
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Reverse-Engineering Malware: Malware Analysis Tools and Techniques (Forensics 610)"
at http://www.giac.org/registration/grem

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/grem

Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Reverse-Engineering Malware: Malware Analysis Tools and Techniques (Forensics 610)"
at http://www.giac.org/registration/grem

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

A Detailed Analysis of an Advanced Persistent

Threat Malware

GIAC (GREM) Gold Certification

!"#$%&'()&*+,-.(/-0(&*+1234&56%&7(
!83-9%&'(!+#%+-%9(!#5*9-9(

!::.;#.8'(<:#%=.&(>?0(1@>>(

!=9#&*:#(
A;.*&B;-9-+7(.C*-59(D.&.(9.+#(#%(*(;%5-#-:*5(E-7"&.(*#(CF(;5*:.(%E(&.9-8.+:.6(!+(
.C*-5(#%7.#$.&(D-#$(#$.(*##*:$.8(9*C;5.(D*9(;&%3-8.8(E%&(E%&.+9-:9(*+*5F9-96(G#(
;;.&9(#%(=.(*+(!83*+:.8(H.&9-9#.+#(I$&.*#(#F;.(C*5D*&.6(JF(;.&E%&C-+7(
=.$*3-%&*5(*+8(:%8.(*+*5F9-9(-+(*+(*5#.&+*#-3.5F(D*F0(C%9#(%E(-#9(-C;%&#*+#(E"+:#-%+9(
D.&.(-8.+#-E-.86(I$.(*-C(%E(#$-9(#.:$+-:*5(;*;.&(-9(#%(-55"9#&*#.(#$.(8.#*-5.8(
;&%:.8"&.9(%E($%D(#$-9(C*5D*&.(D*9(8-99.:#.86(

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

! 2
(

)&*+,-.(/-0(&*+1234&56%&7(((

1. Introduction
Spear-phishing emails were sent to a political figure at my place of residence. An

email, including the attached sample was provided for forensics analysis. This email

contained obviously well crafted message to lure the recipient to open the malicious

attachment. It was predicted as an Advanced Persistent Threat attack (APT-attack).

By performing the detailed behavioral and code analysis in a Spiral way (Brand,

Valli & Woodward, 2010, p 6), most of the important functions of the malware were

identified. The aim of this technical paper is to demonstrate the step-by-step procedures

on how this malware was dissected.

Advance Persistent Threat (APT) is a hot and controversial term used amongst

security professionals, including Bejtlich (2011), Cloppert (2010), Lee (2011) and

Hoglund (2011), especially after McAfee published their white paper called: “Revealed:

Operation Shady RAT” (Alperovitch, 2011). Kaspersky criticized this report and flagged

“the report as alarmist due to its deliberately spreading misrepresented information”

(Frye, 2011).

The term APT is frequently used as a replacement term to describe cyber warfare

between countries (Cloppert, 2009). Albert Hui, an IT professional in Hong Kong

viewed it as “an entire threat class (analogous to other threat classes like insider fraud,

industrial espionage, and hactivism), whereas things like RATs, drive-by malwares,

rootkits, DDoS are threat vehicles” (Hui, 2011). Referring to the traditional meaning of

APT, the malware is only one of the threat components of APT. However, most anti-

virus vendors, including McAfee and Kaspersky continue to fame APT as a malware.

One side of them even treats it as a “bot” or “back door”, which contains sophisticated

techniques that persistently hiding itself in the victim’s system for collection of

intelligence. However, comparing with other threat tools, because malware is easier to

prepare and deploy, the term APT will be continuously be described as a malware. A

fine-tuned definition proclaimed by Mandiant (2011, “What is M-Trends?”) is accepted.

In this technical paper, APT is considered as a cyber attack launched by a group of

sophisticated, determined and coordinated attackers that have been systematically

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

! 3
(

)&*+,-.(/-0(&*+1234&56%&7(((

compromising a specific target’s machine or entity’s networks for prolonged period. The

meaning of “Persistence” is also expanded to the acts of the attackers of persistently

launching spear-phishing attacks against the targets. The findings indicate the main

functions of the APT-type malware are usually placed heavily on spying instead of for

the purpose of financial gain.

Other than the purpose of collecting of national secrets or political espionage,

based on the functions discovered, it is believed that this threat can also apply to the cases

in business or industrial espionages, spying acts or even un-ethical detective

investigations.

2. The Behavioral and Code Analysis
2.1. Setting Up the Lab Environment

The analysis was conducted inside a host-only network VMware machines.

a) The infection box was installed with a Windows XP SP2 system. The IP

address was configured as 192.168.80.125 with default gateway and DNS

pointed to 192.168.80.130 (i.e. IP address of the responsive box described

below).

b) A lightweight Ubuntu distribution, REMnux 2.0 was used for interacting

with the malware. It was configured with IP address of 192.168.80.130 as

a responsive box.

The analysis methodology proposed by Zeltser (2007) was adopted. It is a way of

molding of analysis environment that alternately uses behavioral and code analysis

techniques to identify the functionality of the executable (Valli & Brand, 2008, p.2).

The table shows the tools that were used to perform the behavioral and code

analysis (Table 1).

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

! 4
(

)&*+,-.(/-0(&*+1234&56%&7(((

Analysis
Technique

Tool name Reference Functional usage of the tool

Behavioral Autoruns (v10.06) Russinovich, M.
(2011a)

List auto-start locations.

Behavioral Process Explorer
(v2.93)

Russinovich, M.
(2011b)

Display processes, threads,
DLLs loaded.

Behavioral Process Monitor
(v15.0)

Russinovich, M.
(2011c)

Log files, registry, network,
processes, threads changes.

Behavioral ListDLLs (v3.1) Russinovich, M.
(2011d)

Display DLLs loaded on the
system.

Behavioral TCPView (v3.02) Russinovich, M.
(2011e)

Lists active TCP/UDP
endpoints.

Behavioral VMmap (v3.1) Russinovich, M.
(2011f)

Display of a process’ virtual
and physical memory usage.

Behavioral Winobj (v.2.21) Russinovich, M.
(2011g)

Display Windows’ Object
Manager namespace.

Behavioral BinText (v3.00) Founstone. (2000) Text extractor.
Behavioral Regshot (v1.8.2) Buecher, M.,

TiANWEi &
XhmikosR (2007)

Shows registry and file
changes between two of its
snapshots.

Behavioral CaptureBAT
(v2.0.0)

Zealand Honeynet
Project (2007)

A client honeypot.

Behavioral HandleDiff (v.0.2) Ligh, M., Adair, S.,
Hartstein, B., &
Richard, M. (2011b)

Detect changes to the handle
tables of process.

Behavioral Wireshark (v1.2.2) Wireshark.org. (2010) Network Protocol Analyzer
and packet capture utility.

Behavioral Malcode Analysis
Pack (v1.0)

Zimmer, D. (2001) A package contains
applications that have proven
useful for analyzing
malicious code.

Behavioral/Code REMnux (v2.0) Zeltser, L. (2011) A Lightweight Linux
distribution for assisting
malware analysts in reverse-
engineering malicious
software.

Code UPX (v3.0.3w) Oberhumer, M.
(2008)

A tool that can achieves and
de-achieve an executable.

Code FileInsight (v2.1) McAfee (2009) a file reader that displays the
document in either textual or
hexadecimal format.

Code OllyDbg (OllyICE
Lite) (v1.10)

Yuschuk, O. (2004) Debugger for Win32
binaries.

Code IDA Pro Freeware
(v5.0)

Hex-Rays SA. (2010) Disassembler and debugger
with graphing capabilities.

Code PEiD (v0.94) Snaker, Qwerton &
Jibz (2008)

PE File identification tool.

Code Stud PE (v2.4.0.1) Gheorghe, C. (2008) PE format Viewer.

Table 1. Tools used to perform behavioral and code analysis

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

! 5
(

)&*+,-.(/-0(&*+1234&56%&7(((

2.2. The Observed Behavior
The sample was contained inside a well-crafted phishing email, which described

the news of a riot incident happened at a county near the Guangzhou City in China. The

malicious attachment named: “XinTang Event.rar”. It was not password protected and

after decompressed, a file called “XinTang Event.chm” was created. If double-clicked,

the following message was displayed (Figure 1).

Figure 1. The displayed chm help file if double clicked

To clear up the possible infection and assuming this malware did not exploit any

known or 0-day VMware vulnerability, the snapshot of the infection box was rolled-back

and uploaded the decompressed chm file to the responsive box for checking with the

“file” utility. It was identified as a “MS Windows HtmlHelp Data file”. After Googling,

an instruction on how to create Trojan horse using chm file was found from a Chinese

website (Chen Yi-Tian, 2005)

The chm file was decompiled by using a tool call “Malcode Analysis Pack”. A

folder (Figure 2) called “chm_src” was generated containing some jpeg files and an

executable called “dg003_improve_8080_V132.exe” (hereafter also called as dg003.exe).

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

! 6
(

)&*+,-.(/-0(&*+1234&56%&7(((

Figure 2. The contents of the decompiled chm_src folder

The file “dg003.exe” was checked with PEiD v0.94 and found UPX-packed

(Figure 3). After unpacked using the UPX utility, the file size of “dg003.exe” was

expanded from 84,992 bytes to 196,608 bytes generating hash value of

4EC0027BEF4D7E1786A04D021FA8A67F

Figure 3. The file “dg003.exe” was checked with PEiD

Various monitoring tools, including: Autoruns, TCPView, Process Explorer,

Regshot, Process Monitor, CaputreBAT and HandleDiff were activated in an order to

capture maximum information during execution of the malicious “dg003.exe”.

The CaptureBAT log was imported into Microsoft Excel for quick review (Li,

2011). Using the smart-filtering feature, all modifications of the registry entries and file

system were identified (Figure 4).

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

! 7
(

)&*+,-.(/-0(&*+1234&56%&7(((

Figure 4. Smart-filtering feature was used for quick identification of modifications

CaptureBAT log was first checked because of its distinctive advantages in

behavioral analysis. It can (a) identify which process is responsible for the file or registry

modifications; (b) backup the modified or deleted files into a folder during execution; and

(c) create a .pcap file to log the network activities during the capture. However, if files

were in accessed during the capture, CaptureBAT would miss backing up of these files.

As a supplement, Regshot was also activated to capture similar changes.

The file system and registry changes are summarized as below (Table 2).

Tool Process Location Event Name
CaptureBAT
/Regshot

dg003.exe C:\Documents and
Settings\<user>\Local
Settings\Application\Data

File added ws2help.PNF

CaptureBAT
/Regshot

dg003.exe C:\Documents and
Settings\<user>\Local
Settings\Application\Data

File added msvcr.dll

CaptureBAT dg003.exe C:\Windows\system32 File altered netstat.exe
CaptureBAT dg003.exe C:\Windows\inf File added

& removed
1.txt

CaptureBAT
/Regshot

dg003.exe C:\Documents and
Settings\<user>\Local
Settings\Application\Data

File added IECheck.exe

CaptureBAT
/Regshot

explorer.exe C:\Windows\system32 File added Ipsecstap.dat

CaptureBAT explorer.exe C:\Documents and
Settings\<user>\Start
Menu\Programs\Startup

File added Internet Explorer
Security Check.lnk

Regshot C:\Windows\system32 File added 13605
HandleDiff explorer.exe \BaseNamedObjects Mutant

added
VistaDLLPro
RUNNING

Table 2. Changes on file system and registry

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

! 8
(

)&*+,-.(/-0(&*+1234&56%&7(((

Using the tool – Vmmap and ListDLLs, the malicious dynamic-link library (DLL)

- “msvcr.dll” was found as an injected thread in the running process of “explorer.exe” at

the base address of 0x10000000 with image size of 0x43000 (Figure 5).

Figure 5. Injected DLL was found by using Vmmap

Checking the Thread information of the injected process - “explorer.exe” with

Process Explorer, three additional threads of “msvcr.dll” were discovered and they were

started at relative virtual address (RVA) of 0xAEE0, 0xABB0 and 0xA940 (Figure 6).

Wireshark was used to inspect a file named “192.168.80.125.pcap", which was

generated by CaptureBAT. The infection box tried to resolve the non-existent hostnames

of “test.3322.org.cn”, “1.test.3322.org.cn”, “2.test.3322.org.cn”, “3.test.3322.org.cn” and

“4.test.3322.org.cn”. Immediate after the unsuccessful retrials, it tried to connect to IP

addresses 172.16.0.61 and 115.x.x.249 by using TCP port number 8080.

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

! 9
(

)&*+,-.(/-0(&*+1234&56%&7(((

Figure 6. Three additional threads was indentied by using Process Explorer

In order to allow “dg003.exe” to establish connections with these IP addresses

inside a controlled virtual environment, the honeyd and farpd services on the Remnux

responsive box were activated. The farpd was configured to reply to any ARP request for

an IP address matching with the MAC address of the Remnux network adaptor and the

honeyd was configured to run http service at TCP port 8080 on the Remnux responsive

box (Appendix I). After these services started, some encrypted http communicated was

captured and the detail discussion of this communication can be found at section 3.2 of

this paper.

3. Technical details discovered by Code Analysis
The malware was identified as a kind of “multi-staged” malware (i.e. a malware

using form of multipartite infection strategy) (Szor, 2005, p. 76). During the analysis,

which will be described below, the malware or the file “dg003.exe” was found as a

dropper, which dropped the file “msvcr.dll” as the droppee. If the Internet access is

enabled, the injected “msvcr.dll” will download some more Trojan-Spies.

! 10
(

)&*+,-.(/-0(&*+1234&56%&7(((

IDA Pro was used for disassembling the binaries. The graphical view was used

along with the “Chart of X-ref to” and “Chart of X-ref from” functions to identify the

program flows between each important subroutine.

If possible, every subroutine was dynamically studied by stepping through under a

debugger, OllyDbg. Whenever a key function was identified, the subroutine was renamed

with a meaningful name both in OllyDbg and IDA Pro. If variables or pass though

arguments were found during debugging with OllyDbg, appropriate comments were

added to OllyDbg and IDA Pro. By switching back and forth, pseudo-code flowcharts

for all investigating binary could be generated.

3.1. The Code Analysis of “dg003.exe”
For quick identification, the file “dg003.exe” was uploaded to VirusTotal. The

report indicated only 15 out of 44 anti-viurs engines could detect it as malicious, but not a

single one could clearly identify its virus family or signature.

The following diagram shows a board overview of the order of executions and

key functions of the file “dg003.exe” (Figure 7).

Figure 7. The key functions of “dg003.exe”

The file “dg003.exe” starts by checking if it is called from a command prompt

with passing argument of “Update” or “Special” (Figure 8). These parameters were

passed to OllyDbg as argument during different debugging sessions. However, no

obvious function was triggered.

K  LC85-+.M(
K  N;8*#.(%&(A;.:-*5M(

87@@?6.4.(

K  ?O@P0((
K  J-#Q.E.+8.&0(!RS(
K  TATI0(U<Q?1(
K  V-9-+7(

L$.:,(!+#-B3-&"9(
;&%7&*C90(-+:5"8-+7'(

K  .+9"&.(+%(8";5-:*#-%+(
-+9#*55*#-%+(%E(#$.(
C*5D*&.(

L&.*#.(W"#"4'(
R-9#*Q//H&%(
VNUUGUS(

K  GTL$.:,6.4.(
K  X91$.5;6HU)(P(-#9(
E"55;*#$(*#(.+8(

L%;F(-#9.5E(*9(Y$-8.(*9(
9F9#.C(Z-5.9['(K  %&-7-+*5(A)L\<A6855(

:%;-.8(*9(>6#4#(
K  :*55.8(A)L\<A6855(
<&8-+*5(]^(

K  %&-7-+*5(+.#9#*#6.4.(
C%3.8(Z-5.(*+8(+*C.8(
-#(*9(_>?O@^_(

L$*+7.(+.#9#*#6.4.(

K  L&.*#.V.C%#.I$&.*8(
K  -+`.:#(C93:&6855(-+`.:#(
.4;5%&.&6.4.(

L&.*#.(C93:&6855(=F(
a<V.8B@4bcP@4!T(

1>@@@(=F#.9(

! 11
(

)&*+,-.(/-0(&*+1234&56%&7(((

Figure 8. Argument checking was found under IDA Pro

Then, it checks if the victim is installed with some anti-virus programs of

”Kaspersky”, “ESET”, “BitDefender”, “AVG”, “NOD32”, “Rising” or “360+ by

enumerating the registry key at “SOFTWARE\Microsoft\windows\CurrentVersion\

Uninstall”

After checking with the passing arguments, “dg003.exe” tries to create a mutux

named “VistaDLLPro RUNNING” (Figure 9) to prevent double installation of itself on

the system. This malware uses the similar method like, ZeuS bot to mark its presence on

the system (Ligh, Adair, Hartstein & Richard, 2011a. p.301).

Figure 9. CreateMutux was found under IDA Pro

! 12
(

)&*+,-.(/-0(&*+1234&56%&7(((

Then, “dg003.exe” writes a duplicate as C:\Documents and Settings\<user>\Local

Settings\Application Data\w2help.PNF at 0x00403DA2 (Figure 10).

Figure 10. The file “w2help.PNF” was written

Then it calls into 0x00402BB9 to append string of “C:\Documents and

Settings\<user>\ Local Settings\Application Data\msvcr.dll” at the end of the file

“w2help.PNF” to prevent detection of checksum based detection. At 0x00402BC9,

“dg003.exe” creates a DLL in the memory from the code stored at the resource section

with ID node name “VISTADLL” (Figure 11).

Figure 11. ID node “VISTALDLL” was found under IDA Pro

At 0x0040367F, it copies 0x21000 (135,158) bytes from the resource section to

the memory address at 0x0040F1F0. After executing the decoding routine at 0x0043691

to 0x004036AB, a DLL is decoded at memory location of 0x0040F1F0 (Figure 12).

! 13
(

)&*+,-.(/-0(&*+1234&56%&7(((

Figure 12. The Decoding Routine

Subsequent the decoding, the DLL is packed with a proprietary packing stub in
the memory and “dg003.exe” writes the packed DLL in name of “msvcr.dll” at
0x00402C71 (Figure 13).

Figure 13. The “write_pack_dll” function was found under IDA Pro

! 14
(

)&*+,-.(/-0(&*+1234&56%&7(((

After some clean ups, “dg003.exe” changes the MAC time (i.e. the Modification

time, Access time and Change time) of the newly created file “msvcr.dll” at 0x00402D15

and hides “msvcr.dll” as system file at 0x00402D41.

At 0x004017A2, “dg003.exe” copies two Windows system files of “netstat.exe” to

C:\Windows\System32\13605 and “SFC_OS.dll” to C:\Windows\inf\1.txt. The

“SFC_OS.dll” is the executable portion of Windows File Protection mechanism (WFP),

which protects system files from being modified or deleted. The malware calls to ordinal

5 function of “1.txt” in order to bypass the WFP (Collake, 2006) during patching

"netstat.exe" for hiding network connection of IP address of 115.x.x.249 (Figure 14).

Figure 14. Copy and patch “SFC_OS.dll”

During the behavioral analysis, it was found that “dg003.exe” would inject

“msvcr.dll” into the running “explorer.exe” process and because the process is the GUI

shell of Windows system, simply attaching this process to OllyDbg will freeze the

system. To execute two copies of “explorer.exe”, a Dword of DesktopProcess=1 was

added to the registry of HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer.

Then, the second copy of C:\WINDOWS\explorer.exe was attached under OllyDbg

(hereafter it is called as debugging “explorer.exe”) (Figure 15).

! 15
(

)&*+,-.(/-0(&*+1234&56%&7(((

Figure 15. Instructions of injection to “explorer.exe” under IDA Pro

To continue the debugging process, the file “dg003.exe” was patched for injecting

the “msvcr.dll” into the debugging “explorer.exe”. A break point was set at 0x00403FBF

for monitoring the scan of each running processes’ PID at 0x0012EBE4. After stopping

at this break point a few times, the process name of “explorer.exe” was displayed at the

ASCII pane near the dumped address at 0x0012EBE4. The PID value of the system

“explorer.exe” was replaced with the PID value of the debugging “explorer.exe”. As an

example, the system running “explorer.exe” PID of 864 (0x360) was patched with the

debugging “explorer.exe” PID of 3768 (0xEB8). Because the memory address is

represented in little endian under Intel CPU, to redirect the injection to the debugging

“explorer.exe”, the value of “60 03” was replaced with “B8 0E”. (Figure 16)

! 16
(

)&*+,-.(/-0(&*+1234&56%&7(((

Figure 16. Patching with the PID value to inject into the 2nd “explorer.exe”

After the patching, the malware injects “msvcr.dll” to debugging “explorer.exe”

by calling CreateRemoteThread API at 0x00404094. It also generates a debugger

message of “ ! ” (Literally “Injection Success!”) and then terminates itself.

3.2. Analysis of The Injected “msvcr.dll”
Because the “msvcr.dll” is packed by a proprietary packing routine, it has to be

manually un-packed before further code analysis. The file “msvcr.dll” is loaded into

OllyDbg and a hardware break point is set at 4 bytes about the ESP (Figure 17).

Figure 17. Setting Hardware Break Point at ESP-4

! 17
(

)&*+,-.(/-0(&*+1234&56%&7(((

After pressing F9 to let it run, it stops at an instruction at a long jump to the

address contains in EAX. (Figure 18)

Figure 18. EAX shows the possible Original Entry Point

Pressing F7 to step into EAX at 0x100166CA, it looks like “msvcr.dll” is

unpacked. The OllyDump is called to create an unpacked version of “msvcr.dll”, which is

loaded into IDA Pro for static code analysis.

Recalling the behavioral findings after the DLL injection (Figure 6), there are

three running threads of “msvcr.dll”, which are set to start at RVAs of 0xAEE0, 0xABB0

and 0xA940. After checking with the “Function View” of IDA Pro by adding base

address of 0x10000000 to these RVAs, three functions at 0x10009F40, 0x1000ABB0 and

0x1000AEE0 are identified. It is clearly a good choice for setting break points at

OllyDbg on the debugging “explorer.exe” (Figure 19).

Figure 19. The three entry functions identified under IDA Pro

The following diagram shows a board overview of the order of execution and key

functions of the injected “msvcr.dll” (Figure 20). A description of the performed analysis

that provided these results will follow.

! 18
(

)&*+,-.(/-0(&*+1234&56%&7(((

Figure 20. The key functions of the injected “msvcr.dll”

At address 0x1000AF12, the injected “msvcr.dll” creates a mutux “VistaDLLPro IS

RUNNING” and generates a debugging message of “MainThread Start!” at 0x1000AF37.

Then it generates a unique machine ID by referring to the network adaptor information

and the hard disk volume serial number at 0x1000B013 (Figure 21).

Figure 21. The hard disk volume serial number was used for generating machine ID

L&.*#.(-;9.:9#*;68*#(S.#(d*&88-9,(A.&-*5(+%(
GH\!88&(-+E%(
AI!HH&%(P(87@@?(
.+:&F;#.8(a<VB.8(@4>?(

L&.*#.(*(I$&.*8(#%(7.+.&*#.(9#*&#";(9$%&#:"#(

V.*8(Y+%+B.4-9#.+#[(
C9-;6-+-(
K  eG//IGWTfAgAITW(
K  !LIGRTIGWTfAgAITW(
K  !QQVVSAIGHfAgAITW(
K  !QQVVSAIH<VIfAgAITW(

L$,(C"#"4((
K  R-9#*Q//H&%(X*+#(X%%8(I%(
T4-#M(

L%55.:#(=*9-:(-+E%(

d*&8D*&.0(8&-3.0(
U.#JG<A(+*C.(
.+:&F;#(h(9.+8(

Q%D+5%*8(C%&.(=-+*&-.9(

*:3:D-+?16.4.(
E3:D-+?16.4.(
93:D-+?16.4.(

L%5.:#(-+9#*+#(C.99*7.(
+8(.C-5(-+E%(

ii0(WAU0(A-+*\NL(
$%#C*-5(*+8(E%4C*-5(
.+:&F;#(h(9.+8(

! 19
(

)&*+,-.(/-0(&*+1234&56%&7(((

A strings of “STAPPro” and “dg003” is added at the end of this machine ID, it is

encoded at 0x1000B0F1 and 0x1000B16D (Figure 22). A newly created file is created at

C:\WINDOWS\system32\ipsecstap.dat.

Figure 22. Encoding routine was found under IDA Pro

Then the injected “msvcr.dll” makes an API call, GetPrivateProfileString at

0x1000BD8D to retrieve strings from a non-exist file at C:\Windows\msip.ini. At

0x1000B6DA, it creates an “Assiant Thread” (The mis-spelled name which was found at

0x1000AB89 is used) to execute a function at 0x1000A940 (Figure 23). This thread will

create a mutux of “VistaDLLPRo Want Wood To Exit?” and runs a loop to wait for other

instructions.

Figure 23. An assistant thread was created

The injected “msvcr.dll” tries to resolve some DNS names of test.3322.org.cn,

1.test.3322.org.cn, 2.test.3322.org.cn, 3.test.3322.org.cn and 4.test.3322.org.cn. Then,

! 20
(

)&*+,-.(/-0(&*+1234&56%&7(((

tries to connect to a non-routable IP address of 172.16.0.61. It is believed that these are

un-removed junk codes that have been previously used for program testing.

Because the injected “msvcr.dll” thread is analyzed inside a controlled

environment, it runs into a loop and waits for further instructions from the C&C.

To trigger additional response, the honeyd and farpd services on the Remnux

responsive box are turned on to handle the network request. Under the same behavioral

studies, the injected “msvcr.dll” starts connecting to the IP address of 115.x.x.249 with

TCP port number 8080. If the socket is created, it sends out some encrypted network

traffic (Figure 24).

Figure 24. Encrypted traffic captured by Remnux responsive box

3.3. Behavioral and Code Analysis with Internet Access
In order to gather more responses from the actual C&C, Internet access was

enabled and another session of behavioral analysis was performed.

After connected with the C&C, the injected “msvcr.dll” jumps into the function at

0x1000BB10 to 0x10001E9A. It calls various APIs including: GetVersionaExA,

GetComputerNameA, GetUserNameA, GetLogicalDrives, GetDriveTypeA,

GetDiskFreeSpaeExA and GetACP to collect some hard disk information from the

victim’s system. Before calling the encryption function, the information is temporary

kept in memory (Figure 25). It also enumerates registry key of

“System\CurrentControlSet\Control\ProductOption” and

“Hardware\Descriptions\System\CentralProcessor\0” to gather more machine information

from the infected machine.

! 21
(

)&*+,-.(/-0(&*+1234&56%&7(((

Figure 25. Gathering hard disk information under IDA Pro

The information is encrypted at 0x1000FB10. The encryption algorithm block is

identified at 0x1000FB2A to 0x1000FB54.

Figure 26. The encryption algorithm was found under IDA Pro

! 22
(

)&*+,-.(/-0(&*+1234&56%&7(((

Based on this encryption algorithm, a script (Appendix II) is written for

decryption part of the communication (Figure 27). It is found that the injected

“msvcr.dll” first sends standard HTTP request together with the machine ID and receives

a standard HTTP response from the connected C&C. Then it sends all collected

information through encryption HTTP traffic to the C&C.

Figure 27. Example of decrypted communication

At the same moment, another session of behavioral analysis is performed and the

changes on the file system and registry changes are summarized below (Table 3).

Tool Process Location Event Name
CaptureBAT explorer.exe C:\WINDOWS\Debug\ File added fvcwin32.exe
CaptureBAT explorer.exe C:\WINDOWS\Debug\ File added acvcwin32.exe
CaptureBAT explorer.exe C:\WINDOWS\Debug\ File added avcwin32.exe
CaptureBAT fvcwin32.exe C:\WINDOWS\Debug\Data File drive
CaptureBAT acvcwin32.exe C:\WINDOWS\Debug\Data File added 20110704145735.bmp
CaptureBAT avcwin32.exe C:\Documents and

Settings\<user>\Application
Data

File added
.txt1309762661 (Lit.
“AutoList.txt”)

CaptureBAT avcwin32.exe C:\WINDOWS\Debug\Data File added SAM.dll
CaptureBAT avcwin32.exe C:\WINDOWS\Debug\Data File added system.dll
CaptureBAT explorer.exe C:\WINDOWS\Debug\Data File added drive
CaptureBAT explorer.exe C:\WINDOWS\Debug\Data File added Iestorage.dll
CaptureBAT explorer.exe C:\WINDOWS\Debug\Data File added SAM.dll
CaptureBAT explorer.exe C:\WINDOWS\Debug\Data File added system.dll
CaptureBAT explorer.exe C:\WINDOWS\Debug\Data File added iestorage.dll
CaptureBAT explorer.exe C:\WINDOWS\Debug\Data File added drive.cab

Table 3. Further changes on the file system and registry

! 23
(

)&*+,-.(/-0(&*+1234&56%&7(((

Applying the filtering function on Process Monitor, three new processes can be

identified. (Figure 28)

Figure 28. The debugging “Explorer.exe” creates these processes

Three binaries (fvcwin32.exe, acvcwin32.exe and avcwin32.exe) were

downloaded and called by the injected “msvcr.dll”. During the behavioral analysis, some

files (drive.cab, iestorge.dll, SAM.dll, system.dll, 20110704145735.bmp) were created at

C:\WINDOWS\Debug\Data folder. Furthermore, all files with extension of *.dll, *.v2

were uploaded to the C&C through the encrypted HTTP traffic. These files were removed

by the injected “msvcr.dll” immediate after upload. In order to test the selective ability

of the upload function, some files named as “Secret.v1”, “Secret.v2” and “Secret.dll”

were created under C:\WINDOWS\Debug\Data folder. It was found that only the file

“Secret.v2” and “Secret.dll” were removed and uploaded to the C&C (Figure 29).

Figure 29. Only files named with extension of *.dll and *.v2 were uploaded

! 24
(

)&*+,-.(/-0(&*+1234&56%&7(((

3.4. Trojan-Spy for Collection of Email Passwords
Before entering the main routine, the binary “avcwin32.exe” tries to create two

mutux of “my lovely wood” and “SPI64 RUNNING” (Figure 30).

Figure 30. Mutux named “my lovely wood” was found under IDA Pro

It extracts information from the SAM file and generates a temporary file with

prefix of “SAM” at C:\Documents and Settings\<user>\Application Data. It collects all

passwords from “Foxmail”, “Outlook express”, “Outlook”, “Protected Storage”, “IE

Form Storage”, “MSN”, “Passport DotNet” and from the system (Figure 31).

Figure 31. Malicious functions are identified under IDA Pro

! 25
(

)&*+,-.(/-0(&*+1234&56%&7(((

All collected passwords are written to temporary files with prefix of “

.txt” (Lit. “AutoList.txt”). These files are subsequently compressed in cab format and

renamed as “iestorage.dll” to C:\Windows\Debug\Data folder (Figure 32).

Figure 32. Contents of iestoreage.dll

Before termination, the process renamed “avcwin32.exe” as “svcwin32.exe”.

3.5. Trojan-Spy for Collection of File System Details
Similar to “avcwin32.exe”, the “fvcwin32.exe” process tries to create the same

mutux of “my lovely wood” and “SPI64 RUNNING”.

It scans all hard disk, CDROW and floppy diskette to collect all directories and

file names and the respective MAC time information from these storage devices (Figure

33).

! 26
(

)&*+,-.(/-0(&*+1234&56%&7(((

Figure 33. Directory and file names were gathered

All collected information is kept inside a file called “drive”, which is then

compressed into cab format and put under C:\WINDOWS\Debug\Data. The injected

“msvcr.dll” remove the un-compressed file after the upload.

3.6. Trojan-Spy for Capturing Screens
The “acvcwin32.exe” process is responsible for creation of screen captures in

bitmap format for every 1000 milliseconds. All these screen captures are compressed and

renamed with extension of *.v2 and put under C:\WINDOWS\Debug\Data (Figure 34).

Figure 34. Bitmap is created for every 1000 milliseconds

! 27
(

)&*+,-.(/-0(&*+1234&56%&7(((

4. Conclusion
The malware is multi-partite in nature, which includes, a dropper (“dg003.exe”), a

droppee (“msvcr.dll”) and at least three Trojan-Spies (“fvcwin32.exe”, “acvcwin32.exe”

and “avcwin32.exe”). The malware uses large amount of Windows API calls to reduce

its size.

The malware uses encrypted HTTP traffic to transmit collected intelligence back

to C&C, which makes it difficult to be discovered.

Indicated by the well-crafted email contents, the intruder has performed intensive

prior reconnaissance on the targeted victim or has well studied the culture of the attacking

organization before sending the spear-phishing email. The email contains materials of an

updated political event and it was sent promptly response to the incidents.

Based on the result of the analysis, the key functions of the malware are non-

profit driven (aka not motivated by financial gains), but places high emphasis on spying

functions, including: generating screen captures, gathering email and messaging

passwords and every directories and file names information from the victim’s machine.

It bears the similar attributes as mentioned in the GhostNet report

(TheSecDevGroup, 2009, p. 18-22, 24-26) and in the Operation Shady RAT

(Alperovitch, 2011, p. 2-3) which indicates that it is an APT-type malware.

! 28
(

)&*+,-.(/-0(&*+1234&56%&7(((

5. References

Alperovitch, D. (2011, Aug 2). Revealed: Operation Shady RAT. (2011). Retrieved from

http://www.mcafee.com/us/resources/white-papers/wp-operation-shady-rat.pdf

Brand, M., Valli, C. & Woodward, A., (2010). Malware Forensics: Discovery of the

Intend of Deception. Edith Cowan University, Australian Digital Forensics

Conference.

Bejtlich, R. (2011). Taosecurity Blog. Retrieved from

http://taosecurity.blogspot.com/search?q=APT

Buecher, M., TiANWEi & XhmikosR (2007). Regshot (Version 1.8.2) [computing

software]. Available from http://sourceforge.net/projects/regshot/

Chen Yi-Tian () (2005, Apr 27). CHM , !"#$%&'(##)*

+How to create Trojan horse using CHM and EXE, Computer News”). Retrieved

from http://www.yesky.com/84/1942084.shtml *

Cloppert, M. (2009, Jul 22). Security Intelligence: Introduction (pt 1), Computer

Forensics Blog. Retrieved from http://computer-

forensics.sans.org/blog/2009/07/22/security-intelligence-introduction-pt-1

Cloppert, M. (2010, Jun 21). Security Intelligence: Defining APT Campaigns, Computer

Forensics Blog. Retrieved from http://computer-

forensics.sans.org/blog/2010/06/21/security-intelligence-knowing-enemy/

Collake, J. (2006, Jan 1). Windows File Protection. Retrieved from

http://www.bitsum.com/aboutwfp.asp

Founstone. (2000). BinText (Version 3.0) [computing software]. Available from

http://www.mcafee.com/us/downloads/free-tools/bintext.aspx

Frye, S. (2011, Aug 18). Kaspersky disputes McAfee’s Shady Rat Report. TechRepublic.

Retrieved from http://www.techrepublic.com/blog/security/kaspersky-disputes-

mcafees-shady-rat-report/6315

Gheorghe, C. (2008). Stud_PE (Version 2.4.0.1) [computing software]. Available from

http://www.cgsoftlabs.ro/

! 29
(

)&*+,-.(/-0(&*+1234&56%&7(((

Hex-Rays SA. (2010). IDA Pro (Freeware Version 5.0) [computing software]. Available

from http://www.hex-rays.com/idapro/idadownfreeware.htm

Hoglund, G. (2011, Aug 15). Shady RAT is a Serious Business. Retrieved from

http://fasthorizon.blogspot.com/2011/08/shady-rat-is-serious-business.html

Hui, A. (2011, Sep 16). (personal communication using web name as Avatar). [1st

comments]. Retrieved from http://espionageware.blogspot.com/2011/09/attack-

roadmap-of-apt-type-malware.html#comments

Lee, R. (2011, Aug 21). McAfee fires back at Shady RAT criticism. SC Magazine.

(personal communication) Retrieved from http://www.scmagazineus.com/mcafee-

fires-back-at-shady-rat-criticism/article/210116/

Li. F., (2011, Aug 31) Behavioral Analysis with CaptureBAT. Retrieved from

http://espionageware.blogspot.com/2011/08/behavioral-analysis-with-

capturebat.html

Ligh, M., Adair, S., Hartstein, B., & Richard, M. (2011a). Malware Analyst’s Cookbook

and DVD: Tools and Techniques for Fighting Malicious Code. Wiley Publishing,

Inc.

Ligh, M., Adair, S., Hartstein, B., & Richard, M. (2011b). Handlediff (Version 0.2)

[computing software]. Available from http://www.malwarecookbook.com/

Mandiant. (2010, Jan 25). M-Trends, the Advanced Persistent Threat. Retrieved from

http://www.mandiant.com/products/services/m-trends

McAfee (2009). FileInsight (Version 2.1) [computing software]. Available from

http://www.mcafee.com/us/downloads/free-tools/fileinsight.aspx

Oberhumer, M. (2008). Ultimate Packer for eXecutables (Version 3.03w) [computing

software]. Available from http://upx.sourceforge.net/

Russinovich, M. (2011a). Autoruns (Version 10.06) [computing software]. Available

from http://technet.microsoft.com/en-us/sysinternals/bb963902

Russinovich, M. (2011b). Process Explorer (Version 2.93) [computing software].

Available from http://technet.microsoft.com/en-us/sysinternals/bb896653

Russinovich, M. (2011c). Process Monitor (Version 15.0) [computing software].

Available from http://technet.microsoft.com/en-us/sysinternals/bb896645

! 30
(

)&*+,-.(/-0(&*+1234&56%&7(((

Russinovich, M. (2011d). ListDLLs (Version 3.1) [computing software]. Available from

http://technet.microsoft.com/en-us/sysinternals/bb896656

Russinovich, M. (2011e). TCPView (Version 3.02) [computing software]. Available

from http://technet.microsoft.com/en-us/sysinternals/bb897437

Russinovich, M. (2011f). VMmap (Version 3.1) [computing software]. Available from

http://technet.microsoft.com/en-us/sysinternals/dd535533

Russinovich, M. (2011g). Winobj (Version 2.21) [computing software]. Available from

http://technet.microsoft.com/en-us/sysinternals/bb896657

Snaker, Qwerton & Jibz (2008) PEiD (Version 0.95) [computing software]. Available

from http://www.peid.info/

Szor, P. (2005). The Art of Computer Virus Research and Defense, Addison Wesley

Professional

TheSecDevGroup. (2009, Mar 29). Tracking GhostNet: Investigating a Cyber Espionage

Network. Retrieved from http://www.scribd.com/doc/13731776/Tracking-

GhostNet-Investigating-a-Cyber-Espionage-Network

Valli, C. & Brand, M. (2008). The Malware Analysis Body of Knowledge (MABOK),

Edith Cowan University, School of Computer and Information Science

Wireshark.org. (2010). Wireshark Network Protocol Analyzer (Version 1.2.2)

[computing software]. Available from http://www.wireshark.org/

Yuschuk, O. (2004). OllyDbg (Version 1.10) [computing software]. Available from

http://www.ollydbg.de/download.htm

Zealand Honeynet Project (2007). Capture BAT (Version 2.0.0) [computing software].

Available from http://www.honeynet.org/node/315

Zeltser, L. (2007). Reverse Engineering Malware: Tools and Techniques Hands –On.

Bethesda: SANS Institute.

Zeltser, L. (2011). REMnux: A Linux Distribution for Reverse-Engineering Malware

(Version 2.0) [computing software]. Available from http://zeltser.com/remnux/

Zimmer, D. (2001). Malcode Analysis Pack (Version 1.0) [computing software].

Available from

http://www.woodmann.com/collaborative/tools/index.php/Malcode_Analysis_Pac

k

! 31
(

)&*+,-.(/-0(&*+1234&56%&7(((

Appendix I
(
On the Remnux responsive box, the honeyd configuration file was found at
/etc/honeypot/honeyd.conf (Figure 35) and the configuration file of farpd was found at
/etc/default/farpd (Figure 36).

Figure 35. Configuration of honeyd
(

Figure 36. Configuration of farpd

! 32
(

)&*+,-.(/-0(&*+1234&56%&7(((

Appendix II

Last Updated: April 8th, 2014

Upcoming Training

SANS Security West 2014 San Diego, CA May 08, 2014 - May 17, 2014 Live Event

Mentor Session - FOR 610 Columbia, MD May 21, 2014 - Jul 23, 2014 Mentor

Digital Forensics & Incident Response Summit Austin, TX Jun 03, 2014 - Jun 10, 2014 Live Event

Community SANS Ottawa Ottawa, ON Jun 16, 2014 - Jun 21, 2014 Community SANS

SANSFIRE 2014 Baltimore, MD Jun 21, 2014 - Jun 30, 2014 Live Event

SANS vLive - FOR610: Reverse-Engineering Malware: Malware
Analysis Tools and Techniques

FOR610 - 201407, Jul 14, 2014 - Aug 20, 2014 vLive

SANS Virginia Beach 2014 Virginia Beach, VA Aug 18, 2014 - Aug 29, 2014 Live Event

SANS Baltimore 2014 Baltimore, MD Sep 22, 2014 - Sep 27, 2014 Live Event

SANS DFIR Prague 2014 Prague, Czech Republic Sep 29, 2014 - Oct 11, 2014 Live Event

SANS vLive - FOR610: Reverse-Engineering Malware: Malware
Analysis Tools and Techniques

FOR610 - 201410, Oct 13, 2014 - Nov 19, 2014 vLive

Community SANS Paris @ HSC - FOR610 (in French) Paris, France Nov 24, 2014 - Nov 28, 2014 Community SANS

SANS OnDemand Online Anytime Self Paced

SANS SelfStudy Books & MP3s Only Anytime Self Paced

