GIAC

CERTIFICATIONS

Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?

Check out the list of upcoming events offering

"Reverse-Engineering Malware: Malware Analysis Tools and Techniques (Foren
at http://www.giac.org/registration/grem

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/grem

Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?

Check out the list of upcoming events offering

"Reverse-Engineering Malware: Malware Analysis Tools and Techniques (Fore
at http://www.giac.org/registration/grem

Using IOC (Indicators of Compromise) in
Malware Forensics

GIAC (GREM) Gold Certification

Author: Hun-Ya Lock, hylock@gmail.com
Advisor: Adam Kliarsky
Accepted: February 21st 2013

Abstract

Currently there is a multitude of information available on malware analysis. Much of
it describes the tools and techniques used in the analysis but not in the reporting of
the results. However in the combat of malware, the reporting of the results is as
important as the results itself. If the results can be reported in a consistent, well-
structured manner that is easily understood by man and machine, then it becomes
possible to automate some of the processes in the detection, prevention and
reporting of malware infections. This paper would study the benefits of using
OpenlOC framework as a common syntax to describe the results of malware analysis.

[VERSION June 2012]

Using 10C in Malware Forensics @ 2

1. Introduction

1.1 Enterprise Malware Management

In the IT operations of an enterprise, malware forensics is often used to support
the investigations of incidents. This could be due to end-user ignorance and carelessness,
like drive-by-downloads as a result of careless web access, mistakes and oversights by
administrators and their tools (Leydon, 2012) as well as Advanced Persistence Threat
(APT) attacks. The objective of incident handling is to manage and control faults and
disruptions to IT services. It includes both reactive and proactive measure. Table 1 lists
the 6-Step process in incident handling (Murray, 2012) as describe by SANS.

Incident Handling Step Type of Measure
1. Preparation Proactive measure
2. Identification Reactive measure
3. Containment Reactive measure
4. Eradication Reactive measure
5. Recovery Reactive measure
6. Lessons Learned Proactive measure

Table 1: SANS 6-steps process in incident handling (Murray, 2012)
Malware forensics falls under step 6. In the event of a new variant of malware,
malware forensics can also take place in steps 3 to 5. Aquilina et. al. describes the

objectives of malware investigations as follows:

Malware Forensics Investigation Objectives

Discover nature and purpose of program.

Determine the infection mechanism.

Determine how program interact with the host system.

Determine how program interact with network.

SRR A A

Determine how the attacker interact with the program.

Hun-Ya Lock, hylock@gmailcom

Using 10C in Malware Forensics @ 3

Malware Forensics Investigation Objectives

Determine the profile and sophistication level of the attack.

Determine the extent of infection and compromise of the host machine and
beyond.

Table 2: Malware Forensics Investigation Objectives (Aquilina, Malin & Casey, 2010)
The purpose of the investigation is to characterize malware in terms of its
attributes (static) and behaviors (dynamic) (Kirillov, 2012). This leads to 2 broad
approaches towards malware forensics investigation: static and dynamic analysis. By
performing static and dynamic analysis, objectives 3 and 4 would be met respectively.
These describe the most basic characteristics of a malware. The rest of the objectives (1,

2 and 5 to 7) can be derived from these low-level attributes.

1.2. Incident Handling & Malware Forensics
Many enterprises are profit-drive environment and will strive to streamline and
simplify its incident handling process. Hence, malware forensics investigation objectives

in Table 2 can be further simplified to the following:

Simplified Malware Forensics Malware Forensics Investigation
Investigation Objectives (SMFIO) Objectives
1. | Detecting possible infection. 3&4
2. | Preventing further infection. 2
3. | Profiling infection 1,5&6

Table 3: Simplified Malware Investigation Objectives

In the process of malware forensics investigations, the specimen needs to be
analyzed in a forensically sound manner that ensures authenticity of the evidence with an
analysis process that is reliable and repeatable. The investigation must also be well-
supported with documentation (Casey 2011). OpenlOC (Indicators of Compromise) is an
open source framework developed by Mandiant? for sharing threat intelligence
(Sophisticated indicators for the modern threat landscape: an instruction to OpenlOC,

2011). It can be used to improve the reliability and repeatability of the malware forensics

http://mww.mandiant.com/news/release/mandiant-releases-openioc-standard-for-sharing-threat-
intelligence/

Hun-Ya Lock, hylock@gmailcom

Using 10C in Malware Forensics | 4

investigation process by providing a standard documentation syntax. The OpenlOC
framework can be used in the investigation report. As the framework utilizes

XML (eXtensible Markup Langu age) to describe threat information, the derived
OpenlOC indicators can be used as input to various security controls as part of the
“Lessons Learned” phase of SANS 6-step process in incident handling (Tablel). This is
because XML has the advantage of being both machine and human readable.

2. Malware Forensics

2.1. Clean Room Setup
When investigating a malware specimen, it is important to do so in an isolated,
“clean room” environment. The machines and network used in the analysis have to be
isolated away from the production environment to prevent any possibility of malware
outbreak. The behavior of the specimen should be analyzed in a cleanly installed
machine that is not connected to external networks. By setting up a such a baseline

environment, any changes made to the machines' state can be attributed to the malware.

Windows 7 REMnux v3
Client (Linux Distro)
IP: 192.168.56.200 IP: 192.168.56.101

Subnet: 192.168.56.0
Subnet mask: 255.255.255.0

=7

Diagram 1: Malware analysis logical setup

The setup used in this paper takes reference from SANS FOR610 (Reverse-
Engineering Malware: Malware Analysis Tools and Techniques)? training. The diagram
above shows the logical setup. In this setup, the malware will be executed in a Windows

7 SP1 machine. Various analysis tools are used to monitor and analyze its behavior. The

2http://computer-forensics.sans.org/training/course/reverse-engineering-malware-malware-analysis-tools-
techniques#section_with_details_laptop_description

Hun-Ya Lock, hylock@gmailcom

Using 10C in Malware Forensics @ 5

tools on Windows 7 and REMnux® machines are listed in Appendix 1.

The Windows 7 and REMnux machines are attached to the same subnet
(192.168.56.0/24) to allow REMnux to monitor potential network traffic generated by the
malicious specimen. In order to facilitate such a setup, all NIC (Network Interface
Controller) cards on the machines and the switch need to be set to promiscuous mode. In
addition, the Windows 7 client must be restored to its pristine state after each analysis or
even during the analysis to ensure the reliability of the results obtained. The restoration
of the Windows machine can be a time-consuming affair, so in practice this setup would
be implemented in a virtual environment using VMware*, VirtualBox® or even QEMU®.
Besides using a single machine to host the setup, virtualization software has the
advantage of supporting snapshots. Hence, the machine state at various stages of the
investigations can be saved to facilitate rollbacks or the review of analysis results. For

the paper, the visualization software used is VirtualBox version 4.2.4.

2.2. Static Analysis
In static analysis, the specimen’s binary is examined without executing it. The

tools commonly used for static analysis is documented in Appendix 1.

The first step in static analysis is file profiling which is done to obtain an initial
assessment of the specimen’s functionalities. Information such as strings, library
dependencies, meta data and anti-virus signatures can be extracted from the executable
file. The purpose of file profiling is reconnaissance, (Aquilina, Malin & Casey, 2010) in
order to make an intelligent decision on the type of file and how to approach the analysis.
It can also serve to fulfill step 1(detecting possible infection) of Simplified Malware

Forensics Investigations Objectives (SMFIO)

The first step in file profiling is to obtain a cryptographic hash value of the
specimen file, which is its digital fingerprint. This is easily obtained using Microsoft File

Checksum Integrity Verifier (FCIV)’. Next, Linux £i1le command would provide a

3http://zeltser.com/remnux/

“http://www.vmware.com/

Shttps://www.virtualbox.org/

Shttp://www.qemu.org/
"http://www.microsoft.com/en-us/download/details.aspx?id=11533

Hun-Ya Lock, hylock@gmailcom

Using 10C in Malware Forensics | 6

quick overview of the type of file (eg PE executable, DLL, kernel mode driver,
documents, etc). The file's entropy is measured to determine the likelihood of it being
packed and the export and import tables are viewed to get a sense of the functionalities of
the specimen. There are many tools that can accomplish this, such as PEID®, xPELister®
and PEBrowse'°.

2.3. Dynamic Analysis

In dynamic analysis, the behavior of the specimen is observed through its
interaction with the host, as well as external system like web servers, IRC networks.
There are a wide variety of tools available for dynamic analysis and the challenge is to
decide on the most appropriate tools. Assuming that the malware specimen does not
implement any anti-forensics measures, one of the most comprehensive tools to monitor
behavior of a malware is SysInternal's Process Monitor*!. A malware in its most basic
form is essentially a Windows executable that, when run, would manifest as a Windows
process, a child of Windows process or as a part of a process, in the case of code

injection. This running process would interact with the host system in 5 main areas:

Main Areas of Interaction with Host System

Processes

File system

Network activity
API calls

1
2
3. Registry
4
5

Table 4: Main areas of interaction with host (Aquilina, Malin & Casey, 2010)

Process Monitor is able to monitor all of these interactions but often produces a
very noisy set of data. In order to build to filters to remove unnecessary data from
Process Monitor, RegShot*? is used at the start of the investigations to sift through the
noisy windows events and filter out potential malicious activities. RegShot is an open

source Windows registry and file system comparison tool. Windows registry is a system-

8http://peid.has.it/

°http://tuts4you.com/request.php?426
Ohttp://www.smidgeonsoft.prohosting.com/pebrowse-pro-file-viewer.html
Uhttp:/ftechnet.microsoft.com/en-us/sysinternals/bb896645
Lhttp://sourceforge.net/projects/regshot

Hun-Ya Lock, hylock@gmailcom

Using 10C in Malware Forensics | 7

defined database where applications and system components read and write configuration
data. (Registry, 2012) Malware often uses the registry to find out the installed
components and other capabilities of the target host as well as to store its own
configuration. By comparing the registry before and after infection, evidence left by the
malware can be used to build filters for Process Monitor.

Network activities also contain important information. If the malware attempts to
“phone home”, information of the remote attacker, as well as potential sources of
malicious payload may be revealed. REMnux provides a variety of tools to emulate

network services and wireshark®® is available to monitor the network traffic.

2.4. Reporting
In digital forensics investigations, digital impression evidence and trace evidence
are collected. Digital impression evidence are artifacts left in the physical memory, file
system and registry as a result of the execution. Digital trace evidence are files and other
artifacts that are typically introduced through the victim's online activity and are of a

more temporary nature. (Aquilina, Malin & Casey, 2010)

When investigating malware infections, digital impression evidence are those that
are associated with the infection and the self-preservation mechanisms and can be
reproduced and observed in the “clean room” setup and compared with the victim’s
machine. These are classified as mandatory attributes. On the other hand, trace evidence
depends on the environment that the malware is running in and the user's interaction with
the infected system. Investigators may not always be able to reproduce them in the

“clean room” setup and are classified as optional attributes.

When using OpenlOC framework to report the findings of the investigations, the

mandatory and optional attributes can be expressed as AND and OR operators.

Bhttp://www.wireshark.org/

Hun-Ya Lock, hylock@gmailcom

Using 10C in Malware Forensics | 8

3. OpenlOC Framework

3.1 Open 10C
Currently, there is no common language to describe the capabilities of malware.
The hash value of the binary sample only identifies the specimen and little else.
Furthermore, polymorphic and metamorphic codes (Paxson, 2011) result in multiple hash
identities for the same class of malware. Hence there is a need to shift from identification
of malware through its syntax (appearance of instructions) to its semantics (effect of
instructions). OpenlOC is ideally suited for this purpose as the XML-based framework

provides a flexible way of describing the complex semantics of a malware's behavior.

“Indicators of Compromise (IOCs) are forensic artifacts of an intrusion that can
be identified on a host or network” (Sophisticated indicators for the modern threat
landscape, 2012). It is similar to Mitre's CybOX's'* (Cyber Observable eXpression)
which uses XML schema for describing cyber observables. A cyber observable is a
measurable event or stateful property in the cyber domain (Barnum, 2011). A standard
manner of describing cyber observables, would allow for better communications amongst
cyber security teams and potential interoperability of deployed tools and processes.
According to Mandiant blog's*®, the CybOX team has included OpenlOC into its

framework.

The motivations for developing OpenlOC, Mitre's CybOX and MAEC®(Malware
Attribute Enumeration and Characterization) are similar, which is to find a common
language to describe malware infection and other cyber events. OpenlOC is focused on
describing technical characteristics of a threat through an extensible XML schema. It
has a comprehensive vocabulary for describing low level attributes which can be easily
translated into machine-understandable formats. These can then be used as input to
configure various IT security monitoring and detection tools like anti-virus, IDS
(Intrusion Detection System), IPS (Intrusion Prevention System), firewalls, OS

(Operating System) security controls and policies. Similarly, logs and other forms of

4http://cybox.mitre.org/
https://blog.mandiant.com/archives/766
8http://maec.mitre.org/

Hun-Ya Lock, hylock@gmailcom

Using 10C in Malware Forensics = 9

outputs from these tools maybe translated into OpenlOC documents to be shared amongst
other tools and systems. In this way, the intelligence gathered from an incident may be
used to protect and prevent compromise of the entire environment. This would map to
objectives 1 and 2 (detecting possible infection and preventing further infection) of
SMFIO (Table 3). This method of malware investigation is illustrated by OpenlOC in the
diagram below.

—_—

Initial Leads

» LR data review

» Forensic analysis
» Log analysis I
» Malware analysis

» False positive

» IDS/IPS
» HIDS/HIPS
» SIEM

» Investigative tools

TERATIVE
PROCESS

identification

-
Preserve/Collect Evidence

» Forensic image
» LR data collection
» Log data

Identify Suspect Systems
-

taken from (Sophisticated indicators for the modern threat landscape, 2012)

Diagram 2: Malware investigation lifecycle

Malware investigation is an iterative process. It begins with developing OpenlOC
indicators based on the low-level attributes of the malware's interaction with the host and
network. The OpenlOC can then be used as inputs to the enterprise monitoring tools and
used for further analysis. The table below applies OpenlOC framework to an enterprise
incident handling process, more specifically the proposed SMFIO (Simplified Malware

Forensics Investigation Objective).

Hun-Ya Lock, hylock@gmailcom

Using 10C in Malware Forensics | 10

Simplified Objective | SANS Incident Explanation
Handling Step

- Step 1: Preparation | This step takes place prior to an incident
and does not take OpenlOC into account.

(1) Detecting possible |Step 2: Identification | OpenlOC is used to describe the
malware. It could be based on its file

infection. profile and network traffic signature.

(2) Preventing further |Step 3: Containment |OpenlOC is used to document the

Step 4: Eradication | changes made to the infected host's file
system and registry configurations; kernel
and other program hooks; network
protocols and ports. With this
information, network and the host IPS
could be configured for the purpose of
containment and eradication.

infection.

- Step 5: Correction In the correction phases the IT system is
placed back into production mode with
all the business processes in place. This
is beyond the scope of OpenlOC.

(3) Profiling infection. | Step 6: Lessons These consist of OpenlOCs that could
Learned describe the profile of the attacks in order
to determine if it is a targeted attack.
More robust containment and eradication
steps would be required to prevent or at
least reduce the damage from such
attacks.

Table 5:0penlOC for Incident Handling
3.2. Using 10C

A sample OpenlOC is shown below. It documents the low-level attributes that are
observed when a host is infected by the Zeus virus. A full listing is presented in

Appendix 3. The verbose nature of XML makes the 10C self-explanatory.

Hun-Ya Lock, hylock@gmailcom

Using 10C in Malware Forensics | 11

<?xml version="1.8" en
<ioc xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance” xmlns:xsd="htt
b216-4cd8-9a9%e-8827 93" last-modified="2011-16-28T19:28:20" xmlns="htt
<short_description>Zeus</short_description>
<description>Finds Zeus variants, twexts, sdra64, ntos</description>
<keywords />
<authored_by>Mandiant</authored_by>
<authored_date>0001-61-01T06:80:008</authored_date=>

ding="us-ascii"?>

.W3.0rg/2001/XMLSchema” id="6d2a1b®3-
hemas.mandiant.com/2016/io0c">

<links />
<definition>
<Indicator operator="OR" id="9c8d{971-37a8-4ede-Ba3a-c5cb2c1439¢c6 >
<Indicator operator="AND" 1d="0781258f-6960-4da5-97af-ec35fb403cac">
<IndicatorItem i1d="58455b63-35bf-4efa-9706-aecba2986786a" condition="contains">
<Context document="ProcessItem” search="ProcessItem/name"” type="mir" [> AND
<Content type="string">winlogon.exe</Content> Operator
</IndicatorItem>
<1---SNIP--->
</Indicator>
<Indicator operator="AND 1d= 91 7a5/03-8a20-45CT-D801-1c13T107115040 >
<IndicatorItem id="cf77d82f-0ac9-4c81-afeb-d634f71525b5" condition="contains"> AND
<Context document="ProcessItem"” search="ProcessItem/HandleList/Handle/Type" type="mir" />
<Content type="string"=Mutant</Content> Operator
</IndicatorItem>
<l---SNIP--->
</Indicator>
<JIndicator> OR
</Indicator> Operator
<Jderinition>
</ioc>

Diagram 3: OpenlOC sample
(taken from http://openioc.org/iocs/6d2alb03-b216-4cd8-9a9e-8827af6ebfI3.ioc)

The malware's low-level behavior attribute is documented using
<Indicatorltem> tag. Multiple <Indicatorltem> tags may be grouped together using
<Indicator> tag. They may be grouped according to logical AND or OR operators as
seen in the diagram above. A rule of thumb would be to group attributes associated with
a behavior into using <Indicator> tag with AND attribute. Groups of behavior can then
be associated with the OR operator. This set of indicators only describe the processes and
handles that are created with the Zeus infection and can only achieve step 1 (detecting
possible infection) of SMFIO.

The next section would analyze a malware specimen using SMFIO and use
OpenlOC to document the results. It would then explore how to use the resulting

OpenlOC in the management of the IT system in an enterprise.

Hun-Ya Lock, hylock@gmailcom

Using 10C in Malware Forensics | 12

4. Case Study
4.1. Background

A suspicious file would have one or more of the following characteristics, an
unknown origin, located in system folders or unusual or hidden locations in the system,
has unusual or misspelt names and contains obfuscated code. Suspicious files are often
investigated to determine its damage potential and derive prevention mechanisms against
it. This section examines a malware (hash value: aadal69alcbd822e1402991e6a9c9238)
that was caught by a private honeypot. To facilitate the discussion, a random name of
“ada.exe” was given to the specimen. The “clean room” set up discussed in section 2.1

was used.

4.2. File Profiling
Microsoft File Checksum Integrity Verifier was used to obtain the MD5 hash of
the specimen. Linux £ile command, XPELister and PEBrowse were used in the initial

assessment of the file type

From £ile command and PEID, it was quite clear that this was a packed file

with an high entropy level of 7.98. PECompact was the packer used.

S file ada.exe
ada.exe: PE32 executable (GUI) Intel 88386, for MS Windows, PECompact? compressed
Diagram 4: Output from Linux file command

Hun-Ya Lock, hylock@gmailcom

Using 10C in Malware Forensics | 13

e PEID v0.95 = || @ || =
Extra Information (3]
FileMName: | C:\Users), ‘Desktop\ada.exe
Detected: |PECompact 2.x -= Jeremy Collake
Scan Mode: | Mormal
Entropy: 7.98 (Packed) J
EP Check: |Not Packed -
Fast Chedk: | Packed -

Ok

v Stay on top
Diagram 5: Output from PEiD

ki PEID v0.95

APE Details
Basic Information
B EntryPoint: [00001000 SubSystem: | 0002
] ImageBase: | 00400000 MumberQfsections: | 0002
Size0flmage: |00079000 TimeDateStamp: | 4D0SE010
BaseOfiCode: (00001000 Size0fHeaders: | 00000400
BaseOfData: | 00017000 Characteristics: |010F
SectionAlignment: | 00001000 Checkeurn: |0000FD31
FileAlignment: | 00000200 SizeOfOptionalHeader: | 00EQ
! Magic: 0108 NumOfRvaAndSizes: |00000010
Directory Information
RVA SIZE
ExpartTable: 00000000 00000000
ImportTable: |00078024 0000008F] [2]
Resource: | 00000000 00000000
TLSTable: | 00000000 00Qa00aa
Debug: | 00000000 00000000

Close |

Diagram 6: PE header information of the obfuscated file

Given that this is a packed file, the information from its PE header such as section

Hun-Ya Lock, hylock@gmailcom

Using 10C in Malware Forensics = 14

information, entry point and other file characteristics will be changed for the de-
obfuscated malicious executable. Hence, the information gathered so far, was useful in
identifying the infection, which is the obfuscated payload. Unfortunately with unlimited
iterations of obfuscation, it would not be feasible to make use of this information to

configure anti-virus scanners and IDS systems.

& CUsers\ "\Desktop'ada.exe - PEBrowse Professional - [File Header Details for ada.exe] E
ﬂ File Edit View Tools Window Help

g hBEENEA S SER2A

~[E8 DOS Header
~JEH File Header Image Type: [NT
[]--ﬁ Optional Header
Elg Sections
text [T
] b achine: Murmber of Sections:
E . [Intel 326 2
Elg Imperts o , Poirter To Symbol Table: [e.onononon . Mumber OF Symbols: a
(=8 }KERNEL32 DLL - 4 items

@ GetProciddiess
E8 LoadLibrand,

Time/Date Stamp |D:-:4DDE|BD1D [Thu Dec 16 14:22:08 2010]

[virtualdlloc istics:
: ! Characteristics: 0=010F
@ WittualFres File: iz executable.)
-~{E8 File Image Size OFf Optional Header: ’T t?:;:;:?;élssSst[:?pppeeddf;?orpnﬂflfé =

SORTED NAME EXACT SYMBOLS | _NT_SYMBOL_PATH |Imports:KERNEL32.DLL - 4 itemns
Diagram 7: Output from PEBrowse

PEBrowse interpreted the PE header and showed that it was a 32bit Windows
executable. The import table only contained 4 functions from Kernel32.dll:
GetProcAddress, LoadLibraryA, VirtualAlloc and VirtualFree, a characteristics of packed
files. Without further information, it would be difficult to determine the damage potential
of the file.

SMEIQO 1: Detecting possible infection

The information obtained so far can be used for objective 1 (detecting possible

infection) of SMFIO. The propose OpenlOC indicators are listed below.

Hun-Ya Lock, hylock@gmailcom

Using 10C in Malware Forensics | 15

|- AND
File MD5 is zadaleSzlchkdB2Zel402331leca5ci3238
. File PE Type contains DE3Z2
File DetectedCharacteristics contains PECompactl
File Compile Time contains Dec 1& 2010 14:22:08

Diagram 8: OpenlOC of file profile.

The approach taken is to list attributes associated with digital impression evidence
using the AND operator and put trace evidence under the OR operator. Although, all the
attributes listed in diagram 8 can be observed in an infection, file compile time is
subjected to time zone configuration on the development and infected machines and
requires careful handling. With other more reliable identifiers, file compile time is put in

as an optional attribute.

4.3. Dynamic Analysis
Obtaining Snapshots of Changes using Regshot

Initially, RegShot was used to compare the registry and file system before and
after infection. The most obvious indication of malware infection was the addition of a
file named “serivces.exe” in “C:\Windows\System32” directory and as well as the
deletion of the original malicious code. The file name “serivces” stood out as it was a

misspelling of the word “services” which is a system component in Windows.

Hun-Ya Lock, hylock@gmailcom

Using 10C in Malware Forensics = 16

C:\ProgramData\Microsoft\Search\Data\Applications\Windows\Projects\SystemIndex\Indexer\CiFiles\00010002.ci
C:\ProgramData\Microsoft\Search\Data\Applications\Windows\Projects\SystemIndex\Indexer\CiFiles\00010002.dir
C:\ProgramData\Microsoft\Search\Data\Applications\Windows\Projects\SystemIndex\Indexer\CiFiles\00010002.wid
C:\ProgramData\Microsoft\Windows\WER\ReportQueue
\NonCritical_ada.exe_277f138b4479892cd1686a9b3a4c1293d2a154b8_cab_0c62fd2f\appcompat. txt
C:\ProgramData\Microsoft\Windows\WER\ReportQueue
\NonCritical_ada.exe_277f138b4479892cd1686a9b3a4c1293d2a154b8_cab_0c62fd2f\Report.wer

C:\Users\All Users\Microsoft\Search\Data\Applications\Windows\Projects\SystemIndex\Indexer\CiFiles\00010002.ci
C:\Users\All Users\Microsoft\Search\Data\Applications\Windows\Projects\SystemIndex\Indexer\CiFiles\00010002.dir
C:\Users\All Users\Microsoft\Search\Data\Applications\Windows\Projects\SystemIndex\Indexer\CiFiles\00010002.wid
C:\Users\All Users\Microsoft\Windows\WER\ReportQueue
\NonCritical_ada.exe_277f138b4479892cd1686a9b3a4c1293d2a154b8_cab_0c62fd2f\appcompat. txt

C:\Users\All Users\Microsoft\Windows\WER\ReportQueue
\NonCritical_ada.exe_277f138b4479892cd1686a9b3a4c1293d2a154b8_cab_0c62fd2f\Report.wer
C:\Users\remwin7\AppData\Roaming\Microsoft\Windows\Recent\AutomaticDestinations
\7e4dcaB80246863e3.automaticDestinations-ms
C:\Users\remwin7\AppData\Roaming\Microsoft\Windows\Recent\Documents.lnk
C:\Users\remwin7\AppData\Roaming\Microsoft\Windows\Recent\Network and Internet.lnk
C:\Users\remwin7\AppData\Roaming\Microsoft\Windows\Recent\regshoti.hiv.lnk
C:\Users\remwin7\Documents\adaprocmon-1.PML

C:\Users\remwin7\Documents\adaprocmon.PML

C:\Users\remwin7\Documents\ada_regshot1.hiv
C:\Windows\System32\LogFiles\Scm\baficbfd-e527-4a35-ac77-7500b81c5955

C:\Window C16B028-2612-42F7-A06D-OBEA239E95DD}
T\Windows\System32\serivces.exe

Diagram 9: RegShot output showing addition of serivces.exe

<CT\Users\remwin7\Desktop\ada.exe>
C:\Windows\System3Z\LogFiles\Scm\2ee9a791-889f-4c9e-9dce-20fd814e27a5

Diagram 10: Regshot output showing malware deleted

Further analysis of RegShot's output showed that “services.exe” was installed as a
Windows service with a seemingly legitimate service name “Plug and Play Manager”. In

reality, the Windows service that supported Plug and Play was called “PlugPlay”.

HELMY SOFTWARE\Microsoft\Tracingserivces RASAPL32

SYSTEM\ CurrentCantrolSet)services\PlugPla
HELMY S A DMZ3

Diagram 11: Regshot output showing suspicious keys.

Hun-Ya Lock, hylock@gmailcom

Using 10C in Malware Forensics = 17

values added:335

HELM\SOFTHARE \Microsoft\Traclnglserivces RASAPI3Z2\EnableFileTracing: OxpORASESE
HKLM\SOFTWARE\Microsoft\Traclng\serivces RASAPIA2\EnableConscleTracing: Ox@8808880
HELM\SOFTHARE\Mlcrosoft\Traclng\serivces_RASAPIZZ\FlleTraclngMask: 8xFFFFEOEE

HELMYSYSTEM\CurrentCan r 1ces \PlugPlayCM\Type: axBO008110
HELMYS¥YSTEM) ntControlset)services \PlugPlayCM\Start: oxo9000062
HELM} EM\CurrentControlsetservices\PlugPlayCM\ErrorContral: ax@apoapon
M\SYSTEM\CurrentControlsetservices\PlugPlaycM\Imagerath: ""Ci\Windows\system3z\serivces.exe"”
LMY SYSTEM\ CurrentControlset) services\PlugPlayCM\DisplayName: "Plug and Play Manager
KLMYSYSTEM\CurrentControlset\services\PlugPlayCM\Objectiame: "LocalSystem”

MYSYSTEM\ CurrentControlSet\services\PlugPlayCM\FallureActions: @A @8 05 66 04 6O @6 06 60 60 00 @0 6
o8 0o B0 01 o2 @b 08 EE BE 06 OO

HKLM\SYSTEM entControlSet)services\PlugPlayCM\Description: "Plug and Play Manager 5u
seryice is stopped, content might net be down loaded to the devige. "

Diagram 12: Regshot output showing suspicious values added

rvice. If thi

The start key with value of 0x2 indicated that this service would start
automatically. The type key with value of 0x110 indicated that this was a Win32 program
that ran in a process by itself (JSI Tip 0324, 1997). This was the specimen'’s self-

preservation mechanism.

Monitoring Interaction with Host System using Process Monitor &

CaptureBat

After reverting back to its pristine stage, the system is reinfected and monitored
by Process Monitor. Using the process names “ada.exe” and “serivces.exe” as a filter,

here is the sequence of significant events that occurred:

Hun-Ya Lock, hylock@gmailcom

Using 10C in Malware Forensics = 18

ada .exe
Btart

!

gearch for e:\a.bat

!

execute command line: emd fc mnet stop
“Security Center”

!

execute command line: emd fc mnet stop
SharedAccess

!

create file e:\a.bat

!

execute e:‘a.bat

Y

gcript in a.bat modify SharedAccess,
wuauserv, Tcpip services configurations in
registry

'

execute command line: emd fc met start
SharedAcecess

!

create file c:\Windows\System32'\serivces.exe

v

serivoes.one started as & servioe with service nome
“FlugFLlayM~

Diagram 13: Process flow of specimen

The malicious specimen stopped Windows Security Center!” which then stopped
alerts and notifications from several Windows security components including the
firewall, anti-virus, Windows Update, Internet options. As a result, Windows
SharedAccess service that controlled Internet-connection sharing*®, which included

firewall configuration, was stopped. The file “a.bat” contained scripts that modified

http://windows.microsoft.com/is-1S/windows-vista/Using-Windows-Security-Center
Bhttp:/ftechnet.microsoft.com/en-us/library/cc766190%28v=ws.10%29.aspx

Hun-Ya Lock, hylock@gmailcom

Using 10C in Malware Forensics | 19

registry settings to disable firewall, Windows Automatic Update, Windows Security
Centre services. It also contained entries that modified the TCP/IP parameters. As a
result, when Windows Shared Access was started, these services were no longer available.
After modifying the registry settings “a.bat” was deleted. A copy of “a.bat” was
recovered using CaptureBat'® and documented in Appendix 4.

Finally, “serivces.exe” was created and was installed as a service with a service

name “PlugPlayCM”. After the service started, “ada.exe” was deleted.

Monitoring Interaction with Network using REMnux

REMnux was used to draw network traffic out from the malicious specimen. The
first step was to use wireshark?® to monitor network traffic from the malicious specimen,
in order to determine the type of network services that it was seeking. The specimen
initially sent TCP SYN requests to ip address 60.10.179.100, connecting to a range of
ports which included 8684 — 8689, 9051, 137(WINS registry), 12032, 8680 — 8689, 1709
and 343. Asnapshot of the SYN request is presented below.

192.168.56.200 239.255.255.250 60.10.179.100
192.168.56.255 192.163.56.1(}1
Domain/Workgroyp An | | |
[wm;; 49168 > 8684 [SYN] =:[ssse
(49168); I 42168> Bf}ﬂd [SYN] I *(B684)
[53315;E—5t?ndﬂmw-ﬂfte—-1:[53; E
[53315;!*'—5ti.’ndﬁtd-qmm—l[53; I
T . 49169 > 8685 [SYN] 6685
(49169); I arla e a‘.”as [SYN] I *(B6B5)
us1 69;; 49169 > 8685 [SYN] =;[E 685)
[cgwn-l I 42170 > swr:—"':[ﬁﬁﬁﬁj
o 49170>sumasmxr g
[ﬁzﬁsgjww‘ﬁww *i(53) I
Standard auerv resn ! !
Diagram 14: Wireshark output of initial TCP SYN request

Of course, REMnux acting as the gateway to nowhere, was not able to connect to

Phttp://www.nz-honeynet.org/capture-standalone.html
http://www.wireshark.org

Hun-Ya Lock, hylock@gmailcom

Using 10C in Malware Forensics @ 20

IP address 60.10.179.100. A check with Robtex?! reverse DNS service website, revealed
that this ip address was blacklisted.

Next the specimen, made domain name resolution requests to ringc.strangled.net,
checkip.dyndns.org and www.ip138.com. fakedns?? was used to resolved all domain
names requested by the malicious specimen to the REMnux machine. With the domain
names resolved to REMnux machine's ip address, the specimen then sent HTTP Get
requests to checkip.dyndns.org and www.ip138.com. Both sites were visited
anonymously using the TOR?® browser. It was found that they would both return the ip
address of the requesting client so it can be assumed that the specimen was attempting to
acquire the ip address of the host it had infected. A screenshot of www.ip138.com is

displayed below:

e SeameE ... (5B

i1 —F
@ = ipi36.com =T
www. pl38.com EME F YLk M EW wap.Ip138.com
—+ MR- f R S .

BN g

B S R e AT

www.|pl38.com PR (8 RIPHhE bR i 1)

Your |P is
e - (T =
/
ETEGAMET G EEa TOM e R T P BRI,
PHiL R =g |
D138 T 24 B R R

i gy] PR B e B R R A0 (R — i

R4 P A PR B T i

Diagram 15: Screenshot of web site www.ip138.com

The most significant network requests were TCP SYN requests to port 8684.

netcat?* was used to start a port 8684 in listening state in REMnux. With this simple

setup, the network requests to port 8684 was captured and examined. The output from

netcat is shown below:

Zhttp://www.robtex.com
22http://code.activestate.com/recipes/491264-mini-fake-dns-server/
Zhttps://www.torproject.org/projects/torbrowser.html
Z4http://netcat.sourceforge.net/

Hun-Ya Lock, hylock@gmailcom

Using 10C in Malware Forensics | 21

remnux@remnux: ~% sudo nc -1 -p 8684
NICK USA|WN7}|SP1|1|41200654
USER SP1-882 ™ 0 :WINT_REM

Diagram 16: netcat output

It turned to be an IRC request. The specimen used details from the infected host
to generate the user and nick login details. The host operating system was Windows 7
Service Pack 1 with system locale, keyboard and location set to USA. The Windows
login username was Win7 REM. This might explain the phrases “USA”, “SP1” and
WIN7 REM?” in the IRC connection request.

To probe further, ircd service in REMnux was configured to listen to a range of
ports 8684-8689, which included 8684. After sometime, it was observed in wireshark

that the specimen joined IRC channel “#blue3”. The wireshark output is shown below:

rremnux. 375 USA|WN7}|SP1|1]|54507277 :remnux. message of the day
sremnux. 372 USA|WN7}|SP1]1]|54507277 :-

rremnux. 376 USA|WN7}|SP1|1|54507277 :End of message of the day.
rremnux. 251 USA|WN7}|SP1|1|54507277 :There are 1 users and 0 invisible on 1 server
rremnux. 255 USA|WN7}|5P1]1]|54507277 :I have 1 clients and 0 servers
JOIN #blue3

(USA|WN7} |SP1|1]|54507277!5P1-526@0: : ffff:192.168.56.200 JOIN :#blue3
sremnux. 353 USA|WN7}|SP1]1]54507277 = #blue3 :@USA|WN7}|SP1]1]|54507277
rremnux. 366 USA|WN7}|SP1|1]|54507277 #blue3 :End of /MAMES list.

JOIN #blue3

JOIN #blue3

PING :remnux.

PONG remnux.

PING :remnux.

PONG remnux.

PING :remnux.

PONG remnux.

PING :remnux.

Diagram 17: Wireshark output for REMnux with ip of 60.10.169.100

From monitoring the behavior of the specimen, the following OpenlOC indicators

are proposed.

Hun-Ya Lock, hylock@gmailcom

Using 10C in Malware Forensics

SMFIO 1: Detecting possible infection

22

The changes to the host file system and registry are mandatory attributes (AND

operator).

- File Full Path contains c:\Windows\System32
~File MName contains serives.exe
‘- File MDS is aadal&falcbdfZZel40Z33leda3cd233

Diagram 18: OpenlOC from dynamic analysis 1

SMFIO 2: Preventing further infection

These OpenlOC indicators describe the changes made to the host and the network

traffic generated after an infection. These indicators suggest how the host system could

be hardened in order to prevent further and future infections. For example, for this

specimen a host firewall could be configured to prevent outgoing network traffic to IP
address 60.10.179.100, connections to the port8680 to 8689 are put in as optional (OR

operator) as they are dependent on the infected host's network settings.

?"Netwnrk String General contains blue3
?"Netwnrk String URI is http:/ www_ipl38.com

?"Pcrt Bemote IP contains &0.10.175_.100

i. Port remotePort contains 8680 to S689

Diagram 19: OpenlOC from dynamic analysis 2

?"Netwnrk String URI is http://checkipdyndns._org

Hun-Ya Lock, hylock@gmailcom

Using IOC in Malware Forensics | 23

On the other hand, the OpenlOC indicators for the changes to the registry are mandatory
(AND operator). This is because these indicators describe the infection and self-

preservation mechanisms.

(- AND
—-Registry FeyPath contains HEEY LOCRT, MRCHINENSYSTEM\CurrentControlSet)Services\Sharedicceas
«-Registry ValueName contains Start
Registry Value contains

=] 2ND
—-Registry FeyPath contains FREY LOCRT, MRCHTNEYSYSTEM\CurrentControlSet)Services\Sharedhcceas),
--Registry ValueName contains EnableFirewall Parameters\FirewallPolicy\StandardProfile
«-RBegistry Value comtains 0

=] 2ND

~-Registry Value containg Btart
~-Registry Value containa 4
[=- AND
Registry KeyPeth contains HEEY LOCAL MACHINZ\SYCTEM\ControlSetD0lhServicas\wacave
~Registry KeyPath contains HEEY LOCRL MRCHINEYSYSTEMM\CurrentControlBet)Bervices\wuauserv
[I- AND
- Registry Dath contains HEEY LOCAL MACHINE\SYSTEM\CurrentContrelSet\Services\Tepip\Parameters
[aND
—Registry ValueMName contains ManFreelchs
—Registry Value contains 0x7d0
El- AND
Regisztry ValueMame contains MaxHashTablsSiza
—Regilstry Value comtains 0xE00
E-2D
-~ Registry ValueName contains TepTimedWaitDelay
-~ Begiztry Value comtains Oxle
[2ND
~—Registry ValueName eontains MaxllserPort
—Registry Value contains Oxfel@
Diagram 20: OpenlOC from dynamic analysis 3

Hun-Ya Lock, hylock@gmailcom

Using 10C in Malware Forensics = 24

SMFIO 3: Profiling Infection

Outbound network traffic sometimes provides identity of the attacker that can be
used in developing the profile of the attack. In this case, remote IRC server that the
specimen tried to connect to may provide a link to the attacker. As they are trace
evidence, the OR operator is used.

?"Netwnrk DNS contains ringco.strangled_net

i Process remotelIP contains &0.10.17%.100

Diagram 21: OpenlOC from dynamic analysis 4

4.4, Static Analysis
From the dynamic analysis, the infection and self-preservation mechanism was
found. In addition, it was found that the specimen was most likely an IRC bot but
without connecting the IRC bot to its C&C (Command and Control), it was difficult to
determine it functionalities. Hence, static analysis was carried out to probe further into

the specimen.

Gathering Strings

The first step into static analysis is to gather a list of strings from the binary
executable. The Linux strings command was used. From file profiling done earlier, it
was known that this was a packed specimen and the st rings command would not

produce many strings of interest. The results correspond to that from the file profiling

stage.

s -/ N s strings ada.exe

PECompact2
_rlk

RB/)IM4

uz2.3
kernel32.dll
LoadLibraryA
GetProcAddress
VirtualAllec
VirtualFree
VIWSU
kernl3z.d
irtualFe

Diagram 22: List of strings from specimen

Hun-Ya Lock, hylock@gmailcom

Using 10C in Malware Forensics | 25

Debugging with OllyDbqg

The specimen had various anti-forensics strategies which had to be overcome
before the malicious code could be analyzed in OllyDbg?. As discovered earlier, the
specimen was packed using PECompact version 226, This was a common packer which
would compress and in doing so obfuscate the code as well as the import table. When the
executable was run, the decompression stub was loaded and it would restore the image of
malicious code to an executable state that was loaded only onto the memory without
writing to disk. The process of loading the de-obfuscated code in OllyDbg with the
correct OEP (Original Entry Point) is well documented (Collake, 2005) and presented in
Appendix 5.

The OEP of the malicious code is 0x415F64. Before running the specimen in

OllyDbg, IDA?" was used to generate the specimen's call flow.

(N

SR TR

Diagram 23: Partial call flow of specimen

As can be seen from the call flow above, the code has a complex structure. To
reverse it completely back to its original state might not be feasible for an enterprise IT

department. However if the scope of the analysis is restricted to SMFIO, the

Shttp://ww.ollydbg.de/
Zhttp://bitsum.com/pecompact.php
Z'http://www.hex-rays.com/products/ida/index.shtml

Hun-Ya Lock, hylock@gmailcom

Using 10C in Malware Forensics

investigation would be more feasible.

The initial portion of the code, when analyzed in OllyDbg, had numerous

26

segments that checked if it was being monitored. On detection of a debugger, it would

terminate prematurely. The flow charts of the anti-forensics are presented below.

[%tart {0x415F64£]

initialisation
by acquiring handle,
command line info
required by WinMain

-

HEd 1 6HEE
o 1£050

WinMain (0x40727D|aaiicaee
aad 1 6E2C
EE] EEHSE2

Diagram 24: Flow chart 1

PUSH ERX
PUSH ESI
PUSH EBX
FUISH EEX
CALL EHERD PTR DS:[4178F2]

FLISH
CHLL =ada. AB4@7270

q

Arg2:handle to prev instance
[pﬂodule

GetModu leHandleR
Argl:handle to current instance
LL WinMain

=20_SHOWDEFAULT: default < te
rg3: ptr to command line

=

Flow chart 1 shows the initialization phase of the specimen. At the start it

gathered a handle to itself and the command line parameters and passed them to

WinMain? function.

Bhttp://msdn.microsoft.com/en-us/library/windows/desktop/ms633559%28v=vs.85%29.aspx

Hun-Ya Lock, hylock@gmailcom

Using 10C in Malware Forensics = 27

Check login

username
(0x4010DD)

username =
LurrentUser”2

Check login
username
(0x40116E)

ontain sandbox
or honey or

Diagram 25: Flow chart 2

In WinMain, the specimen launched into several anti-forensics strategies. Firstly,
it checked if the username of the machine was “CurrentUser” or contained the strings

“sandbox”, “honey”, “vmware” or “currentuser”. These would be easily defeated by

ensuring that the username of the machine did not contain these strings.

Hun-Ya Lock, hylock@gmailcom

Using IOC in Malware Forensics | 28

Check for DLL

s s €8 PUSH ESI
supporting . BE BOSG4100 | MOU ESI “L%
7 5 FF26 |(PUSH DUORD fes u Ifelodile = "SbieDlL.dLL™
sandboxing and Y'FFIS Forot106] CELL DUCRD PIR 03t [<bkernel Loetiiody ierand o
: . 8500 TEST ERX, EAX
debugging 7S OF E SHORT ada_dns._. 20401207
0x4013B6 - Siee 83%4106 oe ol ad dro_ 08419988 | RSCIT "dbahelp.dil
» A s elp. =
() A7C E9 A SHORT ada_cvo. . 6@40136C
is
@ghelp.dll o
sbie.dll
[TPUSH 2 EEmmamema 7] o
PUSH EAX
PUSH 23 Systenlerne lDebugger Infornat ion
LCRLL EBX call TUluerySysteninformat ion
TEST EHX,ERX
M2 SHORT ada.@0401224
Cf BYTE PTR S35:LEBP-21,AL

Check if run iy
debugger
(0x4011E6)

JE SHORT ada.22401
CIP BVTE PTR SS1(EBP=-1), AL

JE SHORT adas.GB48124F
CIP ESI,EDI
JE_SHOR i 3da. @8491253
‘PUSH
=81
eVt es .
PUSH sax ptr to Processinformation
ProoessDebugPort

7
PUSH DMORD PTR SS: (EBP+8)
CALL ESI

“TTEST EAX

_call Z¥lueryInfornat lcnProcess |

Check if run in

VMWare
(0x4QlZD7)

:
g

ED
81FB 68584086

HOY EAX, 24564053958 RIKh
IW 8 &(0
IW EDX &5058

CI‘P EBX &56405963

Uiware will monitor port 5658
else except ion
if sunning in Wivare EBX=OxE64DE86S

Diagram 26: Flow Chart 3

Next at 0x4013B6, it checked if “dbghelp.dll” and “sbie.dlI” DLL (Dynamic Link

Hun-Ya Lock, hylock@gmailcom

Using 10C in Malware Forensics | 29

Library) were loaded. This was done through GetModuleHandleA? at address
0x4013BE. The presence of “sbie.dll” would indicate that Sandboxie®® was running and
it could potentially limit the specimen's malicious functions. “dbghelp.dll” was used by
Microsoft DbgHelp library3! and its presence would alert the specimen that it was
debugged. If the specimen detected that these DLLs were loaded, it would end its
process. Otherwise, it would continue on to function Ox4011E6 where it further checked
for the presence of debugger through the use of ZwQuerySystemInformation? and

ZwQuerylnformationProcess*3.

Next at 0x401388, the specimen tested to see if it was ran in a VMware virtual
machine. This was done through detecting the presence of the port 5658 (Liston, 2006).
Liston and Skoudis had describe in their research that VMWare monitors port 5658 when
EAX was set to the magic number 0x564D5868 (“VMXh”). If the specimen was ran in
VMware, EBX would be set to 0x564D5868 after the command “IN EAX, EDX”, else
there would be an exception. Inorder to bypass this anti-forensics measure, “IN EAX,
EDX” is modified to “NOP” and EBX is setup to the expected value.

After a series of anti-debugging steps, the specimen then installed itself as a
Windows Service. In 0x407331 of WinMain, the specimen setup up the
SERVICE_TABLE_ENTRY?* which would contain the address to ServiceMain of a
service. In this case, ServiceMain of the malicious service was at 0x40A8D3. At
0x40A970, CreateServiceA was called to install the service with service name
“PlugPlayCM” and display name “Plug and Play Manger” which were seemingly
legitimate service name. After StartServiceA was called at 0x40AA4C, it would call
StartServiceCtrIDispatcherA® at 0x4073FF to connect the main thread of the malicious
service to service control manager so that it would be the service control dispatcher
thread for the calling process. When that specimen was run in a debugger,

StartServiceCtrlDispatcher A would fail with error code of

2http://msdn.microsoft.com/en-us/library/windows/desktop/ms683199%28v=vs.85%29.aspx
Ohttp://www.sandboxie.com/

Shttp://msdn.microsoft.com/en-us/library/windows/desktop/ms679294%28v=vs.85%29.aspx
32http://msdn.microsoft.com/en-us/library/windows/desktop/ms725506%28v=vs.85%29.aspx
3http://msdn.microsoft.com/en-us/library/windows/desktop/ms687420%28v=vs.85%29.aspx
34http://msdn.microsoft.com/en-us/library/windows/desktop/ms686001%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms686324%28v=vs.85%29.aspx

Hun-Ya Lock, hylock@gmailcom

Using 10C in Malware Forensics | 30

ERROR_FAILED_SERVICE_CONTROLLER_CONNECT. This was because OllyDbg
ran the specimen as a console program rather than a service. After calling
StartServiceCrtIDispatcherA, the process would end. If the PlugPlayCM service had

been started properly, the specimen would continue its activities in the service.

In order to continue debugging the specimen, it was executed without the use of a
debugger. All the anti-forensics techniques used by the specimen would not be effective
as it was not debugged and not ran in VMware. In this case, PlugPlayCM service could
be started. At this point, OllyDbg could then be launched and attached to the running

process “serivces.exe”.

In OllyDbg, the process would pause at ntdll.DbgBreakPoint. By reviewing the
Threads window in OllyDbg, the following was observed.

Threads

Ident Entiy Data block|Last error Status Friority|User time Sustem time
HEEEEESd | BO0EEEEE| FFFOEQGR ERROR_SUCCESS (D0E0E8EE8) Bt ive EEREN] 0. 06088 = §.1281 =
HHHBETIE| BR46748C) FFFOS088 ERROF_SUCCESS [DREEEEEE) Bct ive 32 + a8 H.8188 = H.@1868 <
AEERATZC) BR4ERAE0 FFFO906E ERROR_SUCCESS [(DBEAEEEE) Bt ive 32 + @ A.0088 = G.0088 =
HHHBEFE4 | B04168246) FFFOYDEE ERROF_SUCCESS [QRE@EEaE) Bct ive 32+ 8 H.9188 = . 8888 <
HHHBATCY | FSAF32FE| FFFOS0EE ERROF_SUCCESS [(EEEHHHGEE]) Bot ive 32+ 8 H.0888 = H. 8888 <
HEEBASFC| FEYCTYSE7F| FFFOABEE ERROF_SUCCESS (QB@E@@aaE) Bot ive 32+ 8 H.0888 = H. 86888 <
HEEBEAGT4 | Fr30F0DEF | FFFO08EE ERROF_SUCCESS [QRE@EaaE) Bot ive 32+ 8 H.0888 = H. 8888 <
HHEBEEFS| Fr3183EF| FFFOEDEE ERROF_SUCCESS [(Q@E@@aaeE) Bot ive 32+ 8 H.0888 = H. 86888 <
HHEBAGES | FraYF 125 FFFOCHEE ERROF_SUCCESS (@RE@EaaeE) Rct ive 32+ 8 H. 0688 = H. 86888 <

Diagram 27: Threads spawned by serivces.exe

“serivces.exe” spawned 3 threads with starting addresses at 0x40740C,
Ox40AA6D and 0x410246.

Thread 0x4AA6D

Thread Ox40AA6D was created in ServiceMain (0x40A8D3) at address
0x40A94E. The diagram below showed the code snippet. The create flag
(dwCreateFlags) was set to 0 this would cause the thread to run immediately after
creation. The register ESI is set to 0 previously at 0x40A8D8 with the command “XOR.
ESI. ESI™.

Hun-Ya Lock, hylock@gmailcom

Using 10C in Malware Forensics | 31

¢ _text:Qo40A94Y push eax ; 1pThreadId

* .text:@8848A945 push esi ; duCreateFlags = @

* _text:o04a8n946 push esi ; lpParameter = 8

¢ _text:9048A947 push offset sub_ 48AA6GD ; 1pStartAddress

* _text:0040A940 push esi ; dwStackSize = 8

* _text:0048n94D push esi ; lpThreadattributes | @
* .text:8848A94E call CreateThread

Diagram 28: Start thread 0x40AA6D

The main function of thread 0x40AA6D was to create and start thread 0x40740C.
Similarly to the ServiceMain, the create flags (dwCreateFlags) is set to 0 at 0x40AA74
and so the thread 0x40740C would run immediately after creation.

Ltext:0040ARGD sub_ 4BAAGD proc near
Ltext:004BARGD
Ltext:0040AAGD ThreadId = duword ptr -4
Ltext:o0uBAnGD
* .text:0848AAGD push ecx
* .text:0684BARGE push esi
* .text:084BAAGF push edi
* .text:004BAATO lea eax, [esp+BCh+ThreadId]
* _text:BO4BAATY zor edi, edi
* Ltext:0B4BAATE push eax ; 1pThreadld
* .text:0040AA77 push edi ; duCreationFlags
* .text:0BuBAATE push edi ; lpParameter
* Ltext:0684BAATY push offset sub_4B8748C ; lpStartAddress
' text:0048ARTE push edi ; duStackSize
* .text:0B84BAATF push edi ; 1pThreadnttributes
* .text:0040AAS0 call CreateThread
Diagram 29: Thread 0x40AA6D

Thread 0x40740C

Thread 0x40740C, contains several notable functions. First, a mutex
“gregHDGHRTEfghRTHNNBMJKR!'EADSVXDFSWEdhstoio4i0340432m19” was
created at 0x407418. If the mutex already existed], it would indicate that another

instance of the malware was already running, the process would exit.

Hun-Ya Lock, hylock@gmailcom

Using 10C in Malware Forensics | 32

* .text:BB4BATH18 push offset Hame ; "gregHDGHRTEfghRTHHHEHM.JKR® *E
* _text:eB48741D push ebp ; bInitialOuwner

* _text:0848741E push ebp ; lpHutexAattributes

® .text:BB4B7HIF call CreateMutexn

¢ text:0848742% mou hutex, eax

® .text:BBL4BATLZA call GetLastError

* .text:88487430 cnp eax, BB7h ; ERROR_ALREADY EXISTS

* _text:-08487435 jnz short loc_LB743E

* .text:BB4BTL3T push ebp ; uExitCode

* .text:eB487438 call ExitProcess |

Diagram 30: Thread 0x40740C

At 0x0x4074DD, the thread called WSAStartup requesting to use winsock version
2.2. If it failed, the process will exit.

* .text:aa4874D1 push eax

* Ltext:o84874D2 push 282h ; char

* .text:peua7uD7 call WiAsStartup_ A

* text:@84874DD test eax, eax

* _text:B040874DF jz short loc 4BF74ED

* .text:884874E1 push BFFFFFFFER : UExitCode
* .text:084074E3 call ExitProcess

Diagram 31: Thread 0x40740C

At 0x407519, thread 0410246 is created.

* _text:88408750B push eax : 1pThreadId

* _text:@848758C lea eax, [esp+37Bh+Parameter]

* _text:@0407518@ push ebp ; duCreationFlags

* _text:-80407511 push eax ; lpParameter

* _text:80487512 push offset sub_ 418246 ; lpStartAddress

* _text:@0407517 push ebp ; duStackSize

* _text:@0407518 push ebp ; 1pThreadattributes
* .text:@B4B87510 call CreateThread

Diagram 32: Thread 0x40740C

Then it makes an interesting call to 0x40A391, where several IRC commands and

IRC server numerics are listed. This further confirmed that the specimen is an IRCbot.

Hun-Ya Lock, hylock@gmailcom

Using 10C in Malware Forensics | 33

text:8048A391 sub_48A391 proc near ; CODE XREF: sub_ L4874
text:8048A391
text:0048A391 arg_#8 = dword ptr &
text:8048A391
* .text:ae40n3M push esi
* .text:ee4uon392 mouy esi, [esptarg_ 8]
' .text:ea4BA396 push edi
' .text:eeuon39v push offset sub_W16BE6 ; int
* .text:8e4Bn39C push offset aError_8 : "ERROR™
* Ltext:o8aen3ni mow ecx, esi
' .text:ee4Bn3A3 call sub_4877F2
* .text:oe4Bn3A8 push offset sub_469D43 ; int
* .text:ee4BA3AD push offset aPrivmsg ; “PRIVMSG™
* _text:08040A3B2 mou ecx, esi
* _text:AB84BA3BAL call sub_4@77F2
* _text:884Bn3BY push offset sub_4B9FEB ; int
* _text:8848A3BE push offset aKick ; "HICK™
* _text:88408A3C3 mou ecx, esi
* _text:884BA3CS call sub_4@77F2
* _text:884BA3CA mou edi, offset sub_4BABSE
* _text:88408A3CF mou ecx, esi
* _text:0848A3D1 push edi ; int
* _text:0848A3D2 push offset aTopic_@ ; “TOPIC™
* _text:8848A3D7 call sub_4877F2

Diagram 33: Function @ 0x40A391

The IRC-related terms are listed in Appendix 6.

Function 0x40A391, is a simple function that calls 0x4077F2 multiple times, each
with a different set of parameters. The parameters are a pointer to function and an IRC
command. The functions associated with the commands “PRIVMSG” and “TOPIC” are
0x409D43 and 0x40A08E respectively. Both functions would make calls to 0x4014B0.
The process flow from ServiceMain to 0x40AA6D to 0x40740C to 0x40A391 and finally
down to 0x4014B0 is illustrated below.

Hun-Ya Lock, hylock@gmailcom

Using 10C in Malware Forensics = 34

ServiceMain
(0x40A8D3)

sub_403043 sub_40A08E

Diagram 34: Flow chart of main function calls

Function 0x4014B0 contained a list of IRC commands which is documented in
Appendix 6. The list of commands suggests that the specimen had Denial of Service
(DOS) capabilities. Each IRC command was paired with its own thread which would be

launched when the command was issued.

Taking command “trollflood” as an example, it would launch thread 0x4153D3.
The most significant function in this thread is a loop segment starting at 0x4154FC that

would continuously open a socket and connect to a random location.

Hun-Ya Lock, hylock@gmailcom

Using 10C in Malware Forensics

35

-text:004154FC loc_4154FC:
r=% _text:AB4154FC cmp
! .text:ppE415583 jnz
' * .text:88415585 call
! * .text:pB41558B cdq
! " Ltext:8841558C mov
! .text:pe415511 idiv
' * .text:88415513 inc
! _text:ee41551y push
' * .text:88415515 call
! * .text:pB41551B mov
' -text:0041551F
! -text:08041551F loc_41551F:

' * .text:8841551F push
! .text:p@415521 call
' * .text:@88415527 push
! _text:@8415529 push
' * .text:8841552B push
! .text:pB41552D call
' * .text:88415533 lea
! _text:08415536 push
' * .text:88415538 push
! .text:pB415539 push
¢ " Ltext:0841553R nov
! .text:pB41553C call
' * .text:88415542 inc
! .text:pB415543 add
P " _text:B0415546 cmp
L --% .text:0O41554C j1

Diagram 35: trollflood function

1
CODE XREF: sub_4153D

dword ptr [ebp+hostshort], 8

short loc_ M1551F
rand

ecx, BFFFFh
ECX

edx

edx

ntohs

word pty [ebp+name.sa_data], ax

dword ptr [esi]
closesocket

]

1

2

socket |
ecx, [ebp+name]
18h

BCX

eax

[esi], eax
connect

edi

esi, 4

edi, [ebp+var D8]
short loc_ M1S4FC

CODE XREF: sub_4153D
5

protocol

type
af

namelen
name
s

SMFIO 3: Profiling infection

The bulk of the investigation effort was spent in static analysis. The mutex,

strings and malware capabilities discovered would be useful for profiling the attack.

From the analysis, the specimen is capable of :

performing anti-forensics strategies.

. accessing sensitive system settings like registry, system folders.
. contacting an external C&C server.

. performing DOS attacks

. downloading external data

The proposed OpenlOC indicators are listed below.

Hun-Ya Lock, hylock@gmailcom

Using 10C in Malware Forensics = 36

B

B"OR
E"DR
:-P:ccess
-Brocess
- Process

- Process

Process

StringlList
Stringlist
Stringlist
Stringlist
Stringlist

contains
contains
contains
containg

containg

i Brocess Handle Name contains gregHDEHRTESghRTHNNBMJIER ! | EADSVEDFSWEdhstoiodio34o43Zmls

PRIVMSG,EKICE, TOPIC,001,005,332,3686,376,422,433
1.in,log.in,l.out,lo, rmec_die, rmec_now, advscan, asc

threads, t,ipce_wget, ipee_download, rOflzec_ updt, r4wrecc.nb
trollflood, cocfloond, cogetflood, tepayn, visit, akicemp, patcher, opentem
tep, tfnZksyn, akudp, aksyn, sky, ddosstop, bandwidthilood, udpx, udp, ping

Diagram 36: OpenlOC for static analysis

These indicators only described what can be observed from an infected machine

but not the capabilities and damage potential of the malware.

Hun-Ya Lock, hylock@gmailcom

Using 10C in Malware Forensics = 37

5. Conclusion

The Simplified Malware Forensics Investigation Objectives was used when
performing malware analysis and the results were documented in OpenlOC. The result
is presented in Appendix 7. This provides a reliable and consistent manner of reporting
the infection. IT systems monitoring tools can be configured with the OpenlOC

indicators. For example, a OpenlOC to yara®*® conversion might look like this.

AND
Process Handle Name contains gregHDCHRTELGhRTHNNBMJIKR ! | EADSVXDFSWEdhstoicd4io340432mls
= OR

= OR
Process Stringlist containa PRIVMSG, KICK,TOPIC,l001,0085,332,366,376,422,433
Process Stringlist contains l.in, log.in,l.out,lo,zmcc.die, rmoc. now, advecan, asc
Process Stringlist contains threads,t,ipcc.wget, ipcc.download, rO0flzcc.updt, r4wrce.nb
Process Stringlist contains treollflood,ccflood, ccgetfloed, tepsyn, visic, akicmp, patcher, cpentem
Process Stringlist contains tep,tfn2ksyn, akudp, aksyn, sky, ddosstop, bandwidthflood, udpx, udp, ping

!

/* yara rule */
rule network_attacks
{
meta:
description "Indicates network attacking capabilities”™
strings:
Snwatto "trollflood"” nocase fullword
Snwattl = ccflood”" nocase fullword
Snwatt2z = "ccgetflood"” nocase fullword
Snwatt3 = "tcpsyn™ nocase fullword
Snwatt4 = "akicmp"™ nocase fullword
Snwatts "tcp nocase fullword
Snwatteé "tfn2ksyn" nocase fullword
Snwatt7 “akudp nocase fullword
Snwatts "aksyn nocase fullword
Snwatt9o = "sky nocase fullword
Snwattie = "ddosstop" nocase fullword
Snwattlil = "bandwidthflood™ nocase fullword
Snwatti12 = "udpx nocase fullword
Snwatti3 "udp nocase fullword
Snwattiqa “ping” nocase fullword
condition:
Snwatt® or Snwattl or Snwatt2 or Snwatt3 or Snwattq4 or
Snwatts or Snwatté or Snwatt7 or Snwatt8 or Snwatt9 or
SNWattlio or Snwattll or Snwattl2 or Snwattli3 or Snwattig

Diagram 37: OpenlOC to yara conversion

36http://code.google.com/p/yara-project/

Hun-Ya Lock, hylock@gmailcom

Using 10C in Malware Forensics = 38

A OpenlOC to snort*” conversion might look like this.

‘- Hetwark String General contains blue3

Hetwork String URI is http://checkipdyndns_org
i~ MNetwork String URI is http://www.ipl32. com

B AND

?"Pcrt Remote IP contains &0.10.173%.100
E----I—‘r::l:l.: remctePort contains 5880 to B&E3

!

alert tcp SHOME_MET any -> 60.18.179.1660 any (msg:"possible host infection"; sid:10606601;
rev:il;)

#snort rules

alert tcp SHOME_MNET any -> SEXTERMAL_NET [88,443] (msg:"alert! possible host infection™;
classtype:web-application-activity; reference:url,www.checkipdyns.org; sid:1800082; rev:1;)

alert tcp SHOME_MET any -> SEXTERMAL_NET [88,443] (msg:"alert! possible host infection”;
classtype:web-application-activity; reference:url,www.ipl38.com; sid:1000002; rewv:1;)

alert tcp SHOME_NET any -> any B680:8689 (msg:"alert! possible host infection™;
flow:to_server ,established; content:"#blue3”; sid:1800083; rev:1;)

Diagram 38: OpenlOC to snort conversion

However the OpenlOC indicators proposed so far, only describes the low-level
file, host and network attributes but lack the syntax to provide the semantics behind the
attributes. A simple way to overcome this is to include an attribute for describing the

objective of the set of indicators.

= AND [identifying infection]
-Process Handle Name contains gregHDGHRTEZghRTHNWEMIKR!|ZADSVEDISWEGhstoiodioddod3imly
=-ok [profiling infection]

~m
W

'rocess Stringlist contains PRTVMSE KICH, TOBIC, 001,005,332, 368,376,422, 433

-~ Process Stringlist contains 1.im,log.in 1.out,lo, reee.die, tace_now, advscan, ase

~-Process Stringlist contains threads,t, ipee.wget,ipee.download, rOflzec_updt, réwrec.nb
-~ Process Stringlist contains trollflood, cofloed, cogetflood, topsyn, visit, akicep, patcher, opentem
Process Stringlist contains top, vfniksyn, akudp, 2ksym, sky, ddo=stop, bandwidthlood, udpx, udp, ping
Diagram 39: Modified OpenlOC indicators

To conclude, OpenlOC provides a simple and effective way of describing a
malware infection. As its syntax is based on XML, it can be easily transformed to a
format that can be used by IT monitoring tools like yara and snort. However, the current
OpenlOC lacks the ability to provide semantics behind the attributes but this can be

overcome by providing additional attributes to the XML syntax.

$http://www.snort.org

Hun-Ya Lock, hylock@gmailcom

Using 10C in Malware Forensics | 39

6. References
Aquilina, J. M., Malin, C. H., & Casey, E. (2010). Malware forensic field guide for
windows systems, digital forensics field guides. New York: Syngress.

Barnum, S. (2011, Nov. 2). Cyber Observable eXpression (CybOX) Use Cases. Retrieved
from
http://cybox.mitre.org/documents/Cyber%200bservable%20eXpression%20(Cyb
0X)%20Use%20Cases%20-%20(ITSAC%202011)%20-
%20Sean%20Barnum.pdf

Casey, E. (2011). Handbook of digital forensics and investigation. Burlington: Academic

Press.

JSI Tip 0324 - Registry entries for services (1997, Nov 24). Retrieved from
http://www.windowsitpro.com/article/registry2/jsi-tip-0324-registry-entries-for-

services-.

Kirillov, 1. (2012, Febuary 08). An introduction to the malware attribute enumeration and
characterization white paper. Retrieved from

https://maec.mitre.org/about/docs/Introduction_to MAEC_white_paper.pdf
Leydon, John. (2012, September 20). Sophos antivirus classifies its own update kit as
malware. Retrieved from

http://www.theregister.co.uk/2012/09/20/sophos_auto_immune_update _chaos/.

Liston, Tom. (2006). On the cutting edge: thwarting virtual machine detection. Retrieved

from http://handlers.sans.org/tliston/ThwartingVVMDetection_Liston_Skoudis.pdf

Murray, Jim. (2012, October 16). Analysis of the incident handling six-step process .
Retrieved from http://www.giac.org/cissp-papers/17.pdf

Hun-Ya Lock, hylock@gmailcom

Using 10C in Malware Forensics | 40

Paxson, V. (2011, April 19). Viruses and worms. Retrieved from
http://inst.eecs.berkeley.edu/~cs161/sp11/slides/4.19.virus-worms.pdf

Collake, J. (2005, April 25). PECompact v2.0 Anti-Virus Interoperability Technical
Document. Retrieved from http://www.bitsum.com/pec2av.htm

Sophisticated indicators for the modern threat landscape: an instruction to OpenlOC

(2011). Retrieved from
http://openioc.org/resources/An_Introduction_to_OpenlOC.pdf

Hun-Ya Lock, hylock@gmailcom

Using 10C in Malware Forensics | 41

Appendix 1: Analysis Tools
Windows 7

» CaptureBat

« IDA

* OllyDbg

* PEBrowse
* PEID

* Regshot

» Sysinternals Process Explorer

» Sysinternals Process Monitor

REMnux
» fakedns
e ircd server

e wireshark

Hun-Ya Lock, hylock@gmailcom

Appendix 2: I0OC Terms

Using 10C in Malware Forensics

42

The full list of IOC indicator terms retrieved on 10 Oct 2012 are listed below

(http://openioc.org/terms/Current.iocterms):

Indicator Name

ArpEntryltem

CookieHistory

Diskltem

DnsEntryltem

Driverltem

Email

EventLogltem

FileDownloadHistoryltem

Fileltem

FormHistoryltem

Hiveltem

Hookltem

Moduleltem

Network

Portltem

Prefetchltem

Hun-Ya Lock, hylock@gmailcom

Using 10C in Malware Forensics @ 43

Processltem

Registryltem

RouteEntryltem

Serviceltem

SystemlInfoltem

SystemRestoreltem

Taskltem

UrlHistoryltem

Userltem

Volumnltem

Hun-Ya Lock, hylock@gmailcom

Using 10C in Malware Forensics = 44

Appendix 3: Zeus I0OC

<?xml version="1.0" encoding="us-ascii” "
<ioc xmlns:xsi="http://www. w3. org/2001/XMLSchema-instance” xmlns:xsd="http://www. w3. org/2001/XMLSchema”
id="6d2a1b03-b216-4cd8-9a9e-8827af6ebf93” last-modified="2011-10-28T19:28:20"
xmlns="http://schemas. mandiant. com/2010/ioc”>
<short_description>Zeus</short_description>
<description>Finds Zeus variants, twexts, sdra64, ntos</description>
<keywords />
<authored_by>Mandiant</authored_by>
<authored_date>0001-01-01T00:00:00</authored_date>
<links />
{definition>
<{Indicator operator="0R" id="9¢c8df971-32a8-4ede-8a3a—-c5cb2¢c1439¢c6”>
{Indicator operator="AND" id="0781258f-6960-4da5-97a0-ec35fb403cac”>
<IndicatorItem id="50455b63-35bf-4efa-9f06-aeba2980f80a” condition="contains”>
<Context document="Processltem” search="Processltem/name” type="mir” />
<{Content type="string”>winlogon. exe</Content>
</Indicatorltem>
<IndicatorItem id="b05d9b40-0528-461f-9721-e31d5651abdc” condition="contains”>
<Context document="Processltem” search="ProcessItem/HandlelList/Handle/Type” type="mir” />
<{Content type="string”>File</Content>
</Indicatorltem>
<Indicator operator="0R" id="67505775-6577-43b2-bccd-74603223180a">
<IndicatorItem id="c5ae706f-c032-4da7-8acd-4523f1daedf6” condition="contains”>
{Context document="ProcessItem” search="ProcessItem/HandleList/Hand|e/Name” type="mir” />
{Content type="string”>system32¥sdrab4. exe</Content>
<{/IndicatorItem>
{IndicatorItem id="25ff12a7-665b-4e45-8b0f-6e5ca7b95801” condition="contains”>
{Context document="ProcessItem” search="ProcessItem/HandleList/Hand|e/Name” type="mir” />
<Content type="string”>system32¥twain_32¥user.ds</Content>
<{/IndicatorItem>
{IndicatorItem id="feal1706-9ebe-469b-b30a-4047cfb7436b” condition="contains”>
<{Context document="Processltem” search="Processltem/HandleList/Handle/Type” type="mir” />
<Content type="string”>¥WINDOWS¥system32¥twext. exe</Content>
<{/IndicatorItem>
{IndicatorItem id="94ac992¢c-8d6d-441f-bfc4-5235f9b09af8” condition="contains”>
{Context document="Processltem” search="ProcessItem/HandleList/Handle/Name” type="mir” />
{Content type="string”>system32¥twain32¥local.ds</Content>
<{/IndicatorItem>
<IndicatorItem id="bc12f44e-7d93-47ea-9cc9-86a2beeaaldc” condition="contains”>
{Context document="Processltem” search="Processltem/HandleList/Hand|e/Name” type="mir” />
<Content type="string”>system32¥twext. exe</Content>
</IndicatorItem>
<IndicatorItem id="1c3f8902-d4e2-443a-a407-15be3951bef9” condition="contains”>
{Context document="Processltem” search="Processltem/HandlelList/Hand|e/Name” type="mir” />
{Content type="string”>system32¥|owsec¥user. ds</Content>
</Indicator Item>
<Indicatorltem id="7fab12d1-67ed-4149-b46a-ec50fc622bee” condition="contains”>
<Context document="Processltem” search="ProcessItem/HandleList/Handle/Name” type="mir” />
<Content type="string”>system32¥|owsec¥local. ds</Content>
</IndicatorItem>
</Indicator>
</Indicator>
<Indicator operator="AND" id="9f7a5703-8a26-45cf-b801-1¢c13f0f15d40">
{IndicatorItem id="cf77d82f-0ac9-4¢81-af0b—d634f71525b5" condition="contains”>
{Context document="Processltem” search="Processltem/HandlelList/Handle/Type” type="mir” />
{Content type="string”>Mutant</Content>
</Indicatorltem>
<Indicator operator="0R" id="83f72¢f7-6399-4620-b735-d08ce23bab17">

Hun-Ya Lock, hylock@gmailcom

Using 10C in Malware Forensics | 45

<IndicatorItem id="a1250d55-cd63-46cd-9436-e1741f5f42¢7” condition="contains”>
{Context document="Processltem” search="ProcessItem/HandleList/Handle/Name” type="mir” />
{Content type="string”>__SYSTEM__</Content>
</Indicator Item>
<IndicatorItem id="e033b865-95ba-44ab—baab-3b1e8e5f348¢” condition="contains”>
{Context document="ProcessItem” search="Processltem/HandleList/Hand|e/Name” type="mir” />
{Content type="string”>_AVIRA_</Content>
</IndicatorItem>
</Indicator>
</Indicator>
</Indicator>
</definition>
</ioc>

Hun-Ya Lock, hylock@gmailcom

Using IOC in Malware Forensics | 46

Appendix 4: a.bat

Echo

Echo
Echo

Echo

Echo

Echo
Echo

Echo
Echo

Echo
Echo
Echo
Echo
Echo

Echo.

Echo.

Echo.

Echo.

Echo.

Echo.
START /WAIT REGEDIT /S %temp¥%\1.reg
DEL %temp%\1l.reg

DEL %0

[] a.bat %
gecho off

REGEDIT4>%temp%\1.reg

=>%temp%\1l.reg
[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\SharedAccess]=>>%temp%\1.reg

"Start"=dword:00000002>>%temp%\1.reg

=>%temp%\1l.reg
[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\SharedAccess\Parameters\FirewallPolicy

\StandardProfile]=>%temp%\1.reg

"EnableFirewall"=dword:00000000>>%temp%\1.reg

=>%temp%\1l.reg
[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\wuauserv]=>%temp%\1.reg

"Start"=dword:00000004>>%tenp%\1.reg

=>%temp%\1l.reg
[HKEY_LOCAL_MACHINE\SYSTEM\Controlset@01l\Services\wscsvc]>>%temp%\1l.reg

"Start"=dword:00000004>>%tenp%\1.reg

>>%temp%\1.reg
[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters]==%temp%\1.reg

"MaxFreeTcbs"=dword:000007d0>>%temp%\1.reg

"MaxHashTableSize"=dword:00000800>>%temp%\1.reg

"TcpTimedWaitDelay"=dword:0000001e>>%temp%\1.reg

"MaxUserPort"=dword:0000f618>>%temp%\1.reg

=>%temp%\1l.reg

Diagram 40: A copy of a.bat

Hun-Ya Lock, hylock@gmailcom

Using 10C in Malware Forensics = 47

Appendix 5: De-obfuscating PECompact

AEdElEEE| 5 B2 BBSC47EE MOV ERX, ada. 884 73CES
AE4EiEas(. 5@ FUSH ERX
AEdElEEs | . a4 FF35 BAEEEI FUSH DWORD PTR FS:[A]
EEdEiEEn| o &4: 8925 BEEEEI MOV DWORD PTR FS:[81,ESP
HE4EiE1i4| . 33CHE #OR ERH, EAX

. 8988 MOV OWORD PTR DS: [ERX],ECH
aad4ainla . 5@ FUSH ERX
aad4aials(. 45 IMC EEP
aad4aiainl . 43 IMC EBX
aad4aiaie|(. &F OuUTS DXE,DOWORD PTR ES: [EDI]
BR4n1Eic) . &0 IMS DWORD PTR ES:[EDID,DH
Ba4a1810| .~7¥@ &1 J0 SHORT ada.@@4al8sa
AEd4nlElF|] o 637432 A8 ARFL WORD PTE D5: [EDX+ESII,SI
AEd4ElEzz) . 882C8A 911BRAI OR BYTE PTR DS: [EDS+ECHK#4+B:7AALIESL], 81
BE401E2E EZ DB E&
BEdE 1 E2C 1a DE 18
BEdE 1820 44 DE 44
pedglezE| P2 DE F2

|.-'1'u:|:333 violation when writing to [00000000] - use Shiftt+F7/FE/F to pazs exception to program

Diagram 41: OEP of obfuscated code

PECompact uses SEH (Structured Exception Handling) mechanism to hide the
OEP of the malicious code. The OEP of the obfuscated code contains very few lines of
code. In x86 machines, FS:[0]*® points to the head of the EXCEPTION_RECORD list.
At 0x40100D, the address 0x478CBO0 is move to FS:[0]. The “XOR EAX, EAX”
command set the value of EAX register to 0. An exception is generated at 0x401016,
when there is a move to address DS:[EAX]. The key press “Shift+F9” will return control
to address Ox478CBO.

3Bhttp://msdn.microsoft.com/en-us/library/ms253960(v=vs.80).aspx

Hun-Ya Lock, hylock@gmailcom

Using 10C in Malware Forensics = 48

AE4TE07E| 5B FOF EBA
AR4E07C| 50 POP EBF
-FFEB JHP ERK ada. B84 15F64
AR47A0FF| B41EF POP EDI Superf luous pref ix
B4 Ta0st| 41 IHC ECE
R4 TE082| AEEE AOD EYTE PTR DS:[EARI, AL
AR4TE054| AEEE AOD ENTE PTR DS:[EAXI,AL
R4 TE086| AEEE AOD BYTE PTR DS:[EAXI, AL
R4 TE025| AEEE AOD EYTE PTR DS:[EARI.AL
AR4TE05A| AREE AOD ENTE PTR DS:[EAXI,AL
R4 TE0EC| AEEE AOD BYTE PTR DS:[EAXI, AL
AR4TE02E| AEEE AOD EYTE PTR DS:[EARI. AL
R4 TE09E| AEER AOD EYTE PTR DS:[EAXI,AL
R4 TE092| AEEE AOD BYTE PTR DS:[EARI.AL
ARd7E094| AEER AOD EYTE PTR DS:[EAXI, AL
R4 7E09| AEEE AOD EYTE PTR DS:[EAXI,AL
R4 TE09E| AEEE AOD BYTE PTR DS:[EARI.AL
47805 6abe A0 BYTE FTR 05: (EAKD, AL
Diagram 42: JMP to OEP

0x478CBO0 contains the de-obfuscation routines which ends at 0xOx478D7D with
a “JMP EAX” which jumps to the OEP at 0x0415F64.

Hun-Ya Lock, hylock@gmailcom

Using 10C in Malware Forensics | 49

Appendix 6: IRC & Malicious Commands

IRC Term® Remarks

ERROR Use by servers to report serious errors to
operators.

PRIVMSG Use to send private messages between
users.

KICK Use to forcibly remove a user from a
channel.

TOPIC Use to change or view the topic of a
channel.

001 Send to all clients when a connection is
established.

332 Server reply to a TOPIC message.
Indicates that a topic is set.

366 Server returned at the end of a NAMES list

005 Server reply to a MAP command. The
reply will contain a string showing the
relative position of a server.

376 Server reply to a MOTD (Message Of The
Day) request. This is sent after message of
the day string is sent.

422 Server reply is a MOTD file is missing.

433 Server reply when the user is being invited

into a channel that it is already on.

Table 6: IRC Command at 0x40A391

Strings Remarks
Lin Change to channel #2k38
log.in Change to channel #2k38
l.out -
lo -
rmcc.die Delete service “PlugPlayCM” and release

3https:/ftools.ietf.org/ntml/rfc1459#section-4.1.4

Hun-Ya Lock, hylock@gmailcom

Using 10C in Malware Forensics | 50

Strings

Remarks

mutex

rmcc.now

Delete service “PlugPlayCM” and release
mutex

advscan

asc

threads

t

ipcc.wget

ipcc.download

rOflzcc.updt

rdwrcc.nb

tcp

tfn2ksyn

akudp

aksyn

sky

ddosstop

bandwidthflood

udpx

udp

ping

trollflood

Launch thread 0x4153D3 which would
continuously open a socket and connect to
a random location.

ccflood

ccgetflood

tcpsyn

visit

akicmp

patcher

Hun-Ya Lock, hylock@gmailcom

Using 10C in Malware Forensics

51

Strings

Remarks

opentem

Table 7: Malicious commands at 0x4014B0

Hun-Ya Lock, hylock@gmailcom

Using 10C in Malware Forensics | 52

Appendix 7: I0C Terms

{?xml version="1.0" encoding="us-ascii”?>
{ioc xmlns:xsi="http://www. w3. org/2001/XMLSchema-instance”
xmlns:xsd="http://www. w3. org/2001/XMLSchema” id="26184e25-a226-442a-9a0c-81f553afd7ea”
last-modified="2012-12-01T23:39:44” xmlns="http://schemas. mandiant. com/2010/ioc”>
{short_description>ada</short_description>
<authored_by>1hy</authored_by>
{authored_date>2012-10-25T08:40:38</authored_date>
{links />
{definition>
{Indicator operator="0R” id="1leaa7fa8-ac8a—430b—96bc—a579064999ch”>
{Indicator operator="AND" id="2e271d9c—632c-4c27-9428-aeba3377aabf”>
{IndicatorItem id="b74ce978-280c-4d31-9b78-5442b826305d” condition="contains”>
{Context document="Fileltem” search="Fileltem/FullPath” type="mir” />
{Content type="string”>c:¥Windows¥System32</Content>
{/IndicatorItem>
{IndicatorItem id="048ebe8b—a2c3-4fa6-b9f7-604302f3a85f” condition="contains”>
{Context document="Fileltem” search="Fileltem/FileName” type="mir” />
{Content type="string”>serives. exe</Content>
{/IndicatorItem>
{IndicatorItem id="4edb0110-44be-4ce5-8b87-bf92elelbca3d” condition="is">
{Context document="Fileltem” search="Fileltem/Md5sum” type="mir” />
{Content type="md5”>aadal69alcbd822e1402991e6a9c9238</Content>
{/IndicatorItem>
</Indicator>
{Indicator operator="AND” id="f2d259ea-351c-4cb1-9b46—c879da03755a">
{Indicatorltem id="b714f6f0-8e01-453a-8816-7b7aldla0a27” condition="contains”>
{Context document="Registryltem” search="Registryltem/KeyPath” type="mir” />
<{Content
type="string” >)HKEY_LOCAL_MACHINE¥SYSTEM¥CurrentControlSet¥Services¥SharedAccess</Conte
nt>
<{/IndicatorItem>
{IndicatorItem id="082069e4-f589-48e¢9-989b—dlc1c39f0dbd” condition="contains”>
{Context document="Registryltem” search="Registryltem/ValueName” type="mir”
/>
{Content type="string”>Start</Content>
<{/IndicatorItem>
{IndicatorItem id="4ceb7lae-f7ea—45c6-901c-396537eb4d45” condition="contains”>
{Context document="Registryltem” search="Registryltem/Value” type="mir” />
{Content type="string”>2</Content>
<{/IndicatorItem>
</Indicator>
{Indicator operator="AND” id="f71f0662-bd9c-4f13-ac39-a0454655f565">
{IndicatorItem id="e9773c12-d05e-4097-aa44-817e5a81a6f1” condition="contains”>
<{Context document="Registryltem” search="Registryltem/KeyPath” type="mir” />
<{Content
type="string” >)HKEY_LOCAL_MACHINE¥SYSTEM¥CurrentControlSet¥Services¥SharedAccess¥Parame

Hun-Ya Lock, hylock@gmailcom

Using 10C in Malware Forensics | 53

ters¥FirewallPolicy¥StandardProfile</Content>
{/IndicatorItem>
{IndicatorItem id="3f269fac—ce74-4629-810e-4aa7fbac8d4f” condition="contains”>
{Context document="Registryltem” search="Registryltem/ValueName” type="mir”
/>
{Content type="string”>EnableFirewall</Content>
{/IndicatorItem>
{IndicatorItem id="39ala564-0d94-40a4-a450-bc354d4a27ae” condition="contains”>
{Context document="Registryltem” search="Registryltem/Value” type="mir” />
{Content type="string”>0</Content>
{/IndicatorItem>
{/Indicator>
{Indicator operator="AND” id="4c05075e-1345-4ba3-a349-ee78e599872b">
{IndicatorItem id="1f6b857e-6f78-4843-ae58-3f2c51laeca8c” condition="contains”>
{Context document="Registryltem” search="Registryltem/Value” type="mir” />
{Content type="string”>Start</Content>
{/IndicatorItem>
{IndicatorItem id="f8da3d69-191e-4el5-9ed7-8f2aa9bl3add” condition="contains”>
{Context document="Registryltem” search="Registryltem/Value” type="mir” />
{Content type="string”>4</Content>
{/IndicatorItem>
{Indicator operator="AND" id="3464b433-cfb0-4c61-ae98-e29bbde2a37c”>
{IndicatorItem id="c2c58f87-7273-449e-97ae-54b1776c7a76”
condition="contains”>
{Context document="Registryltem” search="Registryltem/KeyPath” type="mir”

/>
{Content
type="string” >)HKEY_LOCAL_MACHINE¥SYSTEM¥CurrentControlSet¥Services¥wuauserv</Content>
</IndicatorItem>

{IndicatorItem id="5b872ff7-29b6-4e87-bc25-81912dc66ce0”
condition="contains”>
{Context document="Registryltem” search="Registryltem/KeyPath” type="mir”

/>
{Content
type="string” >)HKEY_LOCAL_MACHINE¥SYSTEM¥ControlSet001¥Services¥wscsved/Content>
<{/IndicatorItem>
<{/Indicator>
</Indicator>

{Indicator operator="AND" id="72e4fbfd-a3cc-4e29-86d5—3ebfcfel01f6”>
{IndicatorItem id="f7d42cbd-7b03-4734-bc97-e400b57d5fe5” condition="contains”>
<{Context document="Registryltem” search="Registryltem/Path” type="mir” />
<{Content
type="string” >)HKEY_LOCAL_MACHINE¥SYSTEM¥CurrentControlSet¥Services¥Tcpip¥Parameters</C
ontent>
<{/IndicatorItem>
{Indicator operator="AND" id="39fflacb5-2bf5-4c7e-b502-43249890ad75”>
{IndicatorItem id="ebe9f693-1844-4dcc—9efe—f7319¢934928”
condition="contains”>
<{Context document="Registryltem” search="Registryltem/ValueName”

Hun-Ya Lock, hylock@gmailcom

Using 10C in Malware Forensics = 54

type="mir” />
{Content type="string”>MaxFreeTcbs</Content>
{/IndicatorItem>
{IndicatorItem id="d3b872d5-a2dd-4eb4-a456-04a329d7e6e6”
condition="contains”>
{Context document="Registryltem” search="Registryltem/Value” type="mir” />
{Content type="string”>0x7d0</Content>
{/IndicatorItem>
{/Indicator>
{Indicator operator="AND" 1d="92a30677-692d-4bd5-9040-40a4fca4dl1f”>
{IndicatorItem id="61672e9b-960b-456e-a642-cc934c9678c8”
condition="contains”>
{Context document="Registryltem” search="Registryltem/ValueName”
type="mir” />
{Content type="string”>MaxHashTableSize</Content>
{/IndicatorItem>
{Indicatorltem id="72a9e94c-afla-4987-bced-97bced06986b”
condition="contains”>
{Context document="Registryltem” search="Registryltem/Value” type="mir” />
{Content type="string”>0x800</Content>
{/IndicatorItem>
<{/Indicator>
{Indicator operator="AND" id="95fabcf2-edb6-457c-abb8-81c44f4b4c04”>
{IndicatorItem id="5df0d18d-6¢39-40fb-b634-b4329e2f7113”
condition="contains”>
{Context document="Registryltem” search="Registryltem/ValueName”
type="mir” />
{Content type="string”>TcpTimedWaitDelay</Content>
<{/IndicatorItem>
{IndicatorItem id="4382586f-8991-49f6-bf06-652869c698f3”
condition="contains”>
{Context document="Registryltem” search="Registryltem/Value” type="mir” />
{Content type="string”>0xle</Content>
</IndicatorItem>
<{/Indicator>
{Indicator operator="AND" id="cfa20067-7e94-4367-8cf1-d2aa70b587d1”>
{IndicatorItem id="0cafl1f49-2348-444e-9db0-82e139bfa73f”
condition="contains”>
{Context document="Registryltem” search="Registryltem/ValueName”
type="mir” />
<{Content type="string”>MaxUserPort</Content>
</IndicatorItem>
{IndicatorItem id="b9372dcd-5ca3—-4cbe—b259-8e652dd97ble”
condition="contains”>
{Context document="Registryltem” search="Registryltem/Value” type="mir” />
{Content type="string”>0xf618</Content>
<{/IndicatorItem>
<{/Indicator>
</Indicator>

Hun-Ya Lock, hylock@gmailcom

Using 10C in Malware Forensics | 55

{Indicator operator="AND" id="7eb009b2-aa52-4553-8f96—d6ab93a504d3”>
{IndicatorItem id="35dc6746-f204-45ba—ae7e-71fd98b65f4e” condition="contains”>
{Context document="Serviceltem” search="Serviceltem/name” type="mir” />
{Content type="string”>Security Center</Content>
{/IndicatorItem>
{Indicatorltem id="d0cab54fa-8120-4401-a438-d892ef62a465” condition="contains”>
{Context document="Serviceltem” search="Serviceltem/name” type="mir” />
{Content type="string”>PlugPlayCM</Content>
{/IndicatorItem>
{/Indicator>
{Indicator operator="AND” id="28307beb-b70d-43fd-938d-40bff22979c9”>
{IndicatorItem id="691fc3fb-49b8-4778-9243-0b1695778498” condition="contains”>
{Context document="ProcessItem” search="ProcessItem/name” type="mir” />
{Content type="string”>serivces. exe</Content>
{/IndicatorItem>
{/Indicator>
{Indicator operator="0R” id="62c59ef1-6804-4494-a438-f5b77f69e11d”>
{IndicatorItem id="4c852419-e4df-44cd-blcb—67e5feb7bb59” condition="contains”>
{Context document="Network” search="Network/String” type="network” />
{Content type="string”>blue3</Content>
{/IndicatorItem>
{IndicatorItem id="60128b77-d1fc-4064-b078-8a6al6f9abb2” condition="isnot”>
{Context document="Network” search="Network/URI” type="network” />
{Content type="string”>http://checkipdyndns. org</Content>
{/IndicatorItem>
{IndicatorItem id="0b7289b2-2af3-4891-99c¢8-00a12b6632c7” condition="is">
{Context document="Network” search="Network/URI” type="network” />
{Content type="string”>http://www. ip138. com</Content>
</IndicatorItem>
{Indicator operator="AND" id="3cbbad62-26aa—48c1-b83f-5f16095020b8">
{IndicatorItem id="37f2aa9f-8d23-4ed4-b79a-e168ac3286ea”
condition="contains”>
{Context document="PortItem” search="PortItem/remoteIP” type="mir” />
{Content type="IP”>60. 10. 179. 100</Content>
<{/IndicatorItem>
{IndicatorItem id="a13490ca—2e46-46f5-9410-c4f1256db815”
condition="contains”>
{Context document="PortItem” search="PortItem/remotePort” type="mir” />
<{Content type="string”>8680 ? 8689</Content>
<{/IndicatorItem>
</Indicator>
</Indicator>
{Indicator operator="AND” id="0b5fd0cd-c37a-43f1-b8ba—07fb6795e839”>
{IndicatorItem id="37655418-7064-4c95-b18d-5137e70a5308” condition="contains”>
{Context document="ProcessItem” search="Processltem/HandleList/Handle/Name”
type="mir” />
<{Content
type="string” >gregHDGHRTEfghRTHNNBMJKR! | EADSVXDFSWEdhstoio4i0340432m19</Content>
<{/IndicatorItem>

Hun-Ya Lock, hylock@gmailcom

Using 10C in Malware Forensics = 56

{/Indicator>
{Indicator operator="0R” id="62cec0f3—-e5f9-4bb1-b496-5cb63e136785">
<{Indicator operator="0R” id="dbadfaal-f463-4649—-ae13-9264a567c773">
{IndicatorItem id="08257809-514d-4eb3-b034-85f158102d07”
condition="contains”>
{Context document="ProcessItem” search="ProcessItem/StringlList/string”
type="mir” />
{Content
type="string” >PRIVMSG, KICK, TOPIC, 001, 005, 332, 366, 376, 422, 433</Content>
{/IndicatorItem>
{IndicatorItem id="1653ed5a~7¢c3d-40e5-bf75-d2e078b03564”
condition="contains”>
{Context document="ProcessItem” search="ProcessItem/StringlList/string”
type="mir” />
{Content
type="string”>1. in, log. in, 1. out, lo, rmcc. die, rmcc. now, advscan, asc</Content>
{/IndicatorItem>
{IndicatorItem id="1653edba-7c3d-40e5-bf75-d2e078b03564”
condition="contains”>
{Context document="ProcessItem” search="ProcessItem/StringList/string”
type="mir” />
{Content
type="string”>threads, t, ipcc. wget, ipcc. download, rOflzcc. updt, rdwrcc. nb</Content>
{/IndicatorItem>
{IndicatorItem id="1653edba-7c3d-40e5-bf75-d2e078b03564”
condition="contains”>
{Context document="ProcessItem” search="ProcessItem/StringlList/string”
type="mir” />
{Content
type="string”>trollflood, ccflood, ccgetflood, tepsyn, visit, akicmp, patcher, opentem</Conte
nt>
<{/IndicatorItem>
{IndicatorItem id="1653edba—7c3d-40e5-bf75-d2e078b03564”
condition="contains”>
<{Context document="ProcessItem” search="ProcessItem/StringlList/string”
type="mir” />
<{Content
type="string”>tcp, tfn2ksyn, akudp, aksyn, sky, ddosstop, bandwidthflood, udpx, udp, ping</Cont
ent>
<{/IndicatorItem>
</Indicator>
</Indicator>
</Indicator>
</definition>
{/ioc>

Hun-Ya Lock, hylock@gmailcom

Last Updated: April 8th, 2014

Upcoming Training

CERTIFIED!

SANS Security West 2014 San Diego, CA May 08, 2014 - May 17, 2014 Live Event
Mentor Session - FOR 610 Columbia, MD May 21, 2014 - Jul 23, 2014 Mentor
Digital Forensics & Incident Response Summit Austin, TX Jun 03, 2014 - Jun 10, 2014 Live Event
Community SANS Ottawa Ottawa, ON Jun 16, 2014 - Jun 21, 2014 |Community SANS
SANSFIRE 2014 Baltimore, MD Jun 21, 2014 - Jun 30, 2014 Live Event
SANS vLive - FOR610: Reverse-Engineering Malware: Malware |FOR610 - 201407, Jul 14, 2014 - Aug 20, 2014 vLive
Analysis Tools and Techniques

SANS Virginia Beach 2014 Virginia Beach, VA Aug 18, 2014 - Aug 29, 2014 Live Event
SANS Baltimore 2014 Baltimore, MD Sep 22, 2014 - Sep 27, 2014 Live Event
SANS DFIR Prague 2014 Prague, Czech Republic | Sep 29, 2014 - Oct 11, 2014 Live Event
SANS vLive - FOR610: Reverse-Engineering Malware: Malware |FOR610 - 201410, Oct 13, 2014 - Nov 19, 2014 vLive

Analysis Tools and Techniques

Community SANS Paris @ HSC - FOR610 (in French)

Paris, France

Nov 24, 2014 - Nov 28, 2014

Community SANS

SANS OnDemand

Online

Anytime

Self Paced

SANS SelfStudy

Books & MP3s Only

Anytime

Self Paced

