.mandiant.com/2010/ioc"> 

  <short_description>ada</short_description> 

  <authored_by>lhy</authored_by> 

  <authored_date>2012-10-25T08:40:38</authored_date> 

  <links /> 

  <definition> 

    <Indicator operator="OR" id="1eaa7fa8-ac8a-430b-96bc-a579064999cb"> 

      <Indicator operator="AND" id="2e271d9c-632c-4c27-9428-ae5a3377aa5f"> 

        <IndicatorItem id="b74ce978-280c-4d31-9b78-5442b826305d" condition="contains"> 

          <Context document="FileItem" search="FileItem/FullPath" type="mir" /> 

          <Content type="string">c:\Windows\System32</Content> 

        </IndicatorItem> 

        <IndicatorItem id="048e5e8b-a2c3-4fa6-b9f7-604302f3a85f" condition="contains"> 

          <Context document="FileItem" search="FileItem/FileName" type="mir" /> 

          <Content type="string">serives.exe</Content> 

        </IndicatorItem> 

        <IndicatorItem id="4edb0110-44be-4ce5-8b87-bf92e1e16ca3" condition="is"> 

          <Context document="FileItem" search="FileItem/Md5sum" type="mir" /> 

          <Content type="md5">aada169a1cbd822e1402991e6a9c9238</Content> 

        </IndicatorItem> 

      </Indicator> 

      <Indicator operator="AND" id="f2d259ea-351c-4cb1-9b46-c879da03755a"> 

        <IndicatorItem id="b714f6f0-8e01-453a-8816-7b7a1d1a0a27" condition="contains"> 

          <Context document="RegistryItem" search="RegistryItem/KeyPath" type="mir" /> 

          <Content 

type="string">HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\SharedAccess</Conte

nt> 

        </IndicatorItem> 

        <IndicatorItem id="082069e4-f589-48e9-989b-d1c1c39f0dbd" condition="contains"> 

          <Context document="RegistryItem" search="RegistryItem/ValueName" type="mir" 

/> 

          <Content type="string">Start</Content> 

        </IndicatorItem> 

        <IndicatorItem id="4ce571ae-f7ea-45c6-901c-396537eb4d45" condition="contains"> 

          <Context document="RegistryItem" search="RegistryItem/Value" type="mir" /> 

          <Content type="string">2</Content> 

        </IndicatorItem> 

      </Indicator> 

      <Indicator operator="AND" id="f71f0662-bd9c-4f13-ac39-a0454655f565"> 

        <IndicatorItem id="e9773c12-d05e-4097-aa44-817e5a81a6f1" condition="contains"> 

          <Context document="RegistryItem" search="RegistryItem/KeyPath" type="mir" /> 

          <Content 

type="string">HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\SharedAccess\Parame



 
Using IOC in Malware Forensics 53 

 

Hun-Ya Lock, hylock@gmail.com   

ters\FirewallPolicy\StandardProfile</Content> 

        </IndicatorItem> 

        <IndicatorItem id="3f269fac-ce74-4629-810e-4aa7f5ac8d4f" condition="contains"> 

          <Context document="RegistryItem" search="RegistryItem/ValueName" type="mir" 

/> 

          <Content type="string">EnableFirewall</Content> 

        </IndicatorItem> 

        <IndicatorItem id="39a1a564-0d94-40a4-a450-bc354d4a27ae" condition="contains"> 

          <Context document="RegistryItem" search="RegistryItem/Value" type="mir" /> 

          <Content type="string">0</Content> 

        </IndicatorItem> 

      </Indicator> 

      <Indicator operator="AND" id="4c05075e-1345-4ba3-a349-ee78e599872b"> 

        <IndicatorItem id="1f6b857e-6f78-4843-ae58-3f2c511aea8c" condition="contains"> 

          <Context document="RegistryItem" search="RegistryItem/Value" type="mir" /> 

          <Content type="string">Start</Content> 

        </IndicatorItem> 

        <IndicatorItem id="f8da3d69-191e-4e15-9ed7-8f2aa9b13add" condition="contains"> 

          <Context document="RegistryItem" search="RegistryItem/Value" type="mir" /> 

          <Content type="string">4</Content> 

        </IndicatorItem> 

        <Indicator operator="AND" id="3464b433-cfb0-4c61-ae98-e29b5de2a37c"> 

          <IndicatorItem id="c2c58f87-7273-449e-97ae-54b1776c7a76" 

condition="contains"> 

            <Context document="RegistryItem" search="RegistryItem/KeyPath" type="mir" 

/> 

            <Content 

type="string">HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\wuauserv</Content> 

          </IndicatorItem> 

          <IndicatorItem id="5b872ff7-29b6-4e87-bc25-81912dc66ce0" 

condition="contains"> 

            <Context document="RegistryItem" search="RegistryItem/KeyPath" type="mir" 

/> 

            <Content 

type="string">HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001\Services\wscsvc</Content> 

          </IndicatorItem> 

        </Indicator> 

      </Indicator> 

      <Indicator operator="AND" id="72e4fbfd-a3cc-4e29-86d5-3ebfcfe101f6"> 

        <IndicatorItem id="f7d42cbd-7b03-4734-bc97-e400b57d5fe5" condition="contains"> 

          <Context document="RegistryItem" search="RegistryItem/Path" type="mir" /> 

          <Content 

type="string">HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters</C

ontent> 

        </IndicatorItem> 

        <Indicator operator="AND" id="39ff1ac5-2bf5-4c7e-b502-43249890ad75"> 

          <IndicatorItem id="ebe9f693-1844-4dcc-9efe-f7319c934928" 

condition="contains"> 

            <Context document="RegistryItem" search="RegistryItem/ValueName" 



 
Using IOC in Malware Forensics 54 

 

Hun-Ya Lock, hylock@gmail.com   

type="mir" /> 

            <Content type="string">MaxFreeTcbs</Content> 

          </IndicatorItem> 

          <IndicatorItem id="d3b872d5-a2dd-4eb4-a456-04a329d7e6e6" 

condition="contains"> 

            <Context document="RegistryItem" search="RegistryItem/Value" type="mir" /> 

            <Content type="string">0x7d0</Content> 

          </IndicatorItem> 

        </Indicator> 

        <Indicator operator="AND" id="92a30677-692d-4bd5-9040-40a4fca4d11f"> 

          <IndicatorItem id="61672e9b-960b-456e-a642-cc934c9678c8" 

condition="contains"> 

            <Context document="RegistryItem" search="RegistryItem/ValueName" 

type="mir" /> 

            <Content type="string">MaxHashTableSize</Content> 

          </IndicatorItem> 

          <IndicatorItem id="72a9e94c-af1a-4987-bced-97bced06986b" 

condition="contains"> 

            <Context document="RegistryItem" search="RegistryItem/Value" type="mir" /> 

            <Content type="string">0x800</Content> 

          </IndicatorItem> 

        </Indicator> 

        <Indicator operator="AND" id="95fa6cf2-edb6-457c-a5b8-81c44f4b4c04"> 

          <IndicatorItem id="5df0d18d-6c39-40fb-b634-b43a9e2f7113" 

condition="contains"> 

            <Context document="RegistryItem" search="RegistryItem/ValueName" 

type="mir" /> 

            <Content type="string">TcpTimedWaitDelay</Content> 

          </IndicatorItem> 

          <IndicatorItem id="4382586f-8991-49f6-bf06-652869c698f3" 

condition="contains"> 

            <Context document="RegistryItem" search="RegistryItem/Value" type="mir" /> 

            <Content type="string">0x1e</Content> 

          </IndicatorItem> 

        </Indicator> 

        <Indicator operator="AND" id="cfa20067-7e94-4367-8cf1-d2aa70b587d1"> 

          <IndicatorItem id="0caf1f49-2348-444e-9db0-82e139bfa73f" 

condition="contains"> 

            <Context document="RegistryItem" search="RegistryItem/ValueName" 

type="mir" /> 

            <Content type="string">MaxUserPort</Content> 

          </IndicatorItem> 

          <IndicatorItem id="b9372dcd-5ca3-4cbe-b259-8e652dd97b1e" 

condition="contains"> 

            <Context document="RegistryItem" search="RegistryItem/Value" type="mir" /> 

            <Content type="string">0xf618</Content> 

          </IndicatorItem> 

        </Indicator> 

      </Indicator> 



 
Using IOC in Malware Forensics 55 

 

Hun-Ya Lock, hylock@gmail.com   

      <Indicator operator="AND" id="7eb009b2-aa52-4553-8f96-d6ab93a504d3"> 

        <IndicatorItem id="35dc6746-f204-45ba-ae7e-71fd98b65f4e" condition="contains"> 

          <Context document="ServiceItem" search="ServiceItem/name" type="mir" /> 

          <Content type="string">Security Center</Content> 

        </IndicatorItem> 

        <IndicatorItem id="d0ca54fa-8120-4401-a438-d892ef62a465" condition="contains"> 

          <Context document="ServiceItem" search="ServiceItem/name" type="mir" /> 

          <Content type="string">PlugPlayCM</Content> 

        </IndicatorItem> 

      </Indicator> 

      <Indicator operator="AND" id="28307beb-b70d-43fd-938d-40bff22979c9"> 

        <IndicatorItem id="691fc3fb-49b8-4778-9243-0b1695778498" condition="contains"> 

          <Context document="ProcessItem" search="ProcessItem/name" type="mir" /> 

          <Content type="string">serivces.exe</Content> 

        </IndicatorItem> 

      </Indicator> 

      <Indicator operator="OR" id="62c59ef1-6804-4494-a438-f5b77f69e11d"> 

        <IndicatorItem id="4c852419-e4df-44cd-b1cb-67e5feb7bb59" condition="contains"> 

          <Context document="Network" search="Network/String" type="network" /> 

          <Content type="string">blue3</Content> 

        </IndicatorItem> 

        <IndicatorItem id="60128b77-d1fc-4064-b078-8a6a16f9a5b2" condition="isnot"> 

          <Context document="Network" search="Network/URI" type="network" /> 

          <Content type="string">http://checkipdyndns.org</Content> 

        </IndicatorItem> 

        <IndicatorItem id="0b7289b2-2af3-4891-99c8-00a12b6632c7" condition="is"> 

          <Context document="Network" search="Network/URI" type="network" /> 

          <Content type="string">http://www.ip138.com</Content> 

        </IndicatorItem> 

        <Indicator operator="AND" id="3cbbad62-26aa-48c1-b83f-5f16095020b8"> 

          <IndicatorItem id="37f2aa9f-8d23-4ed4-b79a-e168ac3286ea" 

condition="contains"> 

            <Context document="PortItem" search="PortItem/remoteIP" type="mir" /> 

            <Content type="IP">60.10.179.100</Content> 

          </IndicatorItem> 

          <IndicatorItem id="a13490ca-2e46-46f5-9410-c4f1256db815" 

condition="contains"> 

            <Context document="PortItem" search="PortItem/remotePort" type="mir" /> 

            <Content type="string">8680 ? 8689</Content> 

          </IndicatorItem> 

        </Indicator> 

      </Indicator> 

      <Indicator operator="AND" id="0b5fd0cd-c37a-43f1-b8ba-07fb6795e839"> 

        <IndicatorItem id="37655418-7064-4c95-b18d-5137e70a5308" condition="contains"> 

          <Context document="ProcessItem" search="ProcessItem/HandleList/Handle/Name" 

type="mir" /> 

          <Content 

type="string">gregHDGHRTEfghRTHNNBMJKR!!EADSVXDFSWEdhstoio4io34o432m19</Content> 

        </IndicatorItem> 



 
Using IOC in Malware Forensics 56 

 

Hun-Ya Lock, hylock@gmail.com   

      </Indicator> 

      <Indicator operator="OR" id="62cec0f3-e5f9-4bb1-b496-5cb63e136785"> 

        <Indicator operator="OR" id="dba4faa1-f463-4649-ae13-9264a567c773"> 

          <IndicatorItem id="08257809-514d-4eb3-b034-85f158102d07" 

condition="contains"> 

            <Context document="ProcessItem" search="ProcessItem/StringList/string" 

type="mir" /> 

            <Content 

type="string">PRIVMSG,KICK,TOPIC,001,005,332,366,376,422,433</Content> 

          </IndicatorItem> 

          <IndicatorItem id="1653ed5a-7c3d-40e5-bf75-d2e078b03564" 

condition="contains"> 

            <Context document="ProcessItem" search="ProcessItem/StringList/string" 

type="mir" /> 

            <Content 

type="string">l.in,log.in,l.out,lo,rmcc.die,rmcc.now,advscan,asc</Content> 

          </IndicatorItem> 

   <IndicatorItem id="1653ed5a-7c3d-40e5-bf75-d2e078b03564" 

condition="contains"> 

            <Context document="ProcessItem" search="ProcessItem/StringList/string" 

type="mir" /> 

            <Content 

type="string">threads,t,ipcc.wget,ipcc.download,r0flzcc.updt,r4wrcc.nb</Content> 

          </IndicatorItem> 

     <IndicatorItem id="1653ed5a-7c3d-40e5-bf75-d2e078b03564" 

condition="contains"> 

            <Context document="ProcessItem" search="ProcessItem/StringList/string" 

type="mir" /> 

            <Content 

type="string">trollflood,ccflood,ccgetflood,tcpsyn,visit,akicmp,patcher,opentem</Conte

nt> 

          </IndicatorItem> 

   <IndicatorItem id="1653ed5a-7c3d-40e5-bf75-d2e078b03564" 

condition="contains"> 

            <Context document="ProcessItem" search="ProcessItem/StringList/string" 

type="mir" /> 

            <Content 

type="string">tcp,tfn2ksyn,akudp,aksyn,sky,ddosstop,bandwidthflood,udpx,udp,ping</Cont

ent> 

          </IndicatorItem> 

        </Indicator> 

      </Indicator> 

    </Indicator> 

  </definition> 

</ioc> 

 
 
 



Last Updated: April 8th, 2014

Upcoming Training

SANS Security West 2014 San Diego, CA May 08, 2014 - May 17, 2014 Live Event

Mentor Session - FOR 610 Columbia, MD May 21, 2014 - Jul 23, 2014 Mentor

Digital Forensics & Incident Response Summit Austin, TX Jun 03, 2014 - Jun 10, 2014 Live Event

Community SANS Ottawa Ottawa, ON Jun 16, 2014 - Jun 21, 2014 Community SANS

SANSFIRE 2014 Baltimore, MD Jun 21, 2014 - Jun 30, 2014 Live Event

SANS vLive - FOR610: Reverse-Engineering Malware: Malware
Analysis Tools and Techniques

FOR610 - 201407, Jul 14, 2014 - Aug 20, 2014 vLive

SANS Virginia Beach 2014 Virginia Beach, VA Aug 18, 2014 - Aug 29, 2014 Live Event

SANS Baltimore 2014 Baltimore, MD Sep 22, 2014 - Sep 27, 2014 Live Event

SANS DFIR Prague 2014 Prague, Czech Republic Sep 29, 2014 - Oct 11, 2014 Live Event

SANS vLive - FOR610: Reverse-Engineering Malware: Malware
Analysis Tools and Techniques

FOR610 - 201410, Oct 13, 2014 - Nov 19, 2014 vLive

Community SANS Paris @ HSC - FOR610 (in French) Paris, France Nov 24, 2014 - Nov 28, 2014 Community SANS

SANS OnDemand Online Anytime Self Paced

SANS SelfStudy Books & MP3s Only Anytime Self Paced


