GIAC

CERTIFICATIONS

Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?

Check out the list of upcoming events offering

"Reverse-Engineering Malware: Malware Analysis Tools and Techniques (Foren
at http://www.giac.org/registration/grem

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/grem

Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?

Check out the list of upcoming events offering

"Reverse-Engineering Malware: Malware Analysis Tools and Techniques (Fore
at http://www.giac.org/registration/grem

A Detailed Analysis of an Advanced Persistent
Threat Malware

GIAC (GREM) Gold Certification

Author: Frankie Li, ran2@vxrl.org
Advisor: Antonios Atlasis

Accepted: October 13,2011

Abstract
Spear-phishing emails were sent to a political figure at my place of residence. An
email together with the attached sample was provided for forensics analysis. It
appears to be an Advanced Persistent Threat type malware. By performing
behavioral and code analysis in an alternatively way, most of its important functions
were identified. The aim of this technical paper is to illustrate the detailed
procedures of how this malware was dissected.

1. Introduction

Spear-phishing emails were sent to a political figure at my place of residence. An
email, including the attached sample was provided for forensics analysis. This email
contained obviously well crafted message to lure the recipient to open the malicious

attachment. It was predicted as an Advanced Persistent Threat attack (APT-attack).

By performing the detailed behavioral and code analysis in a Spiral way (Brand,
Valli & Woodward, 2010, p 6), most of the important functions of the malware were
identified. The aim of this technical paper is to demonstrate the step-by-step procedures

on how this malware was dissected.

Advance Persistent Threat (APT) is a hot and controversial term used amongst
security professionals, including Bejtlich (2011), Cloppert (2010), Lee (2011) and
Hoglund (2011), especially after McAfee published their white paper called: “Revealed:
Operation Shady RAT” (Alperovitch, 2011). Kaspersky criticized this report and flagged
“the report as alarmist due to its deliberately spreading misrepresented information”

(Frye, 2011).

The term APT is frequently used as a replacement term to describe cyber warfare
between countries (Cloppert, 2009). Albert Hui, an IT professional in Hong Kong
viewed it as “an entire threat class (analogous to other threat classes like insider fraud,
industrial espionage, and hactivism), whereas things like RATs, drive-by malwares,
rootkits, DDoS are threat vehicles” (Hui, 2011). Referring to the traditional meaning of
APT, the malware is only one of the threat components of APT. However, most anti-
virus vendors, including McAfee and Kaspersky continue to fame APT as a malware.
One side of them even treats it as a “bot” or “back door”, which contains sophisticated
techniques that persistently hiding itself in the victim’s system for collection of
intelligence. However, comparing with other threat tools, because malware is easier to
prepare and deploy, the term APT will be continuously be described as a malware. A
fine-tuned definition proclaimed by Mandiant (2011, “What is M-Trends?”) is accepted.
In this technical paper, APT is considered as a cyber attack launched by a group of

sophisticated, determined and coordinated attackers that have been systematically

Frankie Li, ran2@vxrl.org

compromising a specific target’s machine or entity’s networks for prolonged period. The
meaning of “Persistence” is also expanded to the acts of the attackers of persistently
launching spear-phishing attacks against the targets. The findings indicate the main
functions of the APT-type malware are usually placed heavily on spying instead of for

the purpose of financial gain.

Other than the purpose of collecting of national secrets or political espionage,
based on the functions discovered, it is believed that this threat can also apply to the cases
in business or industrial espionages, spying acts or even un-ethical detective

investigations.

2. The Behavioral and Code Analysis
2.1. Setting Up the Lab Environment

The analysis was conducted inside a host-only network VMware machines.

a) The infection box was installed with a Windows XP SP2 system. The IP
address was configured as 192.168.80.125 with default gateway and DNS
pointed to 192.168.80.130 (i.e. IP address of the responsive box described

below).

b) A lightweight Ubuntu distribution, REMnux 2.0 was used for interacting
with the malware. It was configured with IP address of 192.168.80.130 as

a responsive box.

The analysis methodology proposed by Zeltser (2007) was adopted. It is a way of
molding of analysis environment that alternately uses behavioral and code analysis

techniques to identify the functionality of the executable (Valli & Brand, 2008, p.2).

The table shows the tools that were used to perform the behavioral and code

analysis (Table 1).

Frankie Li, ran2@vxrl.org

Analysis Tool name Reference Functional usage of the tool
Technique
Behavioral Autoruns (v10.06) | Russinovich, M. List auto-start locations.
(2011a)
Behavioral Process Explorer Russinovich, M. Display processes, threads,
(v2.93) (2011b) DLLs loaded.
Behavioral Process Monitor Russinovich, M. Log files, registry, network,
(v15.0) (2011¢) processes, threads changes.
Behavioral ListDLLs (v3.1) Russinovich, M. Display DLLs loaded on the
(20114d) system.
Behavioral TCPView (v3.02) Russinovich, M. Lists active TCP/UDP
(2011e) endpoints.
Behavioral VMmap (v3.1) Russinovich, M. Display of a process’ virtual
(201119 and physical memory usage.
Behavioral Winobj (v.2.21) Russinovich, M. Display Windows’ Object
(2011g) Manager namespace.
Behavioral BinText (v3.00) Founstone. (2000) Text extractor.
Behavioral Regshot (v1.8.2) Buecher, M., Shows registry and file
TiANWEi & changes between two of its
XhmikosR (2007) snapshots.
Behavioral CaptureBAT Zealand Honeynet A client honeypot.
(v2.0.0) Project (2007)
Behavioral HandleDiff (v.0.2) | Ligh, M., Adair, S., Detect changes to the handle
Hartstein, B., & tables of process.
Richard, M. (2011b)
Behavioral Wireshark (v1.2.2) | Wireshark.org. (2010) | Network Protocol Analyzer
and packet capture utility.
Behavioral Malcode Analysis | Zimmer, D. (2001) A package contains
Pack (v1.0) applications that have proven
useful for analyzing
malicious code.
Behavioral/Code | REMnux (v2.0) Zeltser, L. (2011) A Lightweight Linux
distribution for assisting
malware analysts in reverse-
engineering malicious
software.
Code UPX (v3.0.3w) Oberhumer, M. A tool that can achieves and
(2008) de-achieve an executable.
Code Filelnsight (v2.1) McAfee (2009) a file reader that displays the
document in either textual or
hexadecimal format.
Code OllyDbg (OllyICE | Yuschuk, O. (2004) Debugger for Win32
Lite) (v1.10) binaries.
Code IDA Pro Freeware | Hex-Rays SA. (2010) | Disassembler and debugger
(v5.0) with graphing capabilities.
Code PEiD (v0.94) Snaker, Qwerton & PE File identification tool.
Jibz (2008)
Code Stud PE (v2.4.0.1) | Gheorghe, C. (2008) PE format Viewer.

Table 1. Tools used to perform behavioral and code analysis

Frankie Li, ran2@vxrl.org

2.2. The Observed Behavior

The sample was contained inside a well-crafted phishing email, which described
the news of a riot incident happened at a county near the Guangzhou City in China. The
malicious attachment named: “XinTang Event.rar”. It was not password protected and
after decompressed, a file called “XinTang Event.chm” was created. If double-clicked,

the following message was displayed (Figure 1).

E2 HTML Help FEX
| Gy B

Hide Home Options

Conterts | e | CEEHELET! B! TRBETgovernnentRAE! #H 2
e || REMEERER 0L BEMERRSLES ! HE. R

go—vern— ment. BFAKLZLERE. BFRIANEZSEEEHE
SHIET ! BERTET AA! BEBRE T RSMEER, EREEET R,
;’;i};@&ﬁTﬁg’ AR ! BREAEBRT, FEMRE
ZREmY L

SAI2EER, I MBHHEHEASN R EAR G/ NRZETIRE
RAELRIPEDERE P, EEF LA LEEB107EE N R
B F i Egovernment# K, WG HBEM, LHFEERE R
FEHM. FEEEZANT. AHEAS HHERIHEE SHER
Wi R A HEERE R .
MrbsiaE e S 100 B2LE A4, T M T R E RN — & 00
FEZRNIRIE LR RAE DBIT R LT, A ¥ EHELRAE
RIS, H AR, SN —DEFRBTRT —&: “MRITRAT
T, BEFRHT! 7 FRXMEAEEHBETFEITRT . BEEX
BEBRIEEZE, HERIEEEERRA.

P
N\

<) >

Figure 1. The displayed chm help file if double clicked

To clear up the possible infection and assuming this malware did not exploit any
known or 0-day VMware vulnerability, the snapshot of the infection box was rolled-back
and uploaded the decompressed chm file to the responsive box for checking with the
“file” utility. It was identified as a “MS Windows HtmlHelp Data file”. After Googling,
an instruction on how to create Trojan horse using chm file was found from a Chinese

website (Chen Yi-Tian, 2005)

The chm file was decompiled by using a tool call “Malcode Analysis Pack”. A
folder (Figure 2) called “chm_src” was generated containing some jpeg files and an

executable called “dg003 improve 8080 V132.exe” (hereafter also called as dg003.exe).

Frankie Li, ran2@vxrl.org

C:\Documents and Settings\Administrator\Local Settings\Temp\chm _src 3=

Fle Edt Vew FavorRes Tools Help ‘.
J >) ’ / Search || Folders v
) CH\Documents and Settings\Administrator\Local Settings! Templchm_src v Go
Name Size Type Date Modfied
@I'umul.nh 1 eg | 1MKB JPEG Image 7/30/2011 3:45 PM
22909 12768 JPEG Image 7/30/2011 3:45 PM
12 View a5 a shde show 03400 S5KB JPEG Image 7/30/2011 3:45 PM
€) Order prints caline 4409 130KB JPEG Image 7/30/2011 3:45PM
Aoy Prick pictures Hs.ieg B1KB JPEG Image 7/30/2011 3:45PM
Hé.pg 89KB JPEG Image 7/30/2011 3:45PM
®7.409 The executab|ewxa JEG Image 7/30/2011 3:45 PM
File and Folder Tasks .o 172¥8 JPEG Image 7/30/2011 3:45 PM
29409 92KB IPEG Image 7/30/2011 3:45 PM
) Make a new folder £10.%G 78KB JPEG Image 7/30/2011 3:45PM
@) Publish this folder to the 1KB HHC File 7/30/2011 3:45PM
Web 1B HKFle 7/30/2011 3:45PM
g Share this folder 83K Apphcation 7/30/2011 3:45 PM
2 | NewTopic.htm SKB HTML Document 7/30j2011 3:45PM
-

Figure 2. The contents of the decompiled chm_src folder

The file “dg003.exe” was checked with PEiD v0.94 and found UPX-packed
(Figure 3). After unpacked using the UPX utility, the file size of “dg003.exe” was
expanded from 84,992 bytes to 196,608 bytes generating hash value of
4ECO0027BEF4D7E1786A04D021FA8A67F

? PEID v0.9 AEG|

File: C:\Documents and Settings|Administrator\Desktopldg003.exe
Entrypoint: 000DSE42 EP Section: .text il
File Offset: 0O00DBE42 First Bytes: 55,8B,EC,6A | > |
Linker Info: 6.0 Subsystem: Win32 GUI il

Microsoft Visual C++ 6.0

Multi Scan| TaskViewer| Options | About | Exit |
IV Stay on top il il

Figure 3. The file “dg003.exe” was checked with PEiD

Various monitoring tools, including: Autoruns, TCPView, Process Explorer,
Regshot, Process Monitor, CaputreBAT and HandleDiff were activated in an order to

capture maximum information during execution of the malicious “dg003.exe”.

The CaptureBAT log was imported into Microsoft Excel for quick review (Li,
2011). Using the smart-filtering feature, all modifications of the registry entries and file

system were identified (Figure 4).

Frankie Li, ran2@vxrl.org

1 42:2¢~ proce.V created +¥| CAWINDOWS\system32\cmd.exe +¥| C:\Tools\HandleDiff.exe
72 | 42:481 file Write C:\WINDOWS\Downloaded Program Files\dg003_improve_8080_V132.exe C:\Documents and Settings\ istrator\Local Settings\Application Data\ws2help.PNF
73 | 42:481 file Write C:\WINDOWS\Downloaded Program Files\dg003_improve_8080_V132.exe C:\Documents and Settings\ istrator\Local Settings\ ication Data\ws2help.PNF
74 | 42:48.1 file Write C:\WINDOWS\Downloaded Program Files\dg003_improve_8080_V132.exe C:\Documents and Settings\ istrator\Local Setf \ ication Data\ws2help.PNF
75 | 42:48.1 file Write C:\WINDOWS\Downloaded Program Files\dg003_improve_8080_V132.exe C:\Documents and Settings\ istrator\Local Settings\ ication Data\ws2help.PNF
76 | 42:48.1 file Write C:\WINDOWS\Downloaded Program Files\dg003_improve_8080_V132.exe C:\Documents and Settings\ istrator\Local Settings\ Data\ws2help.PNF
77 | 42:481 file Write C:\WINDOWS\Downloaded Program Files\dg003_improve_8080_V132.exe C:\Documents and Settings\ istrator\Local Settings\Application Data\ws2help.PNF
78 42:482 file Write C:\WINDOWS\Downloaded Program Files\dg003_improve_8080_V132.exe C:\Documents and Settings\ istrator\Local Settings\ ication Datal\s r.dil
79 | 42:48.2 file Write C:\WINDOWS\Downloaded Program Files\dg003_improve_8080_V132.exe C:\Documents and Settings\ istrator\Local Setf \ ication Data\msvcr.dil
80 42:48.2 file Write C:\WINDOWS\Downloaded Program Files\dg003_improve_8080_V132.exe C:\Documents and Settings\ istrator\Local Settings\ ication Datal\ r.dil
81 | 42:48.2 file Write C:\WINDOWS\Downloaded Program Files\dg003_improve_8080_V132.exe C:\Documents and Settings\ istrator\Local Settings\ ion Data\msver.dll
82 | 42:48.2 file Write C:\WINDOWS\Downloaded Program Files\dg003_improve_8080_V132.exe C:\Documents and Settings\ istrator\Local Settings\ ication Data\msver.dil
83 | 42:48.2 file Write C:\WINDOWS\Downloaded Program Files\dg003_improve_8080_V132.exe C:\Documents and Settings\ istrator\Local Settings\ i Datals r.dil
84 | 42:48.2 file Write C:\WINDOWS\Downloaded Program Files\dg003_improve_8080_V132.exe C:\Documents and Settings\ istrator\Local Setf \ ication Data\msvcr.dil
85 42:48.2 file Write C:\WINDOWS\Downloaded Program Files\dg003_improve_8080_V132.exe C:\Documents and Settings\ istrator\Local Settings\ ication Datal\s r.dil
86 | 42:48.2 file Write C:\WINDOWS\Downloaded Program Files\dg003_improve_8080_V132.exe C:\Documents and Settings\ istrator\Local Settings\ Data\msver.dil
87 | 42:48.2 file Write C:\WINDOWS\Downloaded Program Files\dg003_improve_8080_V132.exe C:\Documents and Settings\ istrator\Local Settings\ ication Data\msver.dil
88 | 42:48.2 file Write C:\WINDOWS\Downloaded Program Files\dg003_improve_8080_V132.exe C:\Documents and Settings\ istrator\Local Settings\ ication Data\s r.dil
89 | 42:48.2 file Write C:\WINDOWS\Downloaded Program Files\dg003_improve_8080_V132.exe C:\Documents and Settings\ istrator\Local Setf \ ication Data\msvcr.dil
90 42:48.2 file Write C:\WINDOWS\Downloaded Program Files\dg003_improve_8080_V132.exe C:\Documents and Settings\ istrator\Local Settings\ ication Datal\s r.dil
91 | 42:48.2 file Write C:\WINDOWS\Downloaded Program Files\dg003_improve_8080_V132.exe C:\Documents and Settings\ istrator\Local Settings\ Data\msver.dil
92 | 42:483 file Write C:\WINDOWS\Downloaded Program Files\dg003_improve_8080_V132.exe C:\WINDOWS\inf\1.txt
93 | 42:48.3 file Write C:\WINDOWS\Downloaded Program Files\dg003_improve_8080_V132.exe C:\WINDOWS\inf\1.txt
95 | 42:48.3 file Write C:\WINDOWS\Downloaded Program Files\dg003_improve_8080_V132.exe C:\WINDOWS\inf\1.txt
101 | 42:48.4 file Write C:\WINDOWS\Downloaded Program Files\dg003_improve_8080_V132.exe C:\WINDOWS\system32\netstat.exe
102 | 42:485 file Write C:\WINDOWS\Downloaded Program Files\dg003_improve_8080_V132.exe C:\Documents and Settings\ inistrator\Local Settings\ Data\lECheck.exe
103 | 42:485 file Write C:\WINDOWS\Downloaded Program Files\dg003_improve_8080_V132.exe C:\Documents and Settings\ istrator\Local Settings\ ication Data\|lECheck.exe
1233

Figure 4. Smart-filtering feature was used for quick identification of modifications

CaptureBAT log was first checked because of its distinctive advantages in

behavioral analysis. It can (a) identify which process is responsible for the file or registry
modifications; (b) backup the modified or deleted files into a folder during execution; and
(c) create a .pcap file to log the network activities during the capture. However, if files

were in accessed during the capture, CaptureBAT would miss backing up of these files.

As a supplement, Regshot was also activated to capture similar changes.

The file system and registry changes are summarized as below (Table 2).

Tool Process Location Event Name
CaptureBAT | dg003.exe C:\Documents and File added | ws2help.PNF
/Regshot Settings\<user>\Local

Settings\Application\Data
CaptureBAT | dg003.exe C:\Documents and File added | msver.dll
/Regshot Settings\<user>\Local
Settings\Application\Data
CaptureBAT | dg003.exe C:\Windows\system32 File altered | netstat.exe
CaptureBAT | dg003.exe C:\Windows\inf File added | 1.txt
& removed
CaptureBAT | dg003.exe C:\Documents and File added | IECheck.exe
/Regshot Settings\<user>\Local
Settings\Application\Data
CaptureBAT | explorer.exe | C:\Windows\system32 File added | Ipsecstap.dat
/Regshot
CaptureBAT | explorer.exe | C:\Documents and File added | Internet Explorer
Settings\<user>\Start Security Check.Ilnk
Menu\Programs\Startup
Regshot C:\Windows\system32 File added | 13605
HandleDiff | explorer.exe | \BaseNamedObjects Mutant VistaDLLPro
added RUNNING

Table 2. Changes on file system and registry

Frankie Li, ran2@vxrl.org

Using the tool — Vmmap and ListDLLs, the malicious dynamic-link library (DLL)
- “msver.dll” was found as an injected thread in the running process of “explorer.exe” at

the base address of 0x10000000 with image size of 0x43000 (Figure 5).

I

- [E]x]
process being injected
1 | Process: Explorer EXE /
'_yg FID: 1440
Committed: 78,944 K
Private Bytes: 17,720K
Working Set: 20,644 K
Type Size Committed Private Total WS Private WS Shareable WS Shared WS Locked WS BIA
Total 1165/2K T8I 17.720K 0B44K 11136K GHIEK 5144K
Image 48272K 48272K 1500K 9416K 1,080K 833K 4352K
Mapped File 1.252K 1.252K 232K 232K BOK
Shareable 18,284 K 3124K 932K 932K 724K
Heap 6528K 2,748K 2,736K 1.432K 1.488K 4K 4K
Managed Heap
Stack 5120K 1.212K 1.212K 276K 276K
Private Data 25588 K 10.808K 10,808K £.832K 6,828K 4K 4K
Page Table 1.464K 1.464K 1.464K 1.484K 1.464K
Unusable 10,064 K 10,064 K
Free 1.981.980K Image base Injected DLL)
< / >
Address Size Committed Private Protection Details / TotalWS Prival &
= 160K 160K
E Lol 268K 268K ; Cocal) di
00 4K 4K
10001000 2K 92K Execute/Read/write UPXOD
10018000 8K 8K 8K Read/wiite UPX1
10014000 24K 24K 24 K Read/Wwiite UPX2
10020000 4K 4K 4K Read/write Shared (Shared)
10021000 4K 4K 4K Read/Wiite UPX4
10022000 8K 8K 8K Read/Wiite UPX5
10024000 16K TEK Execute/Read/wiite UPXE
10041000 4K 4K 4K Copy on wiite UPX7
10042000 4K 4K 4 K Execute/Copy on Wiite
T+ 20000000 283K 283K 4K Read?wiite CAWINDOWS Ssystem328xpspZres.dl
+ BAD70000 224K 224K 4K Execute/Read C:AWINDOWS \system32iuxtheme. dil
+ 5B860000 336K 336K 12 K Execute/Read C:AWINDOWS \system324netapi32.dil
+ 5BAB0000 452K 452K 72K Execute/Read CAWIND OWS \system32\themeui.di
+ BCB70000 152K 152K 80 K Execute/Read C:AWINDOWS \system324shimeng.dll
+ 5D030000 BO4K BO4K 12 K Execute/Read C:AWINDOWS \system32\cometi32.dll
+ 5FO50000 <

Figure 5. Injected DLL was found by using Vmmap

Checking the Thread information of the injected process - “explorer.exe” with
Process Explorer, three additional threads of “msver.dll” were discovered and they were

started at relative virtual address (RVA) of 0OXAEEQ, 0xABBO and 0xA940 (Figure 6).

Wireshark was used to inspect a file named “192.168.80.125.pcap", which was
generated by CaptureBAT. The infection box tried to resolve the non-existent hostnames
of “test.3322.org.cn”, “l.test.3322.org.cn”, “2.test.3322.org.cn”, “3.test.3322.org.cn” and
“4.test.3322.org.cn”. Immediate after the unsuccessful retrials, it tried to connect to IP

addresses 172.16.0.61 and 115.x.x.249 by using TCP port number 8080.

Frankie Li, ran2@vxrl.org

Image
Threads

TID
568
1516
1508
1216

Count: 18

- [O]X]
Performance Performance Graph Disk and Network
TCR/IP Security Environment Strings

CPU CSwitch Della| Start Address |
Ttdl MR P W orker [Frea

ntdll. dilRtp\w aitT hread
ntdll.dlRtpTimerThread
msvert.dll_endthreadex+0x3a

1584
776
1212

<0..

msver. dll+0zaeel
msver. dll+0xabb0
msver. dl+0xa340

1372

1444

176
Thread ID:
Start Time:
State:
Kernel Time:

User Time:

Context Switches:

kemel32.dIlB aseThreadStartThunk

Ex=plorer EXE!ModuleEntry

CRYPT32.dIILS ‘WaitForThreadProc ¥
1554 ([todue |
8:51:53PM 8/5/2011
Wait:UserRequest
0:00:00.046
0:00:00.000
3,770

Stack

8
12

Base Priority:
Dynamic Priority:

Permissions l [Kill H Suspend l

[OK] [Cancel]

Figure 6. Three additional threads was indentied by using Process Explorer

In order to allow “dg003.exe” to establish connections with these IP addresses

inside a controlled virtual environment, the honeyd and farpd services on the Remnux

responsive box were activated. The farpd was configured to reply to any ARP request for

an [P address matching with the MAC address of the Remnux network adaptor and the

honeyd was configured to run http service at TCP port 8080 on the Remnux responsive

box (Appendix I). After these services started, some encrypted http communicated was

captured and the detail discussion of this communication can be found at section 3.2 of

this paper.

3. Technical details discovered by Code Analysis

The malware was identified as a kind of “multi-staged” malware (i.e. a malware

using form of multipartite infection strategy) (Szor, 2005, p. 76). During the analysis,

which will be described below, the malware or the file “dg003.exe” was found as a

dropper, which dropped the

file “msvcr.dll” as the droppee. If the Internet access is

enabled, the injected “msver.dll” will download some more Trojan-Spies.

Frankie Li, ran2@vxrl.org

10

IDA Pro was used for disassembling the binaries. The graphical view was used
along with the “Chart of X-ref to” and “Chart of X-ref from” functions to identify the

program flows between each important subroutine.

If possible, every subroutine was dynamically studied by stepping through under a
debugger, OllyDbg. Whenever a key function was identified, the subroutine was renamed
with a meaningful name both in OllyDbg and IDA Pro. If variables or pass though
arguments were found during debugging with OllyDbg, appropriate comments were
added to OllyDbg and IDA Pro. By switching back and forth, pseudo-code flowcharts

for all investigating binary could be generated.

3.1. The Code Analysis of “dg003.exe”
For quick identification, the file “dg003.exe” was uploaded to VirusTotal. The
report indicated only 15 out of 44 anti-viurs engines could detect it as malicious, but not a

single one could clearly identify its virus family or signature.

The following diagram shows a board overview of the order of executions and

key functions of the file “dg003.exe” (Figure 7).

« original SFC_0S.dIl
opied as 1.txt

* 360+, LRAH
« BitDefender, AVG
« ESET, NOD32

« Rising

« IECheck.exe
* Ws2help.PNF + its
fullpath at end

 CreateRemoteThread
« inject msvcr.dll inject
explorer.exe

d SFC_0S.dll
al #5

 original netstat.exe
moved file and named
ita

Figure 7. The key functions of “dg003.exe”

The file “dg003.exe” starts by checking if it is called from a command prompt
with passing argument of “Update” or “Special” (Figure 8). These parameters were
passed to OllyDbg as argument during different debugging sessions. However, no

obvious function was triggered.

Frankie Li, ran2@vxrl.org

BN
nov edi, ds:__p__ argu
push offset alpdate ; "Update"”
call edi ; p argqu
nov eax, [eax]
nov esi, ds:_stricnp
push dword ptr [eax+4] ; char =
call esi ; stricmp
pop ecx
test eax, eax
pop ecx
jnz short loc_40857DA
1
EANI:L
loc_4057DA: ; "Special”
push offset aSpecial
call edi ; p argu
nov eax, [eax]
push dword ptr [eax+4] ; char =
call esi ; stricmp
pop ecx
test eax, eax
pop ecx
jnz short loc_4857F2
¥
EA NI Fglllu
nov [ebprvar_1], 1 nov [ebpruar_2], 1
jmp short loc_4057F2 I
Yvy

Figure 8. Argument checking was found under IDA Pro

Then, it checks if the victim is installed with some anti-virus programs of
”Kaspersky”, “ESET”, “BitDefender”, “AVG”, “NOD32”, “Rising” or “360+” by
enumerating the registry key at “SOFTWARE\Microsoft\windows\CurrentVersion\

Uninstall”

After checking with the passing arguments, “dg003.exe” tries to create a mutux
named “VistaDLLPro RUNNING” (Figure 9) to prevent double installation of itself on
the system. This malware uses the similar method like, ZeuS bot to mark its presence on

the system (Ligh, Adair, Hartstein & Richard, 2011a. p.301).

A 3
EAN I
push offset alistadllproRun ; “UistaDLLPro RUNHING"
push ebx ; bInitialOwner
push ebx ; 1pHutexAttributes
call ds:CreateMutexn
nov edi, eax
call ds:GetLastError
cmp eax, 0B7h
jnz short loc_405884

Figure 9. CreateMutux was found under IDA Pro

Frankie Li, ran2@vxrl.org

11

12

Then, “dg003.exe” writes a duplicate as C:\Documents and Settings\<user>\Local

Settings\Application Data\w2help.PNF at 0x00403DA2 (Figure 10).

68_80C64000 PUSH dg@03, 82400680 ASCII "we™
FF7S ocC PUSH [.21 "
FFDE CALE EST nsucrt. fopen
8EDS MOV EBX, ERX nsvcrt, 77CSFCER * ERROR_S
59 '3 0012F06C =
14t 8508 TEST EBX,EBX nsucrt. 77CSFCER 00000216
141 53 ﬁFP ECX 0012F06C
140, 24 22 SHORT _AgRAa. AR4AINAE
1 8B3S FOA14000 MOV ESI,DWORD PTR DS:[<&HSUCRT.fwrite>] nsvert. furite
140 53 PUSH EBX nsvert . 77CSFCED
1 6H B4 PUSH 4 o
8045 08 LER EAX, DARG1D
6R B1 PUSH | 1
f S PUSH ERX msvere . 77CSFCED
)f . FFDE furite
LB Y-S TRV NSV
)f FF?6 EC
f 6 01
)f FF?6 FC
J030R0 .« FFOG nsvert, fopen
1020 . 83 nsvcrt, 77CSFCED
16O (] . o7 nsvert, folose
14020k . B304 24 S
Ik > FF?6 FC PUSH B .1) 0AEI0048
) > E8 RD4Fo000 CALL <JMP.LIMFC42,3826> free
0403080 || . S9 POP ECY 0012F06C v
1o nen AndArass
< >
Stack [B012ECED)=0012F@6C (BD12FB6C), |RSCIT "Ci\Docunents and Settings\\Hdministrator Local Settings\\Foplicaticn Data\wslhe lnm
ECX=77C3F000@ (msvort,77C3F000) ————=
Address |Hex du ASCII A r_ Y - TweTeN eI v T .]
01 2EF 65 [4ENSRNEENEE 5F ¢ v ¢ $| CaE t > o <
0 : € source
(: 4
EFF §

Figure 10. The file “w2help.PNF” was written

Then it calls into 0x00402BB9 to append string of “C:\Documents and
Settings\<user>\ Local Settings\Application Data\msvcr.dll” at the end of the file
“w2help.PNF” to prevent detection of checksum based detection. At 0x00402BC9,
“dg003.exe” creates a DLL in the memory from the code stored at the resource section

with ID node name “VISTADLL” (Figure 11).

novzx eax, word ptr [ebpearg_#]

push offset aUistadll ; "UISTADLL"
push eax

push edi

call ebx ; FindResource
nov esi, eax

push esi

push edi

call [ebp+uar_4] ; LoadResource
push eax

nov [ebp+arg_0], eax

call [ebp+uvar_ 8] ; SetHandleCount
nov edi, eax

xor ebx, ebx |

cmp edi, ebx

jz short loc_4836D2

Figure 11.1D node “VISTALDLL” was found under IDA Pro

At 0x0040367F, it copies 0x21000 (135,158) bytes from the resource section to
the memory address at 0x0040F1F0. After executing the decoding routine at 0x0043691
to 0x004036AB, a DLL is decoded at memory location of 0x0040F1F0 (Figure 12).

Frankie Li, ran2@vxrl.org

13

ead, module dg003

EE

JE SHORT do@@3.on403601 i

PUSH ESI Registers (FPU)
PUSH EBX

CALL [LOCAL.3]
HOU ESI, [ARG.21

99000100
9012E000
9812ED1C
Ba12F394
BB48F1FE o
2 884836RD d

CHP
MOU DWORD PTR DS: [ESI], EAX
JBE gE{ORT 9003 0B4636C7

CHP ERX, EBX -
IEE_SHORT caffia. ARAA
Qggzx EAX, BYTE PTR DS: [ECX+EDI]

MOU EBX, 1
ADD ERX, ORE
cog

IDIV EBX
MOU BYTE PTR DS:[ECK+EDI],DL
INC ECX
CHP_ECX, DWORD PTR DS:E,ESIJ
'USH DWORD PTR DS:CESI]
CALL (JHP &HFC42 #823>
1DU EBX, E

P_ECX
TEST EEBX, El
JE SHORT ngGS 804836C7
PUSH DNORD PTR DS:[ESI]

PUSH EBX
CALL <JMP.&MSUCRT.memcpy >
DD ESP, &

Al

PUSH [ARG. 11
CALL CLOCAL.41
MOV ERX, EBX

JHP SHORT da@os. 08483603
ERX, EAX

mom

! ASCII ~
88 88 ... o

o

4 ke

s =
o

637 ?

EF|is ram canno
28|t be run_in DOS
BBIMmode. e afeaannnn
C2]X?7? Fo -
C2las: fxg -3

C2 x4 A MBS 7T
C2loae "R MR 38 7R

C2 =M AT

C2 I mb TMTH

g @ oTHEM chc &

Ar

Fi igure 12. The Decoding Routin

Subsequent the decoding, the DLL is packed with a proprietary packing stub in
the memory and “dg003.exe” writes the packed DLL in name of “msvcr.dll” at
0x00402C71 (Figure 13).

k 4

BN L

lea ecx, [ebp-134h]
call sone_nenset

push dword ptr [ebp-14h]
lea ecx, [ebp-134n]
nov [ebp-4], ebx

push dword ptr [ebp-18h]
call sub_406695

lea ecx, [ebp-134h]

call pre_pack_dll

lea eax, [esi+h]

lea ecx, [ebp-134h]

push eax ; hObject
call write _packed_dll ; 0x402C71
test eax, eax

jnz short loc_402C85

I; L
EAN L
push offset aPackfileError ; “Packiile error?
call ds:0utputDebugStringA

¥y
BN §=]

Figure 13. The “write_pack dll” function was found under IDA Pro

Frankie Li, ran2@vxrl.org

14

After some clean ups, “dg003.exe” changes the MAC time (i.e. the Modification
time, Access time and Change time) of the newly created file “msvcr.dIl” at 0x00402D15
and hides “msvcr.dll” as system file at 0x00402D41.

At 0x004017A2, “dg003.exe” copies two Windows system files of “netstat.exe” to
C:\Windows\System32\13605 and “SFC_0OS.dII” to C:\Windows\inf\l.txt. The
“SFC_0S.dll” is the executable portion of Windows File Protection mechanism (WFP),
which protects system files from being modified or deleted. The malware calls to ordinal
5 function of “1.txt” in order to bypass the WFP (Collake, 2006) during patching

"netstat.exe" for hiding network connection of IP address of 115.x.x.249 (Figure 14).

loc_hO10F7:
cmp hLibModule, edi
nov esi, 184h
jnz loc_401198
[T
¥
1M
lea eax, [ebp+ExistingFileName]
push esi ; uSize
push eax ; 1pBuffer
call ds:GetSystemDirectoryA
sExis
offset aSfc_os_dll ; °
pusiT Tax y cilar =
call strcat
pop ecx
lea eax, [ebp+LibFileName]
pop ecx
push esi ; uSize
push eax ; 1pBuffer
call ds:GetWindowsDirectoryAn
lea eax, [ebp+LibFileName]
push offset aInf1_txt ; “\\inf\\i.txt”
pust Tax y Char ¥
call strcat
pop ecx
lea eax, [ebp+LibFileName]
pop ecx
push edi ; bFaillfExists
push eax ; 1pNewFileName
lea eax, [ebp+ExistingFileName]
push eax ; 1pExistingFileNane
Fall ds:CopyFileA
Iea eax, [ebp+LibFileName]
push eax 5 1pLibFileName
call ds:LoadLibraryn
cmp eax, edi
nov hLibModule, eax
jz short loc_481197

[T

== T *
Figure 14. Copy and patch “SFC_0S.dll”

During the behavioral analysis, it was found that “dg003.exe” would inject
“msvcr.dll” into the running “explorer.exe” process and because the process is the GUI
shell of Windows system, simply attaching this process to OllyDbg will freeze the
system. To execute two copies of “explorer.exe”, a Dword of DesktopProcess=1 was
added to the registry of HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer.
Then, the second copy of C:\WINDOWS\explorer.exe was attached under OllyDbg
(hereafter it is called as debugging “explorer.exe”) (Figure 15).

Frankie Li, ran2@vxrl.org

BN

; int _ stdcall dl1_injection{HMODULE hModule,int)

dll_injection proc near

hiodule= dword ptr 8Ch
arg_h= dword ptr 106h

push ebx
push ebp
xor ebp, ebp
push esi
cmp [esp+4ehtodule], ebp
push edi
jz loc_4040AR
1
¥
EANI
cmp [esp+8+arg_4], ebp
jz short loc_HO3FF3 ; suchost or explorer

1

¥

¥

EANI:L
push
jmp

offset hObject
short loc_403FF8

1M
; ""suchost.exe"
loc_403FF3:
push offsel aExplorer_exe

"explorer.exe"

I

EANIL
loc_4O3FF8:
call find_explorer
cmp eax, OFFFFFFFFh
jz loc_4040RA
&
EANIL
push eax ; dwProcessld
push ebp ; bInheritHandle
push 42an ; dubDesiredAccess
call ds:0penProcess ; open process: explorer
nov edi, eax
cmp edi, ebp
jz loc_4040AA
T

Figure 15. Instructions of injection to “explorer.exe” under IDA Pro

15

To continue the debugging process, the file “dg003.exe” was patched for injecting

the “msvcr.dll” into the debugging “explorer.exe”. A break point was set at 0x00403FBF

for monitoring the scan of each running processes’ PID at 0x0012EBE4. After stopping
at this break point a few times, the process name of “explorer.exe” was displayed at the
ASCII pane near the dumped address at 0x0012EBE4. The PID value of the system

“explorer.exe” was replaced with the PID value of the debugging “explorer.exe”. As an

example, the system running “explorer.exe” PID of 864 (0x360) was patched with the

debugging “explorer.exe” PID of 3768 (0xEBS). Because the memory address is

represented in little endian under Intel CPU, to redirect the injection to the debugging

“explorer.exe”, the value of “60 03 was replaced with “B8 OE”. (Figure 16)

Frankie Li, ran2@vxrl.org

16

§ FCFEFFFF
S D4A14008

MoV _ES
TEST ESI,E

OR D FFFF [
CALL < .!JHER&KERNELSZ .CreateToolhelp32Snapshot

JE SHORT d 003 B8463FCE
LEA ERX, LECﬂL

H ESI
CRLL <JMP.&KERNEL32.Process32F irst >
TEST EAX, Ei

EAX, [
28] NOU I:LDCFI. 241, 123
SH ERX

JE SH'EEE; dgB03. BE4BIFCT
LER EAX, [LOCALYES]

PUSH EAX
CALL DWORD PTR DS:[<&MSUCRT._stricmp>]

POP_E!
TSST ERX, EAX

| Reaisters (MK}

@ EpdR #x ad N

JE_SHORT dg@e3.aa4p3r(-
LEn En, [LOGAL: 741 SCILE

PUSH EAX

PUSH ESI

ALL <JMP.&KERNEL32. P;
dgfa3. 0a463f
- UNICODE |
CALL DWORD PTR DS:[<&K
MOt Eg)I(.EDI

[
JHP_SHORT
MOV EDI, [
PUSH ESI

ASCH

R

[]

Feer

Rddress Hex dumj

Edit View Help

8@ 99 99 EQ 40 00 28 @1 09 00 00 60 99 09 7

™ Keep size

() Hex

ODec O0ct

O Bin

@ Oword O Dword O Wword

(=

Process PID
= n winlogon.exe 1332
= [T services.exe 1376
=] vmacthip.exe 1560
= [T svchost exe 1576
[wmiprvse.exe| 3324
[svchost.exe 1664
= [P svchost.exe 1968
[T wsentfy.exe 2160
[svchost.exe 248
[spoolsv.exe 856
L) vmtoolsd.exe 1832
Lu/¥MUpgradeHel..| 800
" alg.exe 3048
[=|Isass.exe 1388
= [J explorer.exe 364
mVMwareT 1ay.exe 976
YMwarellser.exe 984
Unlockeréssistant. exe 1008
ctfmon.exe 1064
= e ollydbg.exe 2364
£ dg003 exe 2480
U} notepad.exe 288
=2 i ollydbg.exe 812
|77 explorerexe 3768
/',E procexp.exe 2276
o calc.exe 2692
<

CPU Private Bytes

12,184 K
2108K
760K
3184K
2,408K
1996 K
13.212K
740K
1.948K
3956 K
B.568K
1.128K
1.280K
3.860K
13.028K
2,264K
4,420K
808K
1.048K
14,936 K
3.380K
1.248K
16.640K
2,352K
7.384K
1.088K

1.54

O Byte

CPU Usage: 1.54%

Commit Charge: 13.88% Processes: 30 Physical Usac

Figure 16. Patching with the PID value to inject into the 2nd “explorer.exe”

After the patching, the malware injects “msvcr.dIl” to debugging “explorer.exe”

by calling CreateRemoteThread API at 0x00404094. It also generates a debugger

message of “VEAN I ” (Literally “Injection Success!”) and then terminates itself.

3.2. Analysis of The Injected “msvcr.dil”

Because the “msver.dll” is packed by a proprietary packing routine, it has to be

manually un-packed before further code analysis. The file “msver.dll” is loaded into

OllyDbg and a hardware break point is set at 4 bytes about the ESP (Figure 17).

Hardware breakpoints

4

Base

Size Stopon

~ | Re:

isters (FPU)

00000000
FEFFFFFF

| 0006FE32

[1_ | Access

@

LastErr
BEBBOZ46

enpty 4
empty 4. 4

empty 7.24 Be+322:
enpty 1

empty
enpty
emntu

FFF
FFF

aoal

()

()

32bit ol)
it Bl)

F FFF)

(Sl ST
Z

FODF

ERROR_SUCCESS (00000000)
(NO,NE, E, BE, NS, PE, GE, LE)

6.39325075867 493;

B< L

-
=
m

C:
492!

5@

41

+INARM AR 1 F1 |FlF<

Figure 17. Setting Hardware Break Point at ESP 4

Frankie Li, ran2@vxrl.org

=l

AR

17

After pressing FO to let it run, it stops at an instruction at a long jump to the

address contains in EAX. (Figure 18)

File View Debug Plugins Options Window Help

Paused

[pe]] e s 0a] s])]]]) e A B RS B 2 A

CPU - main thread, module msvcr.
JMP_ERX msver. 108166CA
L

Modu leEntryPoint

Pressing F7 to step into EAX at 0x100166CA, it looks like “msver.dll” is

unpacked. The OllyDump is called to create an unpacked version of “msvcr.dll”, which is

loaded into IDA Pro for static code analysis.

Recalling the behavioral findings after the DLL injection (Figure 6), there are
three running threads of “msver.dll”, which are set to start at RVAs of OxAEEO, 0xABBO
and 0xA940. After checking with the “Function View” of IDA Pro by adding base
address of 0x10000000 to these RV As, three functions at 0x10009F40, 0x1000ABB0 and

0x1000AEEOQ are identified. It is clearly a good choice for setting break points at
OllyDbg on the debugging “explorer.exe” (Figure 19).

«IDA - C:\Documents and Settings\Administrator\Desktop\Guangzhoulmsvcr.idb (dg003_dumped.exe) - [Functions window]

"En File Edit Search View Debugger Options Windows Help
[Z] 1DA Views | [HexViews | 5B Exports| B Imports | N Names) Functions | . Stings | B Stuctures | En Enums
Function name Segment Start Length RILFIFL[S| B| T| =
5] setEvent_Tem_Thread UPX0 100048D0_ 0000OOEC R . E
¥ sub_10004340 URX0 10004940 | 00000262 R . .
UPX0 1 000002CF R . .
Milload rsic WOODINI UPX0 10004E80__ 00000054 R . .
& dll_main UPX0 10004EE0 0000ODB3 R .
¥ sub_1000BCAD URX0 1000BCAO 00000147 R . T
7] sub_1000BDFQ UPX0 1000BDFO 00000123 R . T
7] sub_1000BF20 URX0 1000BF20 00000105 R . B .
7] sub_1000C030 UPX0 1000C030 0000OOCE R . L
"@ convert_ilPaddr UPX0 1000C100 000000E7 R . T

Figure 19. The three entry functions identified under IDA Pro

The following diagram shows a board overview of the order of execution and key
functions of the injected “msvcer.dll” (Figure 20). A description of the performed analysis

that provided these results will follow.

Frankie Li, ran2@vxrl.org

18

Get Harddisk Serial no
[P_Addr info]
STAPPro + dg003
encrypted XOR-ed 0x13 l

Read (non-existent) l
msip.ini J
« KILLTIME/SYSTEM Hard dri l
« ACTIVETIME/SYSTEM ardware, drive,

+ ADDRRGSTIP/SYSTEM NetBIOS name |

« ADDRRGSTPORT/SYSTEM encrypt & send -
Chk mutux acvewin32.exe

« VistaDLLPro Want Wood To fvcwin32.exe

Exit? svewin32.exe QQ MSN, Sina_UC '

hotmail and foxmail

encrypt & send

Figure 20. The key functions of the injected “msver.dll”

At address 0x1000AF12, the injected “msvcr.dll” creates a mutux “VistaDLLPro IS
RUNNING” and generates a debugging message of “MainThread Start!” at 0x1000AF37.
Then it generates a unique machine ID by referring to the network adaptor information

and the hard disk volume serial number at 0x1000B013 (Figure 21).

FUOSH THA o L)

CALL DWORD PTR DS:[188188CH1 tFileAttributesh
CMP ERX, -1

JNZ msver. 18668190
MOLLECY mauce 1
CALL msvcr.10810686
WUR_ECX,.ECX

TEST ERX, EAX

SETNE CL

AL FAD e

¢+ Command Prompt

c :\tools>dir/u
Uolume in drive C has no lahel.
Uolume Serial Number is| EA93-38A7

Figure 21. The hard disk volume serial number was used for generating machine ID

Frankie Li, ran2@vxrl.org

19

A strings of “STAPPro” and “dg003” is added at the end of this machine ID, it is
encoded at 0x1000BOF1 and 0x1000B16D (Figure 22). A newly created file is created at

C:AWINDOWS\system32\ipsecstap.dat.

[ENLL

encrypt_6x13 proc near

arg_0= dword ptr 4
arg_4= dword ptr 8
arg_8= byte ptr 6Ch

mov ecx, [esp+arg_0]
push esi
mov esi, [esp+i+arg_ 4]
Xor eax, eax
test esi, esi
i jle short loc_1006D7B8
encoding.= T

loc_1088D7AC:
mov dl, [esp+h+arg_8]

xor [eax+ecx], dl ; d1=6x13
inc eax

cmp eax, esi

jl short loc_180668D7AC

—

FﬂNu.l

loc_1066D7B8:

Figure 22. Encoding routine was found under IDA Pro

Then the injected “msver.dll” makes an API call, GetPrivateProfileString at

0x1000BD8D to retrieve strings from a non-exist file at C:\Windows\msip.ini. At

0x1000B6DA, it creates an “Assiant Thread” (The mis-spelled name which was found at
0x1000AB89 is used) to execute a function at 0x1000A940 (Figure 23). This thread will

create a mutux of “VistaDLLPRo Want Wood To Exit?” and runs a loop to wait for other

instructions.

BT 4UHILVLY FUSH MSVCT. 1UUOHT4Y
53 PUSH EBX

: ==
FF1S 94ERG110 |CALL DWORD PTR DS:[18G1EA94] _kernel32.CreateThread

0 g TEASE
68 8CABA116 PUSH msvecr. 1881ABSC ASCII "test.3322.org.cn”
A3 FOEBA11@ MOU DWORD PTR DS:[1@G1EBF@], EAX
8950 BC MOU DWORD™ PTR SS: [EEP-441, EBX
8950 Ca MOU DWORD PTR SS: [EBP-4@1,EBX
MANT PR BER Ao EERR Aea | ErG

nnnnnn

<

DS: [1981ER941=7C81832F (kernel32.CreateThread)

Address |Hex dump
GAC1E410| D2 a1

18|75 20

C4 77|00 99

Figure 23. An assistant thread was

1661FB02

created

The injected “msvcr.dll” tries to resolve some DNS names of test.3322.org.cn,

1.test.3322.0org.cn, 2.test.3322.org.cn, 3.test.3322.org.cn and 4.test.3322.org.cn. Then,

Frankie Li, ran2@vxrl.org

20

tries to connect to a non-routable IP address of 172.16.0.61. It is believed that these are

un-removed junk codes that have been previously used for program testing.

Because the injected “msvcr.dll” thread is analyzed inside a controlled

environment, it runs into a loop and waits for further instructions from the C&C.

To trigger additional response, the honeyd and farpd services on the Remnux
responsive box are turned on to handle the network request. Under the same behavioral
studies, the injected “msver.dll” starts connecting to the IP address of 115.x.x.249 with
TCP port number 8080. If the socket is created, it sends out some encrypted network
traffic (Figure 24).

Follow TCP Strean

Stream Content

00000000 ba e2 f8 89 82 82 e4 f3 ab f8 81 9d 88 97 a4 a5vver vnnennn.
00000010 67 00 00 00 17 00 00 00 fd b7 ad a9 ec eb e8 97 ocoocooo cooooooo
00000020 cb 91 ea 98 95 9f 99 eb 9f 97 93 €5 9C 94 9C CA vovvrnnr tineennn
00000030 f8 fe bd fe 88 c6 ac fa fd a7 ac a9 ad ae ac a7 «.o.vnn.
00000040 ff a8 ae ac de f7 01 6f b6 6f eb 36 3f b3 ad fc 0 .0.67...
00000050 eb bl ba bf bb b8 ba bl e9 be b8 ba b0 bl bf b9
00000060 ba b9 bc ea b9 babb ...,

Figure 24. Encrypted traffic captured by Remnux responsive box

3.3. Behavioral and Code Analysis with Internet Access
In order to gather more responses from the actual C&C, Internet access was

enabled and another session of behavioral analysis was performed.

After connected with the C&C, the injected “msvcr.dIl” jumps into the function at
0x1000BB10 to 0x10001E9A. It calls various APIs including: GetVersionaExA,
GetComputerNameA, GetUserNameA, GetLogicalDrives, GetDriveTypeA,
GetDiskFreeSpaeExA and GetACP to collect some hard disk information from the
victim’s system. Before calling the encryption function, the information is temporary
kept in memory (Figure 25). It also enumerates registry key of
“System\CurrentControlSet\Control\ProductOption” and
“Hardware\Descriptions\System\CentralProcessor\0” to gather more machine information

from the infected machine.

Frankie Li, ran2@vxrl.org

1ea edx, [espesCihevar 108}
push offset oH(Luql:NH(Luq.] B R E e, BFRER TS Y 2106
push edx i char| »
call dgs:sprintf
add esp, 10h
lea edi, [espelBShevar 108]
V4

BN

loc_10002R08:

or ecx, BFFFFFFFFN

xor pax, eax

repne scasb

not ecx Literal: Total harddisk space is:%1vG, remaining harddisk space is:%1vG

sub edi, ecx

nov e5i, edi

nov edx, eox

nev edi, eb

or ecx, BFFFFFFFFR

repne scasb

nov ecx, edx

dec edi

shr ecx, 2

rep movsd

nov ecx, edx

and ecx, 3

rep movsh

nov edi, ebp

or ecx, OFFFFFFFFR

repne scasb

not erx

dec eCx

pop ebp

chp ecx, 500

jle short loc_10002a46

—_—
loc_10002A46:
nov edx, [espehBhhisvar_L78)
lea pax, [espesBihenanclen)
nov duord ptr [ebx+1FOh], O
push pax ; namelen Gather sockname
nov rax, [edx]
lea ecx, [espeuBShehostlong)

ecx ; hame /

HE
espeliChenamelen] i
hostlong

The information is encrypted at 0x1000FB10. The encryption algorithm block is
identified at 0x1000FB2A to 0x1000FB54.

ELTM
push edi .
nov edi, [esp+8+arg 0] Encryption algorithm

L]
ELTM
loc_1000FB2A:
nov eax, esi

idiv [esp+8+arg_8]

novsx eax, byte ptr [edx+ebp]
xor eax, [ecx+4]

and eax, 8000AOFFh

jns short loc_1000FB46

loc_1000FB46:

nov dl, [esi+edi]

xor a1, d1

inc esi

not al

nov [esitedi-1], al
cmp esi, ebx

j1 short loc_1080FB2A

!

Figure 26. The encryption algorithm was found under IDA Pro

Frankie Li, ran2@vxrl.org

22

Based on this encryption algorithm, a script (Appendix II) is written for

decryption part of the communication (Figure 27). It is found that the injected

“msvcr.dll” first sends standard HTTP request together with the machine ID and receives

a standard HTTP response from the connected C&C. Then it sends all collected

information through encryption HTTP traffic to the C&C.

At the same moment, another session of behavioral analysis is performed and the

82
39
53
28
38
28
38
28
28
28
28
28
6F
69
64
28
28
36
28
31
28
28
28
28
28
28
28

2C
3A
28

90 90 20 20 08

a1
38
54
29
37
29
33
52
29
41
28
4D
66
63
208
29
47
28
32
38
-2}
A8
-2}
29
28
289
D7

28
38
29

a1
31
41
29
28
29
28
41
29
64
29
69
65
65
32
29
65
46
33
35
29
a3
29
29
28
29

DC

88 A5 4E

39
58
-]
28
-]
28
4E
=]
6D
-]
63
73
28
36
L]
6E
61
28
38
L]
28
L]
-]
28
L]

B4

33
72
32
28
28
288
32
28
69
L]
72
73
58
38
28
75
6D
53
4D
28
288
88
=]
28
28

cs

CA A3 D3

38
6F
38
28
28
28
2D
28
6E
28
6F
69
61
38
28
69
69
74
48
28
28
28
28
28
28
cs

E®

28
30
28
38
28
28
28
EL
28
69
28
73
6F
63
29
28
6E
6C
65
5A
28
28
28
28
28
28
cc

B4

29
44
-]
39
L]
1]
88
41
29
73
29
6F
6E
6B
8A
1]
65
79
78
88
-]
88
-1]
29
88
29
BF

cs

28
33
28
30
28
28
28
35
28
74
28
66
61
28
28
28
49
28
78
28
28
28
28
28
28
28
D5

cs

28
38
28
36
28
28
28
33
29
72
28
74
6C
32
28
28
6E
36
69
28
28
28
28
28
28
288
BC

cc

29
39
29
38
28
29
28
41
29
61
29
28
2C
28
28
29
74
28
6E
28
29
28
29
29
28
29
E4

BF

29
39
29
35
28
29
28
39
-]
74
29
58
28
28
28
29
65
4D
67
28
29
28
29
-]
28
29
CE

D5

38 43

33
88
38
28
68
28
36
28
6F
28
58
53
42
28
28
6C
6F
28
28
28
288
L]
=]
28
88
AA

BC

38
28
39
28
6B
88
28
=]
72
88
208
65
75
28
28
208
64
31
288
88
88
28
28
288
28
3A

E4

38 46
31
28
32
28
38
28
28
28
28
28
58
72
69
20
28
78
65
38
28
28
28
28
28
20
28
33

CE

LE.....8C8F
9819388D38993816

ice Pack 2(Buil
d2688).........

6 Family 6Model
23 Steppingl®
1858MHZ.........

CEREZER:36

47 @8 @8
29 089 @8

28
28
28

28
28
28

28
28
28

28
28
28

28
29
28

29
29
28

89 989 @8
88 88 88
28 89 28

L]
28
L]

, FEREEZER

Figure 27. Example of decrypted communication

changes on the file system and registry changes are summarized below (Table 3).

Tool Process Location Event Name
CaptureBAT | explorer.exe C:\WINDOWS\Debug\ File added | fvcwin32.exe
CaptureBAT | explorer.exe C:\WINDOWS\Debug\ File added | acvewin32.exe
CaptureBAT | explorer.exe C:\WINDOWS\Debug\ File added | avcwin32.exe
CaptureBAT | fvewin32.exe C:A\WINDOWS\Debug\Data File drive
CaptureBAT | acvewin32.exe | C:\WINDOWS\Debug\Data File added | 20110704145735.bmp
CaptureBAT | avewin32.exe | C:\Documents and File added | B zh %2

Settings\<user>\Application txt1309762661 (Lit.

Data “AutoList.txt”)
CaptureBAT | avewin32.exe | C:\WINDOWS\Debug\Data File added | SAM.dII
CaptureBAT | avewin32.exe | C:\WINDOWS\Debug\Data File added | system.dll
CaptureBAT | explorer.exe C:A\WINDOWS\Debug\Data File added | drive
CaptureBAT | explorer.exe C:A\WINDOWS\Debug\Data File added | Iestorage.dll
CaptureBAT | explorer.exe C:A\WINDOWS\Debug\Data File added | SAM.dII
CaptureBAT | explorer.exe C:A\WINDOWS\Debug\Data File added | system.dll
CaptureBAT | explorer.exe C:A\WINDOWS\Debug\Data File added | iestorage.dll
CaptureBAT | explorer.exe C:\WINDOWS\Debug\Data File added | drive.cab

Frankie Li, ran2@vxrl.org

Table 3. Further changes on the file system and registry

Applying the filtering function on Process Monitor, three new processes can be

identified. (Figure 28)

:54:4... JEprorer.E... 1988 &7 Process Create C:AWINDOWS\Debughfvewin32.exe SUCCESS PID: 3004
:54:4... JEproreLE,.. 1988 &7 Process Create C:\WINDOWS\Debughacvewin32.exe SUCCESS PID: 1504
:54:5... JEprorer.E... 1988 &7 Process Create C:\WINDOWS\Debughavewin32 exe SUCCESS PID: 464,

Figure 28. The debugging “Explorer.exe” creates these processes

Three binaries (fvewin32.exe, acvewin32.exe and avewin32.exe) were

23

downloaded and called by the injected “msvcr.dll”. During the behavioral analysis, some

files (drive.cab, iestorge.dll, SAM.dII, system.dll, 20110704145735.bmp) were created at

CAWINDOWS\Debug\Data folder. Furthermore, all files with extension of *.dll, *.v2

were uploaded to the C&C through the encrypted HTTP traffic. These files were removed

by the injected “msvcr.dll” immediate after upload. In order to test the selective ability
of the upload function, some files named as “Secret.v1”, “Secret.v2” and “Secret.dll”
were created under C:\WINDOWS\Debug\Data folder. It was found that only the file
“Secret.v2” and “Secret.dll” were removed and uploaded to the C&C (Figure 29).

Figure 29. Only files named with extension of *.dll and *.v2 were uploaded

Frankie Li, ran2@vxrl.org

24

3.4. Trojan-Spy for Collection of Email Passwords
Before entering the main routine, the binary “avcwin32.exe” tries to create two

mutux of “my lovely wood” and “SP164 RUNNING” (Figure 30).

[ENLL

real_main proc near

var_258« dword ptr -258h
var_252= byte ptr -252h
var_251= byte ptr -251h
ExistingFileName= byte ptr -250h
NewFileName~ byte ptr -14Ch
var_C= dword ptr -0Ch

var_4= duword ptr -4

nov eax, large fs:@
push BFFFFFFFFh
push offset loc_40AB16

push eax

nov large fs:0, esp

sub esp, 24Ch

push ebx

push ebp

push esi

push edi

push offset Name ; “my lovely wood"
push 1 ; bInitialOwner
push] ; lpHutexAttributes
call ds:CreateMutexn

nov esi, eax

call ds:GetLastError

cmp eax, 0B7h

jz loc_WOSFE2

Figure 30. Mutux named “my lovely wood” was found under IDA Pro

It extracts information from the SAM file and generates a temporary file with
prefix of “SAM” at C:\Documents and Settings\<user>\Application Data. It collects all
passwords from “Foxmail”, “Outlook express”, “Outlook”, “Protected Storage”, “IE

Form Storage”, “MSN”, “Passport DotNet” and from the system (Figure 31).

EL I

collect_passwords proc near
lpush esi ; int
nov esi, ecx

push edi ; int
lea ecx, [esi+20h]

call get_foxmail_cfgq

lea edi, [esi+40h]

nov ecx, edi

call get_outlookExpress
nov ecx, edi

call get_Outlook

nov ecx, edi

call get_protectStorage
nov ecx, edi

call get_ieFornStorage
nov ecx, edi

call get_CredEnumnerate
nov ecx, esi

call get_HSH

nov ecx, esi

call get_PassportDotNet
nov ecx, esi

call gen_qptdit_tmp

pop edi

nov a1, 1

pop esi

retn

collect_passwords endp

Figure 31. Malicious functions are identified under IDA Pro

Frankie Li, ran2@vxrl.org

25

All collected passwords are written to temporary files with prefix of “H 23 .
txt” (Lit. “AutoList.txt”). These files are subsequently compressed in cab format and

renamed as “iestorage.dll” to C:\Windows\Debug\Data folder (Figure 32).

B 313 5 1xt1310814134 - Notepad M=1E3

File Edit Format View Help

========================== FOXMail @B ME S ===========================
======================= OUt 100k EXpPress@f{PE S =======================

rz: outlook Express
BE{ HoE: charlesmanlzé@gmail. com
£ &l POP3 Mail
POP3Moht: imap.gmail.com
POP3E) : charlesmanlzé@gmail. com
POP3ESEL: passitme
SMTPHoht: smtp.gmail. com
SMTPEB P : charlesmanl2é

out Took BE {4t S
===== MSNPE S =====
HE @RS B5F] ==========================

FWEALZFR: https://www. google. com/accounts,/ServiceLogin
Eet A~ charlesmanlzé@gmail. com, passl2man,

FIEAZFR: Passport.nNet
Bek A~ charlesmanlz2é@hotmail. com
BZ: passlZman

FWEZFR: charlesmanlz2é@hotmail. com
EekB P charlesmanlzé@hotmail. com
B : zohdn&Fssocredflua:} g~z"YXR%JDeIl=x[CQF :yD>$ALAXY

FWAEZRR: charlesmanl2é@gmail. com
EeL B~ charlesmanl2é@gmail. com

Figure 32. Contents of iestoreage.dll
Before termination, the process renamed “avcwin32.exe” as “svcwin32.exe”.
3.5. Trojan-Spy for Collection of File System Details

Similar to “avewin32.exe”, the “fvcwin32.exe” process tries to create the same

mutux of “my lovely wood” and “SP164 RUNNING”.

It scans all hard disk, CDROW and floppy diskette to collect all directories and
file names and the respective MAC time information from these storage devices (Figure

33).

Frankie Li, ran2@vxrl.org

26

¥ ¥

edx, [ebp+RootPathName]
edx loc_401FA0:

offset ans ; “eE+l(%S)\PFAn" edx, [ebp+RootPathMame]
short loc_H4B1FA9 edx
offset aKs
]
L2]
ELTM EXN I
edx, [ebx+4] nov ecx, [ebx+y
ecx, [ebp+RootPathName] lea eax, [ebp+RootPathName]| |loc_401FA9:
ecx push eax nov eax, [ebx+i]
offset aTs ;UG (Zs)ArAn”| [push offset unk_uBat1sl push eax ; FILE =
edx push ecx
short loc_hO1FAD jmp short loc_ WB1FAD

v ‘—++v

EX NI EX NIl
nov edx, [ebx+4]
lea ecx, [ebp+RootPathName] loc_401FAD:
push ecx call esi ; fprint
push offset a$;e (Es)ven | |add esp, OCh
push edx ; FILE =
call esi ; fprintf
add esp, OCh
lea eax, [ebp+RootPathName]
nov ecx, ebx
push offset unk_4ON2FC
push eax
call prt_fileDetails
jmp short loc_A4B1FB2
[

Figure 33. Directory and file names were gathered

All collected information is kept inside a file called “drive”, which is then
compressed into cab format and put under C:\WINDOWS\Debug\Data. The injected

“msvcr.dll” remove the un-compressed file after the upload.

3.6. Trojan-Spy for Capturing Screens
The “acvewin32.exe” process is responsible for creation of screen captures in
bitmap format for every 1000 milliseconds. All these screen captures are compressed and

renamed with extension of *.v2 and put under C:\WINDOWS\Debug\Data (Figure 34).

¥
offset unk_LBu420
eax, [esp+124heFileNane]
offset as_v2 3 "¥sH.u2
eax ; LPSTR
edi ; wsprintfa
esp, OCh
ecx, [esp+120h+FileNane]
ecx ; 1pFileNane
ecx, offset unk_4043F8
find_v2

eax, dword_4Bu530
short loc_NO1BEF

3%

ebx, [esp+120h+var_110]
k_HOKIFS

write_screen

¥

B N Ll [ENL

push SbCh

jmp short loc_u01BF4f |loc_401BEF: ; duNillisecond
[push 3E8h

|

\OKBEE (1000)ms

call ebp ; Sleep

nov eax, dword_LO4H18
test eax, eax

jz loc_hB1B33

Figure 34. Bitmap is created for every 1000 milliseconds

Frankie Li, ran2@vxrl.org

27

4. Conclusion

The malware is multi-partite in nature, which includes, a dropper (“dg003.exe”), a
droppee (“msvcr.dll”’) and at least three Trojan-Spies (“fvcwin32.exe”, “acvewin32.exe”
and “avcwin32.exe”). The malware uses large amount of Windows API calls to reduce

its size.

The malware uses encrypted HTTP traffic to transmit collected intelligence back

to C&C, which makes it difficult to be discovered.

Indicated by the well-crafted email contents, the intruder has performed intensive
prior reconnaissance on the targeted victim or has well studied the culture of the attacking
organization before sending the spear-phishing email. The email contains materials of an

updated political event and it was sent promptly response to the incidents.

Based on the result of the analysis, the key functions of the malware are non-
profit driven (aka not motivated by financial gains), but places high emphasis on spying
functions, including: generating screen captures, gathering email and messaging

passwords and every directories and file names information from the victim’s machine.

It bears the similar attributes as mentioned in the GhostNet report
(TheSecDevGroup, 2009, p. 18-22, 24-26) and in the Operation Shady RAT
(Alperovitch, 2011, p. 2-3) which indicates that it is an APT-type malware.

Frankie Li, ran2@vxrl.org

28

5. References

Alperovitch, D. (2011, Aug 2). Revealed: Operation Shady RAT. (2011). Retrieved from
http://www.mcafee.com/us/resources/white-papers/wp-operation-shady-rat.pdf

Brand, M., Valli, C. & Woodward, A., (2010). Malware Forensics: Discovery of the

Intend of Deception. Edith Cowan University, Australian Digital Forensics
Conference.

Bejtlich, R. (2011). Taosecurity Blog. Retrieved from
http://taosecurity.blogspot.com/search?q=APT

Buecher, M., TIANWEIi & XhmikosR (2007). Regshot (Version 1.8.2) [computing

software]. Available from http://sourceforge.net/projects/regshot/
Chen Yi-Tian (F— %) (2005, Apr 27). CHM HL 1B A D HIE T, HR (literally
“How to create Trojan horse using CHM and EXE, Computer News”). Retrieved

from http://www.yesky.com/84/1942084.shtml
Cloppert, M. (2009, Jul 22). Security Intelligence: Introduction (pt 1), Computer

Forensics Blog. Retrieved from http://computer-

forensics.sans.org/blog/2009/07/22/security-intelligence-introduction-pt-1

Cloppert, M. (2010, Jun 21). Security Intelligence: Defining APT Campaigns, Computer

Forensics Blog. Retrieved from http://computer-

forensics.sans.org/blog/2010/06/21/security-intelligence-knowing-enemy/

Collake, J. (2006, Jan 1). Windows File Protection. Retrieved from

http://www.bitsum.com/aboutwfp.asp

Founstone. (2000). BinText (Version 3.0) [computing software]. Available from
http://www.mcafee.com/us/downloads/free-tools/bintext.aspx

Frye, S. (2011, Aug 18). Kaspersky disputes McAfee’s Shady Rat Report. TechRepublic.

Retrieved from http://www.techrepublic.com/blog/security/kaspersky-disputes-

mcafees-shady-rat-report/6315
Gheorghe, C. (2008). Stud PE (Version 2.4.0.1) [computing software]. Available from

http://www.cgsoftlabs.ro/

Frankie Li, ran2@vxrl.org

29

Hex-Rays SA. (2010). IDA Pro (Freeware Version 5.0) [computing software]. Available

from http://www.hex-rays.com/idapro/idadownfreeware.htm
Hoglund, G. (2011, Aug 15). Shady RAT is a Serious Business. Retrieved from
http://fasthorizon.blogspot.com/2011/08/shady-rat-is-serious-business.html

Hui, A. (2011, Sep 16). (personal communication using web name as Avatar). [1*
comments]. Retrieved from http://espionageware.blogspot.com/2011/09/attack-

roadmap-of-apt-type-malware.html#comments
Lee, R. (2011, Aug 21). McAfee fires back at Shady RAT criticism. SC Magazine.

(personal communication) Retrieved from http://www.scmagazineus.com/mcafee-

fires-back-at-shady-rat-criticism/article/210116/
Li. F., (2011, Aug 31) Behavioral Analysis with CaptureBAT. Retrieved from

http://espionageware.blogspot.com/2011/08/behavioral-analysis-with-

capturebat.html
Ligh, M., Adair, S., Hartstein, B., & Richard, M. (2011a). Malware Analyst’s Cookbook

and DVD: Tools and Techniques for Fighting Malicious Code. Wiley Publishing,

Inc.
Ligh, M., Adair, S., Hartstein, B., & Richard, M. (2011b). Handlediff (Version 0.2)

[computing software]. Available from http://www.malwarecookbook.com/

Mandiant. (2010, Jan 25). M-Trends, the Advanced Persistent Threat. Retrieved from

http://www.mandiant.com/products/services/m-trends
McAfee (2009). Filelnsight (Version 2.1) [computing software]. Available from
http://www.mcafee.com/us/downloads/free-tools/fileinsight.aspx

Oberhumer, M. (2008). Ultimate Packer for eXecutables (Version 3.03w) [computing

software]. Available from http://upx.sourceforge.net/
Russinovich, M. (2011a). Autoruns (Version 10.06) [computing software]. Available

from http://technet.microsoft.com/en-us/sysinternals/bb963902

Russinovich, M. (2011b). Process Explorer (Version 2.93) [computing software].

Available from http://technet.microsoft.com/en-us/sysinternals/bb896653

Russinovich, M. (2011c). Process Monitor (Version 15.0) [computing software].

Available from http://technet.microsoft.com/en-us/sysinternals/bb896645

Frankie Li, ran2@vxrl.org

30

Russinovich, M. (2011d). ListDLLs (Version 3.1) [computing software]. Available from
http://technet.microsoft.com/en-us/sysinternals/bb896656
Russinovich, M. (2011e). TCPView (Version 3.02) [computing software]. Available

from http://technet.microsoft.com/en-us/sysinternals/bb897437

Russinovich, M. (2011f). VMmap (Version 3.1) [computing software]. Available from
http://technet.microsoft.com/en-us/sysinternals/dd535533

Russinovich, M. (2011g). Winobj (Version 2.21) [computing software]. Available from
http://technet.microsoft.com/en-us/sysinternals/bb896657
Snaker, Qwerton & Jibz (2008) PEiD (Version 0.95) [computing software]. Available

from http://www.peid.info/
Szor, P. (2005). The Art of Computer Virus Research and Defense, Addison Wesley

Professional
TheSecDevGroup. (2009, Mar 29). Tracking GhostNet: Investigating a Cyber Espionage
Network. Retrieved from http://www.scribd.com/doc/13731776/Tracking-

GhostNet-Investigating-a-Cyber-Espionage-Network
Valli, C. & Brand, M. (2008). The Malware Analysis Body of Knowledge (MABOK),

Edith Cowan University, School of Computer and Information Science
Wireshark.org. (2010). Wireshark Network Protocol Analyzer (Version 1.2.2)
[computing software]. Available from http://www.wireshark.org/
Yuschuk, O. (2004). OllyDbg (Version 1.10) [computing software]. Available from
http://www.ollydbg.de/download.htm

Zealand Honeynet Project (2007). Capture BAT (Version 2.0.0) [computing software].
Available from http://www.honeynet.org/node/315

Zeltser, L. (2007). Reverse Engineering Malware: Tools and Techniques Hands —On.
Bethesda: SANS Institute.
Zeltser, L. (2011). REMnux: A Linux Distribution for Reverse-Engineering Malware

(Version 2.0) [computing software]. Available from http://zeltser.com/remnux/

Zimmer, D. (2001). Malcode Analysis Pack (Version 1.0) [computing software].
Available from

http://www.woodmann.com/collaborative/tools/index.php/Malcode Analysis Pac

k

Frankie Li, ran2@vxrl.org

Appendix |

On the Remnux responsive box, the honeyd configuration file was found at

/etc/honeypot/honeyd.conf (Figure 35) and the configuration file of farpd was found at

/etc/default/farpd (Figure 36).

honeyd.conf

Jetc/honeypot/honeyd.conf

kreate default

#set default default tcp action block
set default default udp action block
#set default default icmp action block

add default tcp port 80 "sh /usr/share/honeyd/scripts/web.sh"
add default tcp port 6666 proxy 127.0.0.1:6666
add default tcp port 3127 proxy 127.0.0.1:3127
add default tcp port 8080 proxy 127.0.0.1:8080

Figure 35. Configuration of honeyd

farpd
fetc/default/farpd

31

i Options for the Fake arp daemon
#

Interface where farpd will listen in
INTERFACE="ethO"

Network for which fake arp daemon will answer to

You can leave this empty but then the daemon will try to take over
all the network addresses in that interface

#

Note: Default 'unconfigured' means that farpd will not startup, you
have to setup a valid value here (can be empty)

NETWORK=""

Time to wait for the daemon to die before restarting it
(1n seconds)
DODTIME=5

Figure 36. Configuration of farpd

Frankie Li, ran2@vxrl.org

Appendix Il

import os,sys,glob, pcap, dpkt
from dpkt import ip,tcp
from socket import inet_ntoa
import binascii

def preparekey ():
orikey = "c927302936028971214[31231354b0d7‘2d"
seckey =
newkey = []
snewkey =
for ac in orikey
atmE ord(ac)/\seckey
newkey. append(atmp)
snewkey. appendChex(atmp))
return newkey

def decode (data,key):
lenkey = en(key
lendata en(data)
newdata
snewdata = []
hexnewdata = []
=1

%or i in range(o lendata):
ab = data

j 1

1f 1>15 and i<24:
newdata. append(ord(ab))
hexnewdata. append(hex(ord(ab)))
snewdata. append(ab)
continue

elif i==24:

0

rabh = ~ord(ah)

if rab < 0:

” rab = ra_lb +k256

ikey = j % Tenkey

ak = key[ikey]

av = akArab

newdata. append(av)

hexnewdata. appendChex(av))

snewdata. append(chr(av))
alldata = []
for 1_in range(o,lendata):

alldata.append([newdata[i], hexnewdata[i], snewdata[i]])
return newdata, hexnewdata, snewdata alldata

def main(adi r)
files glob. g'lnb(ad'|r+ . pcap')
CCSPVIP = "113.x.x.

ke reparekey()
f0¥ aﬁp'lep'ln files:
print afile
outbinfilename = afile.replace(’.pcap’, ' _out.bin')
outhinf = open(outhinfilename,
outhexfilename = afile. rep'lace(cap', '_out.hex')
outhexf = file(outhexfilename, 'w g
outdecodefilename = afile. rep'lace(-pcap’, ' _out.decode')
outdecodef = file(outdecodefilename,”’
outdecodetxtfilename = afile. r‘ep'lace(-pcap’, '_out.decode_txt')
outdecodetxtf = f‘l'Ie(outdecodetxtfﬂename, w
indecodefilename = afile.replace(’ pcap , _in.decode')
indecodef = file(indecodefilename, w)
indecodetxtfilename = afile. rep'lace(.pcap’, '_in.decode_txt')
indecodetxtf = f'l'le(mdecodetxtﬁ'lename, w'
inbinfilename = afile. rep'lace(cap', '_in.bin')
inbinf = open(inbinfilename,’ wb'
inhexfilename = afile. rep1ace(.pcap’, '_in.hex')
inhexf = file(inhexfilename, 'w)

apcap = pcaEIJ pcap(afile)
apcap.setfilter('tcp')
for ts,buf in apcap:

tr
yeth = dﬁkt ethernet.Ethernet (buf)
ip = data
srcip = str(inet_ntoa(ip.src)).strip(Q)
tcp = ip.data

tcp'len = str(m len - (ip.v_hl & oxf)*4 - (tcp.off_x2 >> 4)%4)
if int(tcplen) == 0:
continue
tcpdata = tcp.data
if srcip == CCSrvip:
newdata, hexnewdata, snewdata, alldata = decode (tcpdata,key)
inbinf. wr"lte(tcp ata
print >> inhexf, hinascii.hex1ify(tcpdata)
print >> 1ndec0def, str(alldata)
; print >> indecodetxtf,snewdata
else:
newdata, hexnewdata, snewdata, alldata = decode (tcpdata,key)
outhinf. wr'lte(tcpdata)
print >> outhexf, hinascii.hex1ify(tcpdata)
print >> Uutdecodef str(alldata)
print >> outdecodetxtf snewdata
except dpkt.unpackerror as aerror:
print aerror
outhinf.close()
del outhexf
inbinf.close()
del inhexf
del indecodef

del outdecodetxtf
del indecodetxtf

if _namg_ == '_ma [] o
topdir = sys. argv 1].strip
if topchr[1] = S
topdir = topdir + '/'
main(topdir)

Frankie Li, ran2@vxrl.org

Last Updated: April 8th, 2014

Upcoming Training

CERTIFIED!

SANS Security West 2014 San Diego, CA May 08, 2014 - May 17, 2014 Live Event
Mentor Session - FOR 610 Columbia, MD May 21, 2014 - Jul 23, 2014 Mentor
Digital Forensics & Incident Response Summit Austin, TX Jun 03, 2014 - Jun 10, 2014 Live Event
Community SANS Ottawa Ottawa, ON Jun 16, 2014 - Jun 21, 2014 |Community SANS
SANSFIRE 2014 Baltimore, MD Jun 21, 2014 - Jun 30, 2014 Live Event
SANS vLive - FOR610: Reverse-Engineering Malware: Malware |FOR610 - 201407, Jul 14, 2014 - Aug 20, 2014 vLive
Analysis Tools and Techniques

SANS Virginia Beach 2014 Virginia Beach, VA Aug 18, 2014 - Aug 29, 2014 Live Event
SANS Baltimore 2014 Baltimore, MD Sep 22, 2014 - Sep 27, 2014 Live Event
SANS DFIR Prague 2014 Prague, Czech Republic | Sep 29, 2014 - Oct 11, 2014 Live Event
SANS vLive - FOR610: Reverse-Engineering Malware: Malware |FOR610 - 201410, Oct 13, 2014 - Nov 19, 2014 vLive

Analysis Tools and Techniques

Community SANS Paris @ HSC - FOR610 (in French)

Paris, France

Nov 24, 2014 - Nov 28, 2014

Community SANS

SANS OnDemand

Online

Anytime

Self Paced

SANS SelfStudy

Books & MP3s Only

Anytime

Self Paced

