GIAC

CERTIFICATIONS

Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?

Check out the list of upcoming events offering

"Reverse-Engineering Malware: Malware Analysis Tools and Techniques (Foren
at http://www.giac.org/registration/grem

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/grem

© SANS Institute 2005

GIAC Reverse Engineering Malware
GREM Practical Assignment Version 1.0

Reverse Engineering MSRLL.EXE
Bryan Fendley

December 2004

Author retains full rights.

Table of Contents

ADSIraCE ... 1

Laboratory Setup ... 1

Properties of the Malware Specimen ..., 7
Behavioral Analysis, 9
Code ANAIYSIS ... 17
ANAlYSIS Wrap-UpP .o 23
ReferenCes ... 25

© SANS Institute 2005 Author retains full rights.

Abstract

This paper is the practical assignment necessary for the completion of the SANS
ILOT Certificate in Reverse Engineering Malware. The paper will demonstrate
the process of methodically analyzing a malware specimen in a controlled
environment. The paper will demonstrate the methodology explained during the
course as well as demonstrate an example testing environment and softwares
that can be used during the analysis process. Many of the programs used are
free. Some software is not free but trial versions are available.

Section 1: Laboratory Setup

The following is a description of the laboratory setup including networking,
hardware, and software that | used during the course and for the analysis of the
practical assignment in reverse engineering malware.

Section 1.1 Operating Systems

Operating systems used during my analysis included Microsoft Windows XP and
Red Hat Linux 2.4.20-8. The Linux operating system was used to run an IRC
server and Telnet during this particular analysis to attempt to communicate and
issue commands to the malware specimen. Windows XP was used as a host
environment for the malware. Windows XP was also used as the operating
system to host the VMWare virtual machines.

Section 1.2 Network Configuration

In order to insure safe handling of the malware specimen the network
configuration for my analysis was self contained. VMWare was used to create
and host virtual machines on a single computer, and to establish a virtual
network in a dual homed host only environment in which VMWare provided
DHCP services.

| used VMWare workstation version 4.5.1 to run the following operating systems
as guest operating systems in the emulated VMWare host only network.

VMWare’s host only networking option helped in providing an isolated network.
When VMWare is configured in host only mode the Virtual Operating Systems
function as if on an isolated hub based network.

VMWare provided DHCP services to the virtual operating systems with IP
addresses assigned as follows:

Virtual machine 1 was a Microsoft Windows XP version 2002 un-patched, IP
address: 192.168.159.130. Virtual machine 2 was a Linux Red Hat image
provided as part of the course, IP address: 192.168.159.137. Figure 1-1
illustrates the virtual network configuration used during the analysis of msrll.exe.

© SANS Institute 2005 Author retains full rights.

S p).

Hunnl Bpumiing Nppiam Humnl Hguminy Bguiam
Hall Bul Binms Hnlinen BN
IN.ININRINE Imem Exnl By Neleel IBLINLINNINN

Figure1-1 Network Diagram

VMWare was also very important because it gave me the ability to backup and
restore full systems using the “snapshot” and “revert to snapshot features”. This
feature allowed me to execute and observe the malware repeatedly in a
controlled environment.

Section 1.3 Physical Configuration

For the physical configuration of my analysis environment, | used two PCs
connected to a single monitor and keyboard using a kvm switch. This
configuration allowed me to switch easily between my test environment and
production environment, and helped to conserve space in my office.

The first PC is my regular workstation and is connected to the internet. | used it
for research, tool downloading, report writing etc. during the analysis.

The second PC used for analysis was a fully patched Intel Pentium Ill, 927 MHz
processor with 512 MB RAM, running Microsoft Windows XP version 2002 with
the firewall enabled to further protect the host OS from any malware that would
be examined on the virtual OS and network. In order to make sure no malware is
able to escape into the wild, it is also very important that this system does not
have access to your production network or the internet in any way.

Both PCs and virtual OS have access to a printer via a parallel 4 port printer
switch. | found it useful during analysis to be able to print from my production
system and analysis system. In order to transfer necessary files to my analysis
machine, | used a CD and thumb drive. Figure 1-2 illustrates the physical
configuration of my malware analysis lab.

© SANS Institute 2005 Author retains full rights.

il_lll Hunlgumll kux
L]]

Ningls Munluinnl N ™ X
=Sr— 1=
Figure1-2

Section 1.4 Three Phase Analysis Model

During my analysis | used a three phase model to attempt to define
characteristics of the malware specimen and to identify and control it's behaviors
in this order: property analysis, behavioral analysis, and code analysis.

| configured my virtual Operating System that was to be infected with the
following list of tools and then saved a “snap shot” using VMWare. Since | was in
the process of learning to do malware analysis, | used the "revert to snapshot"
feature extensively in order to get back to a baseline. This particular process was
extremely important and useful during my process of learning to use the tools for
reverse engineering malware.

Section 1.5 Tools Used for Property Analysis

For the property analysis phase | used the command line utility MD5sum to
uniquely identify the malware specimen by computing its MD5 hash. | also used
Windows properties viewer to identify properties of the malware specimen such
as size and creation date.

Section 1.6 Tools Used for Behavioral Analysis

In order to analyze the behavioral effects of the malware on the file system and
registry, | used a program called InstallWatch Pro to create a log of changes
made to the file system and registry during the installation of the malware
specimen. | also used a program called FileMon to monitor file changes during
the installation of the malware specimen. RegMon was another program
package | used to monitor registry changes during the installation of the malware
specimen. | also used a program called RegShot to compare registry settings
before and after the installation of the malware specimen. Also used was
AutoRuns a tool that will allow you to see processes set to start at windows start

© SANS Institute 2005 Author retains full rights.

up. AutoRuns will also allow you to easily navigate to the processes registry
setting for editing. The use of all of these tools may be unnecessary since some
may provide similar results. Since | was in learning mode | wanted to try different
tools. | also wanted to be able to compare results of similar tools for accuracy.

In order to analyze the network behaviors of the malware specimen, | used the
command line utility NetStat with the “-a” switch to list port status on the infected
system before and after the execution of the malware specimen. | also used a
program called TDIMon to monitor port changes during the installation of the
malware specimen. | used the Ethereal packet sniffing utility on my host OS to
capture and analyze any packets sent by the malware specimen.

In order to analyze the malware specimen’s behavior further | used Telnet a
common terminal emulation program to try to communicate with the malware
specimen. During my analysis | used Telnet to attempt to issue commands to the
malware specimen. Since it is common for malware to use Internet Relay Chat
channels to communicate, an IRC server (Internet Relay Chat server) was also
used on my virtual Linux machine to try to communicate and issue commands to
the malware specimen.

Section 1.7 Tools Used for Code Analysis

During Code analysis | used AspackDie to unpack the malware specimen.
AspackDie is an unpacker for PE files which were compressed using any version
of Aspack since Aspack 2000. Aspack is a win32 executable file compressor
utility used for reducing file size and protecting against reverse engineering.

OllyDbg is a 32-bit assembler level analyzing debugger that runs on Microsoft
Windows. I used it to examine the malware specimen’s code in order to attempt
bypassing the malware specimen’s authentication and to attempt to issue
commands to msrll.exe.

BinText was the program | used to extract human readable strings from the
malware specimen in its packed and unpacked versions. These strings would
provide me with action words and clues with their associated memory addresses
that could be used during the code analysis phase.

A program called LordPE was also used. LordPE is a tool designed to assist in

the viewing of PE files dumped from memory allowing them be analyzed and
edited.

© SANS Institute 2005 Author retains full rights.

Section 2: Properties of the Malware Specimen

| downloaded the file from the SANS website and transferred it to my analysis
system via thumb drive. | unzipped the file using WinZip and placed it at the root
of C on my virtual Windows XP system.

The name of the file was msrll.exe. To find out more details, | right clicked on the
file and obtained the following details: Windows Application File, Size 41.0 kb,
created May 10, 2004, at 4:29:54 p.m. indicating that the file was designed to run
on a Windows operating system.

My next step was to obtain the MD5sum of the Msrll.exe file using the command
line tool MD5sum.exe. As seen in figure 1-3 the MD5sum was equal to:
84acfe96a98590813413122c12c11aaa.

cv Select C:\WINDOWS\System32\cmd.exe -0 E
4]

C:\>md5sum msrll.exe
B84acfe?6a98590813413122c12c1laaa *msrll.exe

Figure 1-3 Md5sum of msrll.exe

This provided me with a unique hash that would allow me to monitor if the file
changes in any way during execution.

| then used BinText to examine the malware executable for readable text strings.
To do this | opened the BinText program and then under “file to scan” | browsed
to C:\msrll.exe and pressed the “GO” button. This produced a report of readable
strings. | found one useful text string. As seen in figure 1-4, | could see that one
string was “.aspack”. This told me that the executable was compressed using
Aspack compression. | would later unpack this file and run BinText again to see
more useful strings.

© SANS Institute 2005 Author retains full rights.

7 BinText 3.00

Search | Fiter | Help |
File to scan IC:"-.merI,exe Browse | go
[V Advanced view Time taken : 0.000 secs Text size: 1380 bytes [1.35K)
File pos I Mem pos I ID I Text ~
A 0000004D 0Q040004D O IThis program cannot be run in DOS mode. —
A 00000178 00400178 O text
A 00000140 00400140 O .data
A 000001FO 0O04001F0 O .idata
|A 00000218 00400218 0 .aspack
A 00000240 00400240 O .adata
A 00000427 00401027 O IE>HBId
A 00000572 00401172 O (1101
A 00000644 00401284 O S'tt@
A 00000702 00401302 O ~“MMhx
A 000007F0 OQ04013F0 O Xp.yd
A 000008FD 004014FD O TPVTR
A 00000927 00401527 O D&rat A
< | >
Ready ‘ ANSI: 185 Uni: 0 ‘ Rsre: 0 I Find | Save |

Figure1-4 BinText Results

| then opened the msrll.exe file in Ollydbg and used the Ctrl N function to list all
symbolic names. | again saw the string “aspack” as seen in figure 1-5, further
verifying that msril.exe was compressed using Aspack.

OllyDbg - msril.exe - [Names in msrll]

IE] File W¥iew Debug Plugins Options

Window Help

|l gw u|l gw - S| mmm
= 44| X| w11 Wi #: 3:[1: =) = L|E|M|T|W/H|C|/|K|B|R|...| S| :iZ[:=
Address |Section | Type Name Comment
BBS1EBDL | . aspack | Import aduap 22, AdjustTokenPrivi leges
BBS1EGF1| .aspack | Import u DispatchMessageR
BAS1EGF9| . aspack | Import v on.GetFilelVersionInfoR
BAS1EBEL .aspack | Import MESVEC __getmainargs
BBS10FEA| . aspack | Import Z.GetModu leHand leR
BBS10FSC| . aspack | Import Z.GetProcAddress
BES1E1681| . aspack | Import =t.InternetCloseHandle
BBS1E@DY| . aspack | Import SV ._itoa
BBS10F&4| . aspack | Import cne 22, Loadl ibraryR
BB510881 | . aspack | Export EntryPoint>
BAS1EBEY| .aspack | Import shel122.Shel lIEsecuteR
BBS1E169 .aspack | Import weZ_ 22, WSAGetLastError

Figure1-5 Symbolic Names with OllyDbg

© SANS Institute 2005

Author retains full rights.

Note: in real world analysis, you would also want to consult anti-virus websites
regarding the properties of a particular malware specimen. Since | was looking
to test my new skKills, | purposefully skipped this process during this particular
phase of my analysis.

After viewing and recording the initial properties of the malware specimen, it was
time to move on to the behavioral analysis phase.

Section 3: Behavioral Analysis

Using a program package called InstallWatch Pro 2.5, | installed msrll.exe by
pressing InstallWatch Pro’s install button and browsing to the msrll.exe file that
was located at the root of C on my Windows XP virtual system. InstallWatch
records changes made to your PC during program installation. According to
InstallWatch, 5 files were added, 2 files deleted, 4 files updated, 27 registry
entries added, O registry entries deleted, and 16 registry entries updated. Note:
By using the snap shot feature within VMWare | was able to try this process more
than once and received slightly varying results as far as the number of files and
registry entries created, deleted, and modified. Figure 3-1 shows the results of
one attempt to capture changes using InstallWatch.

<4 ImstallWatch Pro 2.5¢ - [Default, iwc]

Figure3-1

By using InstallWatch | was able to see a folder named MFM 1 kb in size was
created in the System 32 folder. The MFM folder contained 2 files: jtram.conf 2kb
created on 11/19/2004 (the date of the analysis) and msrll.exe 42kb created
5/10/2004 (a date prior to my analysis). Figure 3-2 shows the InstallWatch report
of added files.

The file jtram.conf was located in the “mfm” folder along with the msrll.exe file. |
opened it with Windows notepad, but could not make out what it was. There were
lots of numbers and letters in indistinguishable patterns. | checked the properties
of this file at later times during the analysis and it appeared that it was being
modified.

© SANS Institute 2005 Author retains full rights.

© SANS Institute 2005

Zr ImstaliWateh Pro 2.5¢ - (Dafauls iwc] - [OFX

e
’ 4 @ o \ & ¥ o =~ L4
Tratasl Corfig Snapshot Updstes Tow el Avout
TR ek Feetiyre | Soe Wéter | tetrb W
- B) AxFiles CiDocuments and Settingsiiiser 1L0cH Settrgs| TevgPerit_Perfdata_Jal.de INE A
=X CAWRNDOWSIPref etchMSRLL EXE- 107BC400 3¢ HE A
Y. CAWINDOWSisysten 34w HE D
- CAWRNDOWS | systen32ywimigram cond 28 A
fjm“’“""?“s‘""' CWREOWSisysten 2ininat. exe o A
J Prefech
<) syvtem?
- mim
o I8 Ocletnd Fies
o I8 Modlnd Fles
(] N P
- Regmrry
QW:’.

Figure3-2

To see if the file was modified in anyway | obtained the MD5sum of the newly
created msrll.exe file using the command line tool MD5sum.exe. The MD5sum
matched the original msrll.exe file: 84acfe96a98590813413122c12c11aaa.

After the msrll.exe was executed, | noticed that it had removed itself from its
original location at the root of C as seen in figure 3-3. This was verified with
InstallWatch and later with Filemon as seen in figure 3-4.

Zr ImstadiWatch Pra 2.5 - (Detautt iwc)

»?
w {
F ritiarn | 35w teforn | mtrd Before | Gt Defore | wersion befors |
- [B) AnFiles CArerh.exe DE A SALOM2004 4. 2954 "M
» &) Added Fles C\Systen Yolume Infoemation e o
: B
4] Fes
+ o Regetry
@ Sean,
Figure3-3

b File Monitor - Sysinternals: www.sysinternals.com

File Edit Options Yolumes Help

E aBE © <9 4#2

Time Process Request Path Result

110 3:53:46 PM msill.exe:1... DELETE C:\msill.exe SUCCESS

1111 3:53:46 PM msrll.exe:1... CLOSE C:Amsill.exe SUCCESS
Figure3-4

Author retains full rights.

Using AutoRuns to show all services set to automatically start, | noticed there
was now a listing for msrll.exe as seen in figure 3-5.

Autorun Entry Description Publisher Image Path
. d HKLM\System\CurrentContralSet\Services
= mfm c:hwindowshspstern32imimimsill exe
Figure3-5

While in AutoRuns | clicked the service listing for “mfm” as seen in figure 3-5. |
was able to easily get to the registry editor and view detailed listings for the newly
created service as seen in figure 3-6.

' Registry Editor

File Edit View Favorites Help

[j Ibrtfde A | Name Type Data
a lc!ap) @J(Default) REG_SZ {value not set)
o Q LicenseService E‘_’]DisplayName REG_SZ Rll enhanced drive
£ B :“H“ts [)ErrorContral REG_DWORD 0xD0D0D00Z (2)
o
: aﬁe"ger [ab]1magePath REG_EXPAND_SZ CAWINDOWS|Systema2imfmimstl.exe
=53 Security [ab)Objectiame REG_S5Z LocalSystem
5 & mmdd 28] tart REG_DWORD 0x00000002 (2)
5 mamsrve 28] Type REG_DWORD 0x00000120 (288)
Figure 3-6

As seen in figure 3-7, | now had a registry setting for msril.exe to start as a
service: HKEY _LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\mfm
with an image path pointed to C:\WINDOWS\System32\mfm\msrll.exe with a
display name of “RIl enhanced drive”

= - - [5]x)

2
‘2 £ P g |
Y @ o B Y @ » 2
Install Config Snapshot Export Updates Tour Help About
= E mstll Key Yalue | Data
- All Files HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Servicesimfm
¥ L%I Added Files HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSetiServicesimfm Type dword:000(
3] Deleted Files HKEY_LOCAL_MACHINE\SYSTEM{CurrentControlSet|Servicesimfm Start dword:000(
H Modified Files HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Servicesimfm ErrorControl dword:000(
El INI Fles HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSetiServicesimfm ImagePath hex{2):43,:
= A HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Servicesimfm DisplayMName "RIl enhanc
= ﬁ Registry HKEY _LOCAL_MACHINE\SYSTEM\CurrentControlSet!Servicesimfm ObjectMame "LocalSyste
- ¥ Added Registry HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSetiServicesimfmiSecurity
. §HKEY_LOCAL_MACHINE| HKEY_LOCAL_MACHINE|SYSTEM\CurrentControlSetiServicesimfmiSecurity Security hex:01,00,
4 HKEY CURRENT LISER

Figure3-7

Next | used the following tools to confirm the results of InstallWatch Pro and
AutoRuns.

| used the “revert to snap shot feature” in VMWare to get back to a known good
state.

© SANS Institute 2005 Author retains full rights.

10

| then used Regshot to take a picture of my registry before and after the install of
msril.exe. Then using the compare feature of Regshot, | see that Regshot
confirmed the findings of AutoRuns in regards to the registry setting for:
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\mfm. RegShot
was also helpful in providing results for files added and deleted as seen in figure
3-8.

Reg shot

Keys added:7

HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001\Services\mfm
HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001\Services\mfm\Security

HKEY_ LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\mfm
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\mfm\Security
HKEY_USERS\S-1-5-21-448539723-1644491937-725345543-
1003\Software\Microsoft\Windows\CurrentVersion\Explorer\ComDIg32\OpenSaveMRU\exe
HKEY_USERS\S-1-5-21-448539723-1644491937-725345543-
1003\Software\Microsoft\Windows\ShellNoRoam\Bags\50
HKEY_USERS\S-1-5-21-448539723-1644491937-725345543-
1003\Software\Microsoft\Windows\ShellNoRoam\Bags\50\Shell

Files added:6

C:\Documents and Settings\User1\Local Settings\Temp\JET2A.tmp
C:\Documents and Settings\User1\Local Settings\Temp\Perflib_Perfdata_3a0.dat
C:\WINDOWS\Prefetch\MSRLL.EXE-03966588.pf
C:\WINDOWS\Prefetch\MSRLL.EXE-107BC400.pf
C:\WINDOWS\system32\mfm\jtram.conf

C:\WINDOWS\system32\mfm\msrll.exe

Files deleted:2

C:\Documents and Settings\User1\Local Settings\Temp\JET29.tmp
C:\msrll.exe

Figure3-8

| again used the “revert to snap shot feature” in VMWare to get back to a known
good state. Then | started the following applications and stopped their capture
feature and cleared their logs: Filemon and TDImon. | started the capture feature
on these utilities immediately before clicking on msrll.exe. Letting these programs
run for about 30 seconds and stopping them, | then examined the results.
Filemon supported my earlier findings of the “mfm” folder being created in the
System32 directory as seen in figure 3-9, also supported were my earlier findings

© SANS Institute 2005 Author retains full rights.

11

that the original msrll.exe file was removed from the root of the C drive were |
had placed it, as can be seen in Figure 3-10.

|1152 9:59:46 PM 3 msrll.exe:1... CREATE C:AWINDOWSASystem32\mfm
Figure3-9

a

HE $BE © <2 §a3

Time Process Request Path Result
110 9:59:46 PM il sl exe:1... DELETE C:\msill.exe SUCCESS
1111 9:59:46 PM Iﬁ msrll.exe:1... CLOSE C:\msrll.exe SUCCESS
Figure3-10

TDImon showed that msril.exe had opened port 2200 and was listening as seen
in figure 3-11.

17 1.266.. msrllexe:1820 81046C08 IRP_MJ_CREATE TCP:0.0.0.0:2200 SUCCESS Address Open

18 1.267.. msillexe:1820 81046C08 TDI_SET_EVENT_HANDLER TCP:0.0.0.0:2200 SUCCESS Error Event

19 1.267... msill.exe:1820 81046C08 TDI_SET_EVENT_HANDLER TCP:0.0.0.0:2200 SUCCESS Disconnect Event
0 1.267.. merllexe:1820 81046C08 TDI_SET_EVENT_HANDLER TCP:0.0.0.0:2200 SUCCESS Receive Event

il 1.267... msill.exe:1820 81046C08 TDI_SET_EVENT_HANDLER TCP:0.0.0.0:2200 SUCCESS Expedited Receiv...
i2 1.267.. merllexe:1820 81046C08 TDI_SET_EVENT_HANDLER TCP:0.0.0.0:2200 SUCCESS Chained Receive ...
i3 1.267.. merllexe:1820 81046C08 TDI_QUERY_INFORMATION TCP:0.0.0.0:2200 SUCCESS Query Address

4 1.268.. msrllexe:1820 8122FDCO IRP_MJ_CREATE TCP:Connection obj SUCCESS Context:0x810454...
5 1.268.. msrllexe:1820 8122FDCO TDI_ASSOCIATE_ADDRESS TCP:Connection obj SUCCESS TCP:0.0.0.0:2200
6 1.268... msrll.exe:1820 81101988 IRP_MJ_CREATE TCP:Connection obj SUCCESS Context:0x8132E...
7 1.268.. merllexe:1820 81101988 TDI_ASSOCIATE_ADDRESS TCP:Connection obj SUCCESS TCP:0.0.0.0:2200
8 1.269... msill.exe:1820 S10EESA0 IRP_MJ_CREATE TCP:Connection obj SUCCESS Context:0x81045...
9 1.269.. merll.exe:1820 B10EESA0 TDI_ASSOCIATE_ADDRESS TCP:Connection obj SUCCESS TCP:0.0.0.0:2200
30 1.269.. merllexe:1820 81046C08 TDI_SET_EVENT_HANDLER TCP:0.0.0.0:2200 SUCCESS Connect Event

Figure 3-11

Next | looked at how msrll.exe would interact with the network. Using Netstat with
the “ —a” switch and TCPview, | was able to verify that the msrll.exe process was
listening on port 2200 using Cavies as can be seen in figure 3-12 and in figure 3-
13 using Netstat. This would be an avenue that | would later test with Telnet to
see if msrll.exe would possibly accept remote commands on port 2200.

i TCPView - Sysinternals: www.sysinternals.com

fle Options Process View Help

Ha <@

Proc... 7/ Protocol Local Address Remote Address State
=1 Isass.exe:668 UDP winzpvictim:isakmp o

lexe:1784 TCP winxpvictio auth winxpvictio: [l LISTENING

msrll.exe:1784 TCP winxpvictim: 2200 winxpvictim:(LISTENING]
I svchostere 1. UDP winspvictim; 1027 :
A svchostexe1... TCP winxpvictim: 5000 winxpvictim:(LISTENING
A svchostexe1... UDP winxpvictim: 1900 **
™ svchostexe:1... UDP winxpvictim.localdomain: 1900 *x
™ svchostexe:B.. TCP winxpvictim:epmap winxpvictim:(LISTENING
™ svchostexe:8.. UDP winxpvictim:epmap **
1 svchost.exe:9... TCP winxpvictim: 1025 winxpvictim:(LISTENING
1 svchost.exe:9... UDP winxpvictim: 1026 **
3. svchostexe:3... UDP winzpvictim: 1028 .
Figure 3- 12

© SANS Institute 2005 Author retains full rights.

12

IERTIMIAT AR - ——

et C:\WINDOWS\System32\cmd.exe
]

[fActive Connections

Proto Local Address Foreign Address State
winxpvictim:auth winxpuictim:0 LISTENING
winxpvictim:epmap winxpuictim:0 LISTENING

y winxpvictim:microsoft—ds winxpvictim:0 LISTENING

E winxpvictim:1025 winxpuictim:0 LISTENING

winxpvictim:2200 winxpvictim:8 LISTENING
winxpvictim:5000 winxpuictim:0 LISTENING
winxpvictim:nethios—ssn winxpvictim:@ LISTENING

winxpuictim: %31 3%

Figure3-13

Next | used my host system to telnet to the infected machine on port 2200 to try
and initiate a response from the malware and was returned a “#”. From there |
was unable to elicit any other responses.

Using the “revert to snap shot” feature in VMWare, | set my system back to a
known good state. | then used Ethereal on the host machine sniffing the VMWare
virtual Ethernet adapter. | once again executed msrll.exe and | saw a dns query
for collective7.zxy0.com as seen in figure 3-14.

©
File Edit ‘iew Capture Analyze Help

HEERRERERER

EEESfE]

No. . ITime lSource |Destinati0n IProtocoI l]nfo
1 0.000000 152.168.159.130 Broadcast ARP who has 192.168.159.17 Tell 192.168.159.130
2 0.000039 192.168.159.1 192.168.159.130 ARP 152.168.159.1 is at 00:50:56:c0:00:01
3 0.000420 .168.159.130 192.168.159.1 N standard guery A collective?.zxy0.com
4 0.000465 192.168.159.1 152.168.159.130 ICMP Destination unreachahle
5 31.120694 152.168.159.130 152.168.158.1 DNS Standard qguery A collective?.zxy0.com
6 31.120758 192.168.159.1 192.168.159.130 ICMP pDestination unreachahle

[

EFrame 3 (80 bytes on wire, 80 bytes captured)

E Ethernet II, src: 00:0¢:29:5¢:59:1f, Dst: 00:50:56:c0:00:01

@ Internet Protocol, sSrc Addr: 192.168.159.130 (192.168.159.130), Dst Addr: 192.168.159.1 (192.168.159.1)
[User Datagram Protocol, Src Port: 1027 (1027), Dst Port: domain (53)

@ pomain Name System (query)

.......]I
0000 00 50 56 cO 00 01 Q0 Oc 29 5¢ 59 1f 08 00 45 00 PVLLL L, JNY. . .E.
0010 00 42 01 0a 00 00 80 11 79 cc <0 a8 9f 82 c0 a8 Bo..... Wevunnnn
0020 9f 01 04 03 00 35 00 2e a3 bs 00 Of 01 00 00 Q1 See sassnsse
0030 00 00 00 00 00 Q0 Ob 63 6f 6¢C 6¢C 65 63 74 69 76 c ollectiv
0040 65 37 04 7a 78 79 30 03 63 6f 6d 00 00 01 00 01 e7.zxy0. com.....
Figure3-14

Using the “revert to snap shot” feature in VMWare, | set my system back to a
known good state.

As we had learned in class, in order to learn more about a malware specimen it
would be necessary to mold the test environment in order to give the malware
what it expects. So, next | changed the host file located on my Windows XP
virtual system in the following location: C:\WINDOWS\SYSTEM32\DRIVERS\ETC, SO
that collective7.zxy0.com was associated with the IP address of my Linux virtual
machine: 192.168.159.137 as seen in figure 3-15. | then saved this configuration
as a new VMWare snapshot.

© SANS Institute 2005 Author retains full rights.

13

=

Copyright (c) 1993-1999% Microsoft Corp.
This is a sample HOSTS file used by Microsoft TCP/IP for windows.

#

#

#

#

This file contains the mappings of IP addresses to host names. Each
entr¥ should be kept on an individual line. The IP address should

be placed in the first column followed bg the corresponding host name.
The IP address and the host name should be separated by at Teast one
space.

#
Additiona11¥, comments (such as these) may be inserted on individual
Tines or following the machine name denoted by a '#' symbol.

#
i
#
#
#

For example:

102.54.94.97 rhino. acme. com # source server
38.25.63.10 X.acme. com # x client host
127.0.0,1 localhost
152.168.1559.137 C011ective?.zxy0.c0mJ IP Address of my Linux Virtual OS
Figure3-15

After changing my host file | once again started my sniffer and restarted msrll.exe
by using Windows task manager and then clicking on the msrll.exe executable in
the SYSTEM32/mfm folder. | then saw failed attempts by msrll.exe to connect to
ports 9999, 8080, and 6667 on collective7.zxy0.com which for now was my Linux
box.

To further mold the test environment, my next step was to startup an IRC server.
Using IRC-Hybrid the IRC server that was provided with the course as part of the
Linux image, | started the IRC server located on my virtual Linux system by
issuing the following commands:

su —ircd
ircd
exit

ps —u ircd
irc

Then | used Ethereal on my host machine to sniff the VMWare virtual ethernet
adapter for more information. | started the capture feature in Ethereal and
launched msrll.exe in hopes of capturing more payloads from the packets. The
sniffer logs showed that msrll.exe was making an IRC request for channel “#mils”
on port 6667 as seen in figure 3-16. The IRC user names looked as though they
might be random.

© SANS Institute 2005 Author retains full rights.

14

@ (Untitled) - Ethereal

File Edit Yiew Go Capture Analyze Statistics Help |

EEHx®E Qes»DFLE QAQQ BPHEX O

@Eilter: v I 4‘ Expression. .. | %‘.Qear V Apply |
Mo, - |Time |Source |Destination |Protocol |InFo ZI
-— S =t T e e aca eoee
46 57.531331 192.168.132.128 152.168.132.1 DNS Standard query PTR 130.132.1¢

47 61.091928 192.168.132.128 192.168.132.130 IRC Response
48 61.113465 192.168.132.130 152.168.132.128 TCP 1359 > 6667 [ACK] Seq=88 ack:
49 62.321177 192.168.132.128 192.168.132.130 IRC Response
50 62.326571 192.168.132.130 192.168.132.128 IRC Request
51 62.327349 192.168.132.128 192.168.132.130 IRC Response
52 62.530679 192.168.132.130 192.168.132.128 TCP 1359 > 6667 [ACK] Seq=107 Ach
53 63.027725 192.168.132.128 192.168.132.130 IRC Response
54 63.188308 192.168.132.130 1592.168.132.128 TCP 1359 > 6667 [ACK] Seq=107 Acl
5 02, 5 5 52.168. L 128 |
(K1 | i
p Frame 55 (67 hytes on wire, 67 bytes captured) =
p Ethernet II, src: 00:0c:29:bl:0b:2e, Dst: 00:0¢C:29:ba:h5:1b
p Internet Protocol, src Addr: 192.168.132.130 (192.168.132.130), Dst Addr: 192.168.132.12 vl

| K1 | i

25 ba bs 1b 26 bl 0b Ze 08 00 45 00 ..0..... Yo E.
6 9 D a8 84 ¥ 0 = @
0020 84 B0 05 4f la Ob 3 67 75 ee 20 36

39 0a 50 18 ...0...g U. 69.P.
fa a2 91 00 00 00 4a 4F 49 de 20 23 6d 69 &C 73 30 IN #mils

- Figure 3-16 '

Then using my Linux box, | joined the channel #mils myself using IRC command
“/join #mils”.

Using the “revert to snap shot” feature in VMWare, | set my infected system back
to a known good state and executed msrll.exe.

| saw a user join the channel #mils named “hIsFbHxGu”. After about two minutes
this connection was reset for some reason and another user joined named
ZYqwcysWn. This user remained logged on during the time of my observation
(approximately 15 minutes). This again confirmed that user names were possibly
random.

To further test the behavior of msrll.exe, | attempted to control it from the
command line. Msrll.exe could be started from the command line by typing msrll
at the C:\Windows\system32\mfm prompt. From the command line | used the
Taskkill utility: Taskkill /F /IM msrll.exe and was able to end the msrll.exe
process. | also tried deleting the file from Windows Explorer but was denied
access. | could however end the msrll.exe process from Windows Task Manager
and then delete the msrll.exe file.

© SANS Institute 2005 Author retains full rights.

15

Section 4: Code Analysis

| began my code analysis by looking for useful strings. | knew that in order to
see something useful | would need to unpack msril.exe. To do this | would use
LordPE to dump the unpacked executable from memory. | Used LordPE to locate
the already running msrll.exe process in LordPE’s path pane, | right clicked and
choose “dump full” and saved the file. | then used BinText to open the file
dumped from LordPE. In its unpacked form, | was able to see many interesting
strings:

There were many strings that might prove useful, for the sake of brevity the
following is a sampling of strings that might provide clues to the malware’s
functionality:

Possible Commands: ?ping, ?smurf, ?jolt, ?clones, ?clones, ?update, ?reboot,
?status, ?jump, ?nick, ?echo, ?hush, ?wget, ?join, ?akick, ?part, ?dump, ?md5p,

?free, ?update, ?hostname, ?!fif, ?play, ?copy, ?move, ?sums, ?rmdir, ?mkdir,
?exec, ?kill, ?killall, ?crash, ?sklist, ?unset, ?uattr, ?dccsk, ?killsk

Stings Indicating the Specimen Could be Possible Bot: bot.port

IRC Version in Use: mIRC v6.12 Khaled Mardam-Bey

Use of IRC Channel: irc.chan

IRC Channel: #mils

Possible Version of Malware: m220 1.0 #2730 Mar 16 11:47:38 2004

Interesting Strings to Look for Within the Code: %s bad pass from “%s”@%s,
jtr.home, irc.pass, jtram.conf

Possible Web Site of Owner or Creator: collective7.zxy0.com,
collective7.zxy0.com:9999! | collective7.zxy0.com:8080

Passwords Could Be Encrypted: Also listed were references to SSL and several
encryption standards

The strings | saw in addition to my previous behavioral observations led me to
believe that msrll.exe might be some sort of password protected bot that used
IRC to issue commands.

With msrll.exe running | tried using Telnet and IRC to issue some of the
commands extracted with BinText, but was unsuccessful. It was likely that
msrll.exe required some sort of successful authentication before accepting
commands.

© SANS Institute 2005 Author retains full rights.

16

My next step was to try to gain some control over msrll.exe by looking deeper
into the code and hopefully finding a way to authenticate to it in order to
successfully issue some of the commands found within msrll.exe’s strings.

To successfully gain control of msril.exe | would need to be able to know a
password or patch msril.exe in a way that it would not need a password. To do
this | would need to pinpoint crucial instructions at the assembly code level.

| learned from the course that passwords can often be found somewhere near a
“strcmp” instruction, but the results of the comparison are enforced by the “JNZ”
instruction. My plan was to look for these clues and since | was not an expert at
assembly code, | planned to bypass the authentication by replacing the “JNZ”
instruction with the “NOP” (no operation; to do nothing) instructions using
OllyDbg.

BinText provided me with some interesting strings and their associated memory
positions. | could use these memory positions as starting points during the
investigation of the code. | would use Ollydbg to navigate to the memory
locations and look for possible ways to control msril.exe. | knew msrll.exe was
compressed using Aspack, and this would make it difficult for Ollydbg to reveal
useful information. However there were a couple of options for viewing the code
in an uncompressed format.

The first option was to use an unpacker to create a new uncompressed version
of msrll.exe. To uncompress msrll.exe, | obtained and successfully used a tool
mentioned during the course called AspackDie. To use it, | unzipped the files to
my program directory. Then browsed to the AspackDie folder, clicked on the
AspackDie icon and in the proceeding dialogue box | provided the path to
msrll.exe, and AspackDie successfully created an unpacked version of msril.exe.

| then used Ollydbg to open the unpacked file. | scrolled down to the memory
position: 0040BB52 that was associated with “% bad pass from “%s”@%s” string
found with BinText. From there | scrolled down a bit further until | was at memory
location 0040BBD9. There | saw the string “dcc.pass”. It looked like this might
be doing something so as seen in figure 4-1, | hit the space bar and filled it with
NOPs.

© SANS Institute 2005 Author retains full rights.

© SANS Institute 2005

17

P*

JJAI rlu] wied 4 | +f L|E[MT|wH|c[/|K|B|R|.|5]| iE[H?]

> F&83 SC200088| TEST BYTE PTR_DS: [EBX+205C], 40
veF34 DBBBBBBB JEBuEDScked . BB40BCAE

. 83EC

. 68 40334680 PUSH unpacked. DB4BEE40
. 52 PUSH EDX

. E8 SE9CFFFF CQLL unpacked. 88485872
. 83C4 10 ADD_ESP, 18

lH %2 = BB48BB46 ASCII "dcc.pass”
a
Lunpacked. BB465572

. TEST ERX,EAX ’]
74 6F JE_SHORT unpacked. 8346ECSA -
. 83EC 8C SUB ESP,BC

. 63 30030000 | PUSH 336 IPUSH 40BB40 —]

. ES 58650080 |CALL <JMP.&msvcrt.malloc>
8945 F4 MOU DWORD PTR SS:[EBP—C].ERX

. FC CLD
. B9 CFo@@eea | MOU ECX,@CF

. BS_00066600 | MOU EAX,8 v Fill with NOP's A
. 8B7D F4 MOU EDI,DWORD PTR SS:[EBP-CI ssemble | Cancel
: REP STOS DUORD FTR £5: (EDL]

83C4 88 ADD
- EFE3 64200000 PUSH DUDRD PTR 0S: [EBX+2064)
. PUSH DWORD PTR S
. EZ 94650008 | CALL_<JMP. Ll ania]

Figure4-1

When | tried to run the unpacked version of msrll.exe with Ollydbg | would get a
message in the bottom right corner that the process had terminated. It is
possible that the unpacking process damaged the file.

| spent a lot a time looking at the code in Ollydbg and familiarizing myself with its
features. By right clicking in OllyDbg’s CPU window and then choosing “search
for all referenced text strings”, | was able to see that near memory location
0040BB40 “dcc.pass” was a reference for “bot.port” at memory location
0040BB49 as seen in figure 4-2.

OllyDbg - unpacked.ExE - [CPU - main thread, module unpacked]
@ File View Debug Plugins Options Window Help

=X JJ Sijv # 4 M o L|E[M|T|W/H[C|/[K|B[R]..]
L1L14L1E:E E NOP

5l% B3F 98 NOP

HH4HEE4H . 64 63 63 2E VIASCII "dcc.pass”, B8

BB40BE49| . 62 74 2E 7IASCII ”bot port".a

Ba4uEES2(. 25 28 62 6|ASCII "¥%s bad pass from”

515 Y- 25 73 2{ASCII " "Zs"@EXs",8

BA46BBEE|fF. 55 PUSH EBP

Figure4-2

| chose this location in OllyDbg and then right clicked and chose the selection for
“Follow in Disassembler” as seen in figure 4-3. Then looking in the OllyDbg’s
dump pane, | then was able to see ASCII text mentioning port 2200 and
something that looked like references to possible passwords after memory
location 0040BDD9 as well as references to familiar clues found during my
previous analysis.

Author retains full rights.

Hex dump

ASCIT

D
=la
o
o]

) (5 (5 05 05 (5 ¢

o
00 =) = s

s

B.J.J %]
2 11"éw
lhitr.bi
n.msells
exe.jtr.
home.mfm
.2208. 5t
r.id.run
S.irc.qu
it. .ser
VErS. LV,
#'....c
ollectiv
ev.2xya.
com,coll
ect ive?.
2xy@.com
19999¢,0
ollectiv
e7.21ya.
com: 8838

port 2200

collective7.zxy0.com with

. irc.cha |RC Channel

n.#mils.
pass.e+¥
15KZLPLK

DFFWSK L8 phggible Passwords

Jr1X800H
ZsmIp9aq

Figure4-3

port numbers

Using OllyDbg, | once again right clicked and made the selection “search for” and
chose “all referenced text strings”. | then saw references to “Pass” and what |
had previously seen in the dump pane that looked like possible password clues
at memory location 0040BDD9 as seen in Figure 4-4.

© SANS Institute 2005

Author retains full rights.

© SANS Institute 2005

19

@ File View Debug Plugins Options Window Help

Bl x| wn| w4 H 1 W] » LIE|M|T|W/H[C|/|K|B|R[.

Address |Disassembly Text string

BA40AFEA| ASCII "r:iXu) pwd:{Zs}",8

88488839 | PUSH unpacked Ba48AFSa ASCII "cant open X%s (err:¥u) pwd:{Zs}”’
BA40B7S1 | ASCII "Z%s X%s",8

@A4PB7S? | ASCII "% exited with o
Ba40B767 | ASCII "ode Xu",8
Ba48B76E| ASCII "XsN\Ks",8

Ba408B774| ASCII "ZXs: Xs”,8
Ba48B77B| ASCII "exec: Error:Xu p”
Ba40B78B| ASCII "wd:¥s cmd:¥s",8

Ba48B3A6 | PUSH unpacked.@@4@8?51 ASCII "Xs %s"

Ba48B3EY| PUSH unpacked. 88488757 ASCII "%s exited with code Xu"
B848B93F | PUSH unpacked.B8848B76E ASCII "Xs\Zs"

8848BA40| PUSH unpacked.B848B774 ASCII "Zs: %s”™

8848BA0OD| PUSH unpacked.B848B77E ASCII "exec: Error:Xu pwd:¥s cmd:Zs"
Ba40BB48| ASCII "dcc.pass”™,d

B8468BEB49| ASCII "bot.port”, @ (Initial CPU selection)

Ba48BB52| ASCII "Xs bad pass from”

Ba48BB62| ASCII " "Xs"EXs", 8

B8848BBDY| PUSH unpacked. BR4ABE4G ASCII "dcc.pass”

B848BCAA| PUSH unpacked.8848BB49 ASCII "bot.port”

B848BCEF | PUSH unpacked.B8848BB52 ASCII "%s bad pass from "Hs"@Hs"

Ba48BCCY| ASCII "Xs: connect from"
Ba48BCDY| ASCII " Xs",8

88488064 | PUSH unpacked 88413634 ASCII "#:"

8848B019| PUSH unpacked.8848BB49 ASCII "bot.port”

B8848BD1E| PUSH unpacked.B848BCCY ASCII "X%s: connect from #s"
8848BD33| ASCII "jtr.bin™,8
8848BD3B| ASCII "msrll.exe”,8
Ba48B045| ASCII "jtr.home",d
Ba40BBD4E| ASCII "mfm"”, 8

Ba48B0S2| ASCII "2268™,a

Ba48B0S7| ASCII "jtr.id”,8
Ba48B0SE| ASCII "runS”,@

B8848BD63| ASCII "irc.quit™,8
Ba48BDEE| ASCII "servers’,d
884802848 | ASCII "collective?.zry@"™
88488098 | ASCII ".com,col lect ive?"”
9040B0AB| ASCII ".z2xyB.com: 9999¢," Possible Passwords
Ba48B0BA| ASCII "collectlve?ezaye” /////

BB48BDCA| ASCII ".com: 8686", r
8848BDCA| ASCII "irc.chan”,d

88488003 ASCII "unlls”,e

0648BD03| ASCII “pass”, B

8846BDEG| ASCI K =

8848BDFB| ASCI "SJrIXSDOHZsmID9q"
BB48BEGB| ASCI] "q8", 8

BB48BE28| ASCI "SISKZLPLKDFSSSLS”
BB48BE38| ASCI
BB48BE48| ASCII ', 8
BB4BBE43| ASCII "m226",9

8848BED1 | PUSH unpacked.B8848B057 ASCII "jtr.id”
BB46BBEDE | MOV EDX,unpacked.8040BE43 ASCII "m228"
B046BF 1B| MOV DWORD PTR SS:[EBP-121,unpacked. 8848l ASCII "mfm"
@B40EFFA| PUSH unpacked. B348BD4E _ ASCII "mfm”
Figure4-4

| wanted to be able to set some breakpoints at key locations and try to
authenticate to the malware and trigger the breakpoints. The version of msrll.exe
that | unpacked using AspackDie would not run, so | needed a different way to
unpack the malware executable without damaging the file.

To investigate further and produce an unpacked version of msrll.exe that would
run | chose the following method. First | made sure that the msrll.exe process
was not running on the virtual system. | then used Ollydbg to start the process
by clicking “file open” and choosing the msrll.exe file. | then chose the run option
within Ollydbg. By doing this | was avoiding dumping the file. Allowing Ollydbg to
run msrll.exe let the malware unpack itself to memory. | was now beginning my

Author retains full rights.

© SANS Institute 2005

20

journey to look for memory position 0040BB52. | pressed “Alt+M” while in
Ollydbg to get to OllyDbg’'s memory map.

From there | located the first PE header. Then | chose the section that began
with address 00401000. | right clicked on this location and chose “Dump in
CPU”.

BA3E0B0G | BRBH3060 Map |R R
BA3F000a Ba001668 Priv| RW Rl
834000008 BABE1668| msr L L PE header Imag R RUWE
6848188 981283 RN I e el Tra=m~ D RwE
090413000 | 02000 Actualize RUE
005 1B000| 06003600 View in Disassembl FIIE
66210006 0005000 View in Disassembler Enter RUE
085 1FP00| 6661600 Dump in CPL RUWE
Ba52000a Bea4 1666 R
BaS70000a | BRBH3068 Duad R E
BB630000 BRBR2008 R E
AR640008 | 08163000 Search Ctrl+B R
coiconss secscone 5
BORGH00E | BEEE2008 Set break-on-access F2 [
BBA70000 | BaBB2000 R
E{gggggg §§§§z§§§ Set memory breakpoint on access ENE
;iggéggg gggg 1838 Set memory breakpoint on write EEE
71A2E0DD| oonBeaER| -Ct 3CCEsS * | |RuE
2 1RR1006| 06604600 RUIE
$1RAco0| ooopipap|| COPY todiipboard Y |RuE
71AA6000| 60901609 Sort by > RUE
71AA7006 Ba601668 RUWE
71ABAGGG | AE6G166E6 Appearance » RUWE
71AB1006| 6061 1066 - — . RUE
Z4nCaaanl annmd anml -0 99 | Aata | P [tmaslD oL
Figure4-5

Below string “dcc.pass” at memory location 0040BBE7 | found “TEST EAX,
EAX”. Thinking this might be some sort of string comparison for the password |
pressed the space bar and filled the instruction with “NOP” instructions hoping
this would force msrll.exe to bypass a possible authentication routine. This did
not work. | also tried a lot of other things that were unsuccessful. After much
Trial and error, the following is what did work.

In order to get everything back to a known good state, | reverted to my snapshot.
| made sure msrll.exe was not running, | then opened msrll in OllyDbg. Next |
clicked on the “TEST EAX, EAX” location and pressed F2 to set a breakpoint. |
then restarted msrll.exe within OllyDbg by pressing Ctrl+F2 then pressing F9 to
run msrll.exe within OllyDbg. Then using Telnet from my virtual Linux installation
| attempted to login to the infected Windows machine on port 2200. At the Telnet
prompt, | typed the following commands found during my strings analysis:
“?login” testuser" , press enter and “pass” enter. This triggered the breakpoint
that | had set within OllyDbg. By looking at the Registers pane in OllyDbg | can
see that the value of EAX is “00000000”. By selecting this value and right clicking
and choosing “set to 1” then pressing F9 to continue running msrll.exe within
OllyDbg, | was able to bypass msrll.exe’s telnet authentication. | was now able to
successfully type in commands at the telnet prompt and receive responses from
msrll.exe.

Author retains full rights.

21

The following is an example of some of the commands found using BinText and
their results:

?ps: listed all running processes on the infected machine

?ping: <ip> <total secs> <p size> <delay> [port]

?smurf: <ip> <p size> <duration> <delay>

?jolt: <ip> <duration> <delay>

?clone: ?clone: server[:port] amount

?clones: ?clones: [NETWORK:all] <die:join:part:raw:msg> <’parm”>

?login: used to login

?uptime: shows uptime of the system and uptime of the bot

?reboot: reboots the infected system

?status: shows yes or no for service, user, inet connection, contype, reboot privs
?nick: set an irc sock to perform ?nick command on

?hush: set an irc sock to perform ?hush command on

?join: set an irc sock to perform ?join command on

?md5p: <pass> <salt>

?free: ?free <cmd>

?update: <url> <id>

?hostname: host name of infected system

?play: (null) somefile

?sums: sums of files located within WINDOWS/SYSTEM32/mfm directory
?mkdir: lets you create a directory in the WINDOWS/SYSTEM32/mfm directory
?rmdir: lets you remove a directory in the WINDOWS/SYSTEM32/mfm directory
?exec: executes the program specified to run in the background

?kill: when given the process id, ends the process

| spent quit a bit of time trying to achieve control of msrll.exe via IRC, but was not
successful. It is possible that via IRC | was not sending commands in the format
that the malware would accept. But during this time, one of the ways that |
learned to use OllyDbg to investigate the malware specimen was to right click
and search for all referenced text strings. Once there, | right click and chose “Set
Breakpoint on Every Command”. Then press F9 to run the executable within
OllyDbg. You will hit a lot of break points, but this slow motion view of the
executable can be very informative. When you break in an area that is not of
interest press F9 to continue running, if you break in an area that is of interest
press F7 to single step through the code.

Section 5: Analysis Wrap-up

Section 5.1 Summary of Msrll.exe

Msrll.exe exhibits behaviors that are often associated with malicious bots.
Msrll.exe is designed to start each time Windows is started and connect to an
IRC channel. Although this particular malware does not attempt to disguise itself,
as its process can be easily seen in Windows XP’s Task Manager, most users
would not notice its presence. Msrll.exe listens and accepts commands on port

© SANS Institute 2005 Author retains full rights.

22

2200 and connects to IRC channel #mils on port 6667. It appears that commands
can be sent to msrll.exe via IRC on channel #mils and Telnet on port 2200 by the
proper use of a pass key. Commands found within the code of msrll.exe such as
ping, smurf, crash, mkdir, etc. are indicative of DDos and hacker type behaviors
such as illegal file storage or “owning” someone else’s computer.

Based on my analysis, msrll.exe strongly resembles an IRC bot sometimes
referred to as a zombie. Results found with BinText and OllyDbg point to
commands that would allow the bot owner to control unsuspecting users
Windows based system with msrll.exe. IRC provides a way for the hacker to
control msrll.exe in a practically anonymous fashion. It would be relatively easy
for a hacker to control a compromised computer or computers without being
detected. By using Msrll.exe the hacker would not need to scan for open ports
because msrll.exe will start during system startup, joining an IRC channel and
await commands. By having msrll.exe installed on many computers a person
with bad intentions would have the ability to send commands to many computers
simultaneously via IRC.

Individuals interested in “owning” systems in such a way as to have a bot army
awaiting commands via IRC, could include anybody with motive or desire to
illegally deny service to an organizations web presence or disrupt network
services through DDos attacks.

Section 5.2 Additional Findings

My next note brings up an important point regarding malware analysis. It is
important to make notes when things happen. My example comes from the fact
that | used my browser to go to the web address “collective7.zxy0.com” when it
was identified as a string using BinText. At the time | saw a web page there that
looked as though it was offering some type of email service, but unfortunately |
didn’t make notes or a screenshot and on later visits | was not able to pull up a
page. | took the first part "collective7” of the web address off and used my
browser to go to this website address: zxy0.com, a derivative of the site
“collective7.zxy0.com”. | saw a site that wasn’t necessarily incriminating, but
intriguing. The site made references to things such as: “you can’t get this shit in
stores” and “feel free to paypal me if you like my software”.

| looked at the source code for the webpage and under the meta tags | saw
“‘home of m220-Beetlework”. Possibly by coincidence one of the strings found
within the code was: m220 1.0 #2730 Mar 16 11:47:38 2004

Interestingly by typing in m220.exe into the Google search engine, | find some
results at the TrendMicro anti-virus site. TrendMicro discusses a backdoor with
two executables an ftp server DTRAN.exe and a malicious IRC bot M220.exe.
The descriptions given by TrendMicro seem to be similar to what | have found
with msrll.exe. Msrll.exe is mentioned in the TrendMicro article when TrendMicro
identifies the creation of the mfm folder containing the msrll.exe file.

© SANS Institute 2005 Author retains full rights.

23

In order to get the most out of my learning | did not do a web search for msrll.exe
or run antivirus software against it. But at the end of my analysis when | did run a
web search, it is interesting that a derivative of the web address that | found the
msrll.exe using had an owner by the nickname m220-Beetlework and TrendMicro
had an associated article involving the keyword msrll.exe and a malicious IRC
bot labeled M220.exe.

Section 5.3 Detecting Msrll.exe

Running updated anti-virus software and a fully patched system will go a long
way in keeping malicious programs such as msrll.exe off of your computer. It is
also useful to be aware of and monitor the processes that normally run on your
system. Having a personal firewall could be useful in helping monitor incoming
and outgoing traffic generated by malware like msril.exe. Network administrators
should become familiar with IRC’s malicious uses and ports used due to its
common association with malware.

It is quite possible since communication is established from within, that your
firewall will not help in protecting against IRC bots and antivirus software may not
provide adequate protection due to the fact that malware writers can stay one
step ahead of antivirus companies and create versions of malware that are not
recognized by current antivirus signatures.

The Netstat utility can be helpful in identifying IRC bots. Since the most common
IRC channels use port 6666 and 6667, and IRC often uses the Ident protocol
running on port 113. Netstat can be used in the following way to help identify the
use of these ports on a local system. At the command line type the following
commands and press enter:

netstat —an | find “:6667”

If you don’t have your own IRC session running it is possible that malware is
trying to compromise your system via IRC if you see results similar to the
following:

TCP 192.168.159.130:1033 192.168.159.137:6667 ESTABLISHED

To check for the Ident protocol use: nestat —an | find “:113”

Other options might include network professionals monitoring for IRC traffic. In
our particular case with msrll.exe network professionals could monitor network
traffic for packets containing #mils.

Section 5.4 Removal of msrll.exe

Removal of msrll.exe seemed to be relatively simple on my Windows XP system.

First you will need to check and see if the msrll.exe process is running. If it is
running it can be stopped by pressing CTRL + ALT + DEL. Then you will be able

© SANS Institute 2005 Author retains full rights.

24

to browse to the “mfm” folder location and delete the folder. This essentially
stopped msrll.exe from running as it appears to have no failover mechanism.
There was still a registry entry that you might like to clean up. You can do this by
clicking on Start, then Run and typing Regedit and enter. This will bring up the
registry editor. Look for this path:
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\mfm and delete
the entry. Once completed restart your system and check to make sure your
removal attempts were successful.

© SANS Institute 2005 Author retains full rights.

25

References

Aspack. Vers. 1.32 Dec. 2004 <http://www.aspack.com/>

AspackDie. Vers. 1.41 Nov. 2002 <http://scifi.pages.at/yoda9k/>

AutoRuns. Vers. 6.1 Dec. 2004
http://www.sysinternals.com/ntw2k/freeware/autoruns.shtml

BinText. Vers. 3.00 Nov. 2000
<http://www.foundstone.com/index.htm?subnav=resources/navigation.htm&subc
ontent=/resources/proddesc/bintext.htm>

Ethereal. Vers. 0.10.8 Dec. 2004 <http://www.ethereal.com>

Filemon. Vers. 6.12 Oct. 2004
<http://www.sysinternals.com/ntw2k/source/Filemon.shtml>

InstallWatch Pro. Vers. 2.5 May 2000
<http://www.epsilonsquared.com/installwatch.htm>

IRCd-Hybrid. Vers. 2.8/hybrid-6.3.1 June 2002 <http://www.ircd-hybrid.net>

MD5sum. Nov. 1999 <http://www.gnu.org/software/textutils/textutils.html>

LordPE. Vers. 1.31 March 2002
<http://mitglied.lycos.de/yoda2k/LordPE/info.htm>

Ollydbg. Vers. 1.0.10.0 May 2004 <http://home.t-online.de/home/Ollydbg>

Process Explorer. Vers. 8.61 Dec 2004
<http://www.sysinternals.com/ntw2k/freeware/procexp.shtmi>

Regmon. Vers. 6.12 Aug. 2004
<http://www.sysinternals.com/ntw2k/source/Regmon.shtml>

Regshot. Vers. 1.61e5 Jan. 2003
<http://www.pcworld.com/downloads/file description/0,fid,19540.00.asp>

TDImon. Vers. 1.01 July 2000
<http://www.sysinternals.com/ntw2k/freeware/TDImon.shtml|>

VMWare Workstation. Vers. 4.5.1 March 2004 <http://www.vmware.com>

© SANS Institute 2005 Author retains full rights.

