
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Reverse-Engineering Malware: Malware Analysis Tools and Techniques (Forensics 610)"
at http://www.giac.org/registration/grem

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/grem

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

 Building an Automated Behavioral Analysis Environment

Jim Clausing 1

Building an Automated Behavioral Malware Analysis

Environment using Open Source Software

GREM Gold Certification

Author: Jim Clausing, jac@att.com

Adviser: Charles Hornat

Accepted:

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

 Building an Automated Behavioral Analysis Environment

Jim Clausing 2

Outline

1. Abstract 3

2. Motivation 3

3. Purpose 4

4. Setup 5

5. Analysis 7

a) Network traffic 7

b) Disk image 9

c) Memory image 11

d) Static analysis of binary 13

e) Pulling it all together 14

6. Conclusions & Related Work 14

7. Acknowledgements 16

8. References 17

9. Appendix A 20

10. Appendix B 29

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

 Building an Automated Behavioral Analysis Environment

Jim Clausing 3

1. Abstract

This paper describes how an automated behavioral malware

analysis environment for analyzing malware targeted at Microsoft

Windows can be built using free and open source software. The

environment described here is an evolving work-in-progress, but what

is in place to date is the culmination of lessons learned over the

last two years of development by the author. This work was done as

part of the author's employment with the AT&T Chief Security Office.

While the author uses the royal “we” in places throughout the paper,

the work is that of the author except where noted.

2. Motivation

The first question one might ask is why build our own analysis

environment when there are a growing number of services (free and

otherwise) such as the Norman Sandbox, CWSandbox, Anubis,

ThreatExpert, etc. that will do the analysis for us. The primary

answer is that, for privacy and policy reasons, there are some

samples of malware that we encounter on a regular basis that we

simply are not at liberty to share with other entities or

organizations with which we do not have privacy or non-disclosure

agreements. This is a point that probably deserves more emphasis.

Samples may be gathered from any number of sources ranging from

honeypots to specific network monitoring to internal investigations

or from other trusted sources, and in most of those cases, without

careful examination of the sample, it is not clear in advance that

there is not data in the sample that might be sensitive. Policy

therefore, is that, until proven otherwise, the samples must be

treated as if they might contain personally identifiable information.

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

 Building an Automated Behavioral Analysis Environment

Jim Clausing 4

One might further ask, well, then Norman, the CWSandbox, and some of

the others also come in commercial versions that one could purchase,

why not just use them? These and other commercial products have been

examined, and in some cases purchased, but we have also noted that

these commercial tools sometimes give differing results for the same

sample and different results from what our environment produces, for

any number of reasons (including, but not limited to issues with

virtualization or detection of the sandbox). So, even with these

products, we will continue to develop and enhance the environment

described here.

3. Purpose

There are clearly weaknesses and limitations to the environment

described herein, some of which may be addressed in the future and

some by design or on which we choose not to spend time. The company

is not an anti-virus or anti-malware company though security services

are among those offered. The goal of this environment is not

necessarily a complete understanding of absolutely everything that

the malware does. Since the company's business is providing network

services, the resources available for malware analysis are

necessarily limited. The first purpose of this environment is the

quick preliminary analysis of the malware sample to determine whether

additional manual analysis is required or desired. The second

purpose is to provide input into a security data system from which we

can, for example, attempt to track bots, botnets, or network attacks

in order to mitigate them and/or alert our customers.

This project was begun essentially without a budget, hence the

reliance on free and open-source tools. This also means that it can

be relatively easily be duplicated and adapted by others who can

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

 Building an Automated Behavioral Analysis Environment

Jim Clausing 5

benefit from the lessons the author has learned to this point. The

only money required to duplicate our environment would be for 2 PCs

(one could use some surplus older desktop machines that were recently

upgraded) and a legal copy of Windows 2000 or Windows XP. We started

the project using Windows 2000. We later added the capability to

choose between Windows 2000 or Windows XP SP2 (no SP3 yet, though it

wouldn't be hard to add) as the client under which to run the sample,

though to be honest, we rarely use the Windows 2000 image anymore

since there are fewer and fewer of those systems installed. Windows

Vista presents a few additional challenges (mostly requiring newer

hardware) which we have not yet addressed since we have yet to deal

with a sample that specifically targets Vista. We shall cross that

bridge when we come to it.

4. Setup

The environment is built around Joe Stewart's TRUMAN sandnet.

As Joe explains (Stewart, 2005)(Stewart, 2006), the idea behind a

sandnet is that we allow the malicious software to execute in a

controlled environment where it cannot harm any other systems. This

is done by emulating the internet, not allowing connections to the

real thing. This too has its downside, since we cannot see what the

sample might do after it connects to its command and control (C&C)

channel or what might be contained in any additional software it may

download via HTTP, FTP, or some other protocol. Understanding these

limitations, we still feel that TRUMAN provides an excellent basic

framework for our automated behavioral analysis. Unfortunately, Joe

has stopped developing the environment, so we shall distribute our

modifications and bug fixes ourselves as patches on the author's

website (http://handlers.sans.org/jclausing/grem_gold). The TRUMAN

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

 Building an Automated Behavioral Analysis Environment

Jim Clausing 6

environment consists of a Linux server (flavor is unimportant, though

we use Redhat Enterprise Linux 4 (RHEL4) since that was the corporate

standard distribution when the project began, but pretty much any

Linux distribution will work here) and the client machine which will

at various times run Linux or Windows. David Bianco (Bianco, 2008)

has put together some excellent notes on the NSMWiki on setting

TRUMAN up for the first time, so we will not repeat any of that here.

Our setup differs some from what David describes, for example, we use

a client with 512MB of memory so that even with the memory dumps the

entire disk image is 2GB. We are using fast ethernet (100MB/sec)

NICs in both machines because they were too old to handle 1GB/sec

NICs. We also have a much larger RAID array on the server so that we

can store the images and analysis from quite a few samples. We use

the userland NTFS-3g drivers (Wieers, 2008) to handle mounting NTFS

file systems on the Linux server (see the explanation in the disk

image analysis section below) and we have chosen to stick with the

4.5.6.x network scheme that Joe describes. The network between the

client and the server can be through a real switch or simply a

crossover ethernet cable. As stated earlier, we have the ability to

choose between Windows 2000 or Windows XP, this is done by changing a

softlink to the image that the server returns to the client. The

Windows images themselves are basically vanilla Windows installs with

just a couple of additional tools and scripts installed. Beyond what

David describes in the Wiki, we have added fport from Foundstone (now

part of McAfee) and dump the output of it and netstat to text files

that become part of the disk image returned to the server. We have

also installed a VNC server (we chose RealVNC, though a free one

could be used just as easily) for those instances where some sort of

interaction (such as clicking on a button in a dialog box) is

required before the malware does anything malicious.

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

 Building an Automated Behavioral Analysis Environment

Jim Clausing 7

When Joe originally released TRUMAN, he provided a few scripts

to emulate internet services, pmodump.pl - a Perl script to

reconstruct the virtual memory space of a running process from a

physical memory dump, dumphive - a program to dump the Windows

registry hives, and he captured the network traffic to a pcap file.

That was about it. The analyst was left on her/his own to figure out

what was going on beyond running the Unix/Linux strings command on it

and hunting through the registry dump. That quickly proved

inadequate for our purposes, so the environment continued to evolve.

As a need to extract additional data emerges, we determine where the

data might be located and then we find and/or write tools/scripts to

extract it. The pieces that we have written or modified to date are

all available at the author's website (URL given above).

5. Analysis

As the title of the paper suggests, we are interested in

behavioral analysis of the malware we are examining. The question

then, is what behavior and how do we analyze it? There are 4 major

areas that we concern ourselves with in this analysis: a) network

traffic; b) the disk image; c) the memory image; and d) static

analysis of the binary. Appendix B shows the analysis flow at a high

level.

a) Network traffic

The network traffic is captured while the sample is being run

and saved to a pcap file (well, the first 10,000 packets, we do not

really need to capture all of the scanning of some of the noisier

samples, like the recent Conficker.A). After the sample is run, the

pcap is analyzed using a number of tools. First, we generate a brief

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

 Building an Automated Behavioral Analysis Environment

Jim Clausing 8

report showing source and destination IP addresses and ports, the

amount of data (in bytes and packets) transferred between the two,

and the start and end time of the communication. This is done with

ipaudit (Rifkin, et al, 2005) (an example of the output from all

these tools is in the sample report in Appendix A). The pcap is

further analyzed to determine what other protocols are in use by

running tshark (the command-line version of wireshark (Coombs, 2008))

against it to get the protocol summary, then tcptrace (Ostermann,

2003) is run against it to pull out any HTTP traffic on port 80. As

mentioned earlier, TRUMAN comes with several scripts to emulate

network services. We have instrumented and extended these scripts to

have them generate log files that we include in the reports (again,

the logs are shown in the report in Appendix A, the modified scripts

are available from the author's website). These scripts implement

fake DNS, SMTP, SMB, and IRC servers. We also take advantage of the

Apache server we have on the server that uploads the malware and disk

images to the client. In particular, we have installed a self-signed

SSL certificate and use the Apache logs to see what HTTPS URLs the

malware may be attempting to download. We then take advantage of the

redirection capabilities of iptables (standard on most Linux

distributions) on the server, to redirect traffic to most other TCP

ports back to the IRC server since most of the malware that we have

examined to date use IRC for command and control and the script that

emulates IRC records all of the data that it receives in its log

file. This does leave us with some problems when the malware uses

some sort of peer-to-peer communication for command and control and

that is an area we continue to investigate for better solutions. At

the moment, this data ends up in the pcap file and in the IRC log

which has worked for us, but there must be better solutions.

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

 Building an Automated Behavioral Analysis Environment

Jim Clausing 9

One of the results of this analysis phase is information on DNS

names and/or IP addresses that may need to be investigated for the

presence of either a botnet controller or additional malware. In

some cases, it may also provide data on how the malware propagates

and may suggest mitigation or detection steps that could be taken

within the network.

b) Disk image

One of the behaviors that we are interested in is whether or not

the malware creates or modifies any files on the disk. As part of

the TRUMAN run process, the malware is placed in

C:\Windows\system32\sandnet.exe on the client, so we run AIDE (Lehti,

et al, 2006) against the disk image after the malware is run and

compare it to the clean image that was uploaded to the client before

the run and take note of files added, modified, or deleted during the

malware run. We mentioned earlier that we run the NTFS-3g drivers.

These are not the standard NTFS drivers on RHEL4 (though they are on

some newer distributions), but some time back we began to worry that

with the stock drivers we might not be able to detect changes the

malware might make to NTFS Alternate Data Streams (ADS). After some

research, we determined that the ADS were detectable under Linux if

we ran the NTFS-3g drivers, so we made the switch. While the latest

version of AIDE should be able to look for changes to extended

attributes (which is how the NTFS-3g represents ADS), we additionally

run getfattr against the image to look for the presence of ADS.

Another area of the disk image that we investigate is the

Windows registry. For this effort, we use 3 different tools, 2 sets

of Perl scripts and one binary. The first tool we tried for this

(and we still keep this version of the output, but frankly don't look

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

 Building an Automated Behavioral Analysis Environment

Jim Clausing 10

at it too much anymore) is dumphive (version 07-31-2004-fpc) included

with the TRUMAN distribution. We ran this against the pristine image

and we run it against the image after the malware has been run and

compare using the Linux diff -u command. The biggest problem with

this (and the next tool we tried) is that many registry values and

timestamps change in the normal course of operation, so trying to

determine which changes/additions/deletions were malicious was

difficult, and frankly we know that some went unnoticed. The next

tool we tried was regdiff.pl by James McFarland (McFarland, 2008).

As with the previous tool, the problem was in attempting to determine

which changes were malicious and which were just part of the normal

course of operation. When we started using this tool it was version

0.30. The most recent versions of the package contain a couple of

additional scripts that we should probably take a look at, such as

regtimeline.pl. Most recently, we have been using Harlan Carvey's

regripper (Carvey, 2008) software to concentrate on any changes to

Run/RunOnce keys or Services (though this software has the ability to

do much more than we are doing with it). These are the primary

methods by which the malware might attempt to ensure that it runs

again after the system has been rebooted. One of the problems with

regripper is that it is primarily intended to run as a GUI

application under Windows itself, though we have recently become

aware of several methods for running the GUI on Linux. Since we wish

to do our analysis in an automated and scripted fashion under Linux,

we again made a few changes to the software. In particular, Harlan

expects that the memory image, script, and the plugins subdirectory

will all be in the same directory. We modified the command-line

script rip.pl to fix a minor bug and allow us to specify on the

command-line where the plugins directory is located. We have

submitted the patches back to Harlan, but he has, to this point,

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

 Building an Automated Behavioral Analysis Environment

Jim Clausing 11

chosen not to include them in the current version of regripper. Our

patch can be found on the author's website. We also used a couple of

Harlan's plugins as the basis for creating a couple of our own (and

we changed the output to a pipe delimited format that worked better

for our purposes). These, too, are available from the author's

website. From this phase of analysis, we gather a great deal of data

that can be useful for investigators who examine (potentially)

infected systems.

c) Memory image

As noted earlier, one of the scripts that Joe Stewart includes

with the TRUMAN package is pmodump.pl, a Perl script that searches

through a memory dump for a particular process, then extracts the

executable from the process' virtual memory. When Microsoft released

Windows XP SP2, they introduced PEB randomization which changed the

location of some of the process data structures in the memory dump

(Whitehouse, 2007). When we added the Windows XP SP2 image to our

environment, the original pmodump.pl was unable to locate some of the

processes in memory in order to extract the executable. We have

patched pmodump.pl to handle this PEB randomization and sent the

patch back to Joe Stewart, but as he is no longer working on TRUMAN,

he has not released an updated version of pmodump.pl. This patch can

be found on the author's website. Once the executable is extracted,

we run the Linux strings command on it and look for “interesting”

ones. In particular, we look for IP addresses and DNS names of

possible command and control servers. We also look for evidence that

the malware attempts to subvert antivirus software by either shutting

it down or adding entries to the hosts file to redirect update

attempts to 127.0.0.1 (localhost).

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

 Building an Automated Behavioral Analysis Environment

Jim Clausing 12

One of the huge advantages of an environment that allows the

malware to run on an actual machine, is that we can get the software

to unpack itself, so that we do not need to necessarily identify

(though we try, see static analysis section below) and find an

unpacker for the particular packing/obfuscation used on the sample.

We also use Jesse Kornblum's ssdeep (Kornblum, 2009) to do a fuzzy

hash of the unpacked version to use for correlating samples to

determine which samples might be related to which other samples.

For additional memory analysis, we rely primarily on the

outstanding work of AAron Walters and friends on the Volatility

framework (Walters, 2008) and anxiously await the new features and

capabilities coming in version 2.0. We actually use the vaddump and

procdump plugins to dump the virtual memory of running processes the

same way as pmodump.pl does, and we do the same strings analysis of

those dumps. We further, use the pslist and psscan2 plugins and

compare their output to each other and to the builtin netstat command

to see if any of the running processes are attempting to hide

themselves via some sort of rootkit. Similarly, we use the output

from fport and the connections (and sockets) plugin(s) and compare

them against the results of the connscan2 and sockscan2 plugins again

looking for processes that are attempting to hide themselves from the

system. The connections and connscan2 plugins should show us

established network connections, while the sockets and sockscan2

plugins show ports on which the malware may be listening for incoming

network connections. We encounter numerous malware samples that

inject DLLs into the Windows Explorer process or get loaded as a

running service via svchost.exe, but dumping those entire processes

leaves us wading through a great deal of extraneous data, so we

continue to investigate other methods of analyzing these samples (see

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

 Building an Automated Behavioral Analysis Environment

Jim Clausing 13

conclusions and future work section).

d) Static Analysis of the binary

The static analysis performed on the malicious software is

fairly limited at this time. We begin by running the Linux file

program against it which usually just tells us that the malware is a

Windows binary, but sometimes it also tells us about packers. We run

the binary through anti-virus software (currently using the corporate

standard A/V software and ClamAV (Sourcefire, 2009) since it is

free), with signatures updated nightly. We take multiple hashes of

the binary, the industry standards, MD5 and SHA1, plus ssdeep as

described earlier for correlation purposes. We also run the Linux

objdump against the binary. This may show us some of the structure

of the binary, what the various sections of the binary are, etc. We

also run Chris Rohlf's binhash tool (Rohlf, 2007) which generates MD5

hashes of the headers and data in each of the sections of the PE

file. The original intent was to use this data for correlation

purposes, but we have gotten sidetracked from that effort, so at the

moment, this data just sits in the report. We hope to return in the

coming months to this avenue of investigation and see if this is a

useful tactic for correlating related malware. We then use the

author's packerid.py script (Clausing, 2007) to attempt to identify

any packer that may have been used on the binary (this script

utilizes Ero Carrera's pefile library (Carrera, 2008) and as such is

capable of producing more data than we actually use it for at the

moment). We further run strings against the original binary. If

packers are involved, this last step does not usually yield us much

of anything useful.

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

 Building an Automated Behavioral Analysis Environment

Jim Clausing 14

e) Pulling it all together

The entire analysis process is run from the submit.sh script

(found on the author's website) which oversees the entire process.

It takes as an argument, the name of a binary or a ZIP file. If the

latter, it unzips the file. Then it copies the binary to the

directory from which it will be uploaded to the client, starts up the

fauxservers and then starts up ngrep and tcpdump which are displayed

on the tty so that the analyst can monitor the network traffic as the

sample runs. This is useful, in that it allows us to recognize when

the sample is attempting to communicate on a port that is not being

redirected or when it is not communicating at all which may be an

indication that there is a dialog box on the client that requires a

click before the malware can continue execution (in which case we can

fire up VNC). When the 10 minute run on the client terminates and

the disk image has been transferred back to the server, the submit.sh

script, executes the forensics.sh script (also available on the

author's website) which runs all the aforementioned tools on the

disk, memory, and binary described in the preceding section.

Finally, the submit.sh script runs the summary.sh script (also

available on the author's website) which pulls the results of all the

tools into a text report which summarizes the results of the analysis

(see the example in Appendix A).

6. Conclusions, Future and Related Work

As stated at the beginning of this paper, the environment

described here is very much a work-in-progress (as evidenced by the

fact that this paper has taken 4 months to write because we

continually went back and fixed/tweaked the environment as we were

writing). We have noted limitations at various points as we have

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

 Building an Automated Behavioral Analysis Environment

Jim Clausing 15

discussed the environment and we will undoubtedly address some of

them. The environment as it currently exists can process one sample

every 20-25 minutes which includes 10 minutes of actual execution

time on the client. The primary factor limiting throughput at the

moment is the network hardware, since the automated analysis

completes before the pristine image has been downloaded back to the

client. We mentioned earlier that we had installed a VNC server on

the client. Early on we discovered that some samples did not seem to

do anything during the 10 minutes that they ran or in very rare

cases, the execution did not terminate after 10 minutes. With the

addition of the VNC server, we can, when necessary, connect to the

client and click on dialog boxes. This means, however, that we have

not achieved the ability for entirely hands-off analysis. There are

some tools that we may consider adding in the future to overcome this

limitation.

We have found the fauxserver scripts to be adequate in

simulating the internet for most of our samples, but Tyler Hudak

(Hudak, 2009) recently noted in his blog that he is using InetSim

(INetSim, 2008), so we may take a look at that to see if it provides

us any additional capabilities.

One area that we continue to work on is the memory analysis. We

are beginning to look at Brendan Dolan-Gavitt's registry plugins

(Dolan-Gavitt, 2009) to Volatility to see if the in-memory version of

the Windows registry has been modified but not yet written back to

disk. We also are looking at Michael Hale Ligh's malfind.py (Ligh,

2009) for finding malicious DLLs injected into other running

processes.

One of the other huge limitations of this environment is that

the analysis is all done after the execution of the malware. The

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

 Building an Automated Behavioral Analysis Environment

Jim Clausing 16

environment is not instrumented to collect information on system and

library calls as the malware executes. The recently announced

Zerowine project (Koret, 2009), however, appears very intriguing as

it does exactly that, so we may look into augmenting the current

environment by also running the sample through zerowine at some point

in the future.

7. Acknowledgements

This work would not have been possible with out the support of

our management, Cynthia Cama, Bill O'Hern, and Ed Amoroso, and the

assistance and suggestions of the rest of the team. In particular,

we'd like to thank John Hogoboom, Dave Gross, and Brian Rexroad for

their thoughts and allowing the author to bounce ideas off them.

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

 Building an Automated Behavioral Analysis Environment

Jim Clausing 17

8. References

Stewart, Joe (2005). TRUMAN - The Reusable Unknown Malware Analysis

Net (Version 0.1) [Software]. Retrieved January 31, 2009 from

http://www.secureworks.com/research/tools/truman.html

Stewart, Joe (2006). Behavioural malware analysis using Sandnets.

Computer Fraud and Security, Volume 2006, Issue 12, December

2006, pp. 4-6.

Bianco, David (2008). Truman Installation Notes. Retrieved January

31, 2009 from NSMWiki:

http://nsmwiki.org/Truman_Installation_Notes

Foundstone (n.d.). Fport (version 2.0) [Software]. Retrieved

January 31, 2009 from

http://www.foundstone.com/us/resources/proddesc/fport.htm

Rifkin, J., Pezzella, L., Khalil, H., and Hewlett, J. (2005). IPAudit

(Version 1.0BETA2) [Software]. Retrieved January 31, 2009 from

http://ipaudit.sourceforge.net

Wieers, Dag (2008). NTFS-3g (version 1.2310) [Software]. See also

http://www.ntfs-3g.org. Retrieved October 1, 2008 from

http://dag.wieers.com/rpm/packages/fuse-ntfs-3g/

Combs, G. (2008). Wireshark (version 1.0.5) [Software]. Retrieved

January 31, 2009 from http://www.wireshark.org

Ostermann, Shawn (2003). Tcptrace (version 6.6.7) [Software].

Retrieved January 31, 2009 from http://www.tcptrace.org

Lehti, R., Virolsinen, P., van den Berg, R. (2006). AIDE – Advanced

Intrusion Detection Environment (version 1.13.1) [Software].

Retrieved January 31, 2009 from

http://sourceforge.net/projects/aide

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

 Building an Automated Behavioral Analysis Environment

Jim Clausing 18

Whitehouse, Ollie (2007). An Analysis of Address Space Layout

Randomization on Windows Vista. Retrieved January 31, 2009 from

http://www.blackhat.com/presentations/bh-dc-

07/Whitehouse/Paper/bh-dc-07-Whitehouse-WP.pdf

Carvey, Harlan (2008). RegRipper (version 20080909) [Software].

Retrieved October 21, 2008 from

http://regripper.net/RegRipper/RegRipper/rr_20080909.zip

Kornblum, Jesse (2009). Ssdeep (version 2.1) [Software]. Retrieved

January 31, 2009 from http://ssdeep.sourceforge.net/#download

Walters, AAron (2008). Volatility (version 1.3_beta) [Software].

Retrieved August 31, 2008 from

https://www.volatilesystems.com/volatility/1.3/Volatility-

1.3_Beta.tar.gz

Dolan-Gavitt, Brendan (2009). Volatility Registry dump modules

(version 0.2) [Software]. Retrieved January 31, 2009 from

http://kurtz.cs.wesleyan.edu/%7Ebdolangavitt/memory/volreg-

0.2.tar.gz

Ligh, Michael Hale (2009). Malfind.py (version 1.0) [Software].

Retrieved January 31, 2009 from http://mhl-malware-

scripts.googlecode.com/files/malfind.py

Sourcefire (2009). ClamAV (version 0.94.2) [Software]. Retrieved

January 31, 2009 from http://www.clamav.net/download/

Clausing, Jim (2007). Packerid.py (version 1.3) [Software].

Retrieved February 8, 2009 from

http://handlers.sans.org/jclausing/packerid.py

McFarland, James (2008). Regdiff.pl (version 0.40) [Software].

Retrieved September 30, 2008 from

http://search.cpan.org/CPAN/authors/id/J/JM/JMACFARLA/Parse-

Win32Registry-0.30.tar.gz

Rohlf, Chris (2007). Binhash (version 0.6.0) [Software]. Download

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

 Building an Automated Behavioral Analysis Environment

Jim Clausing 19

page has been removed, he asks that anyone interested in the

software contact him through his blog at

http://em386.blogspot.com

Carrera, Ero (2008). Pefile (version 1.2.10-60) [Software].

Retrieved January 31, 2009 from

http://pefile.googlecode.com/files/pefile-1.2.10-60.tar.gz

Koret, Joxean (2009). Zerowine (version 0.0.2) [Software].

Retrieved January 31, 2009 from

http://sourceforge.net/projects/zerowine

Hudak, Tyler (2009). InetSim Installation. Retrieved February 12,

2009 from http://secshoggoth.blogspot.com/2009/02/inetsim-

installation.html

INetSim (2008). INetSim (version 1.1) [Software]. Retrieved

February 12, 2009 from http://www.inetsim.org/index.html

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

 Building an Automated Behavioral Analysis Environment

Jim Clausing 20

9. Appendix A

Summary report for 1.exe-200902041047-XPSP2-files created at Wed Feb 4 11:11:54 EST 2009

OS info>>>
kern - Determine OS from a Windows RAM Dump (v.0.1_20060914)
Ex: kern <path_to_dump_file>

File Description : NT Kernel & System
File Version : 5.1.2600.2180 (xpsp_sp2_rtm.040803-2158)
Internal Name : ntoskrnl.exe
Original File Name :
Product Name : Microsoft� Windows� Operating System
Product Version : 5.1.2600.2180

Registry Run Key changes>>>
+test|spoolsv.exe

Registry Service Key changes>>>

Packer info>>>
None

Alternate Data Streams>>>

Strings (if interesting-strings is non-zero see below)>>>
643 interesting-strings.txt
-rw-r--r-- 1 root root 22205 Feb 4 11:11 0d529000-spoolsv.exe.strings.txt
-rw-r--r-- 1 root root 573191 Feb 4 11:11 spoolsv.exe.2233da0.strings.txt
-rw-r--r-- 1 root root 132042 Feb 4 11:11 System.23caa00.00010000-00033fff.strings.txt
-rw-r--r-- 1 root root 653 Feb 4 11:11 System.23caa00.00060000-00060fff.strings.txt
-rw-r--r-- 1 root root 712 Feb 4 11:11 System.23caa00.00070000-0016ffff.strings.txt
-rw-r--r-- 1 root root 13995 Feb 4 11:11 System.23caa00.7c900000-7c9affff.strings.txt

Open Ports>>>
Local Address Remote Address Pid
4.5.6.7:1075 4.3.2.192:445 4
4.5.6.7:1030 4.3.2.133:18067 196

196 1030 6 Fri Feb 04 15:51:03 2005
4 1077 6 Fri Feb 04 16:01:05 2005
1844 1034 6 Fri Feb 04 15:51:11 2005

9,11c9,14
< 992 -> 1032 TCP
> 196 spoolsv -> 1030 TCP C:\WINDOWS\system\spoolsv.exe
> 1844 -> 1034 TCP
> 0 System -> 1079 TCP
> 0 System -> 1080 TCP
13,14c16,19
< 0 System -> 123 UDP
< 992 -> 138 UDP
> 1844 -> 123 UDP
> 4 System -> 123 UDP
> 196 spoolsv -> 137 UDP C:\WINDOWS\system\spoolsv.exe
> 0 System -> 138 UDP
17,18c22

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

 Building an Automated Behavioral Analysis Environment

Jim Clausing 21

< 0 System -> 1028 UDP

10c10,13
< TCP 127.0.0.1:1031 0.0.0.0:0 LISTENING

> TCP 4.5.6.7:1030 4.3.2.133:18067 ESTABLISHED
> TCP 4.5.6.7:1079 4.5.6.7:445 TIME_WAIT
> TCP 4.5.6.7:1080 4.5.6.7:445 TIME_WAIT
> TCP 127.0.0.1:1034 0.0.0.0:0 LISTENING
13c16
< UDP 0.0.0.0:1027 *:*

> UDP 0.0.0.0:1029 *:*
20d22
< UDP 127.0.0.1:1028 *:*

BinHash info>>>

File: [/forensics/exes/1.exe] e07e68b63686ef7bdb20b23c0f192640
PE Phdr: 7cbfaa22c60abdbd2f50c91c8b6e617f
PE Opt Hdr: e18da0d9900c279cb8dfe2e92e566e1c

ssdeep info>>>
3072:btvg4wwF+BlkOY4GkgSHct/UQOUSDJqBPOrCQc1Is:5vpwwF+Bc4RHcCQq8BPOePj,"/forensics/exes/1.ex
e"

6144:RvXnJkIlxAXuIwkcylqhrKnFAgSvpwwF+Bc4RHcCQq8Lpr8:ZnJkmAXokcywwnF90J+Bc4R8CX81r,"/data/fo
rensics/1.exe-200902041047-XPSP2-files/0d529000-spoolsv.exe"

Protocol Hierarchy Summary

===
Protocol Hierarchy Statistics
Filter: frame

frame frames:9431 bytes:6969218
 eth frames:9431 bytes:6969218
 arp frames:38 bytes:1974
 ip frames:9393 bytes:6967244
 tcp frames:461 bytes:161394
 http frames:25 bytes:6165
 data-text-lines frames:7 bytes:2450
 data frames:7 bytes:758
 nbss frames:61 bytes:13278
 smb frames:61 bytes:13278
 udp frames:8894 bytes:6774094
 bootp frames:16 bytes:6960
 tftp frames:8820 bytes:6760419
 nbns frames:36 bytes:3582
 dns frames:12 bytes:1090
 ntp frames:2 bytes:180
 nbdgm frames:8 bytes:1863
 smb frames:8 bytes:1863
 mailslot frames:8 bytes:1863
 browser frames:8 bytes:1863
 short frames:10 bytes:29740
 igmp frames:4 bytes:240
 icmp frames:24 bytes:1776

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

 Building an Automated Behavioral Analysis Environment

Jim Clausing 22

===

DNS>>>
request: name=cc.republicofskorea.info, class=IN, type=A, peer=4.5.6.7
responseIP: 4.3.2.133
responseIP: 4.3.2.135
response: rcode=NOERROR, ans=Net::DNS::RR::A=HASH(0x9a5bdd4)
Net::DNS::RR::A=HASH(0x9a5d420), auth=, add=, aa=1
request: name=time.windows.com, class=IN, type=A, peer=4.5.6.7
responseIP: 4.5.6.1
response: rcode=NOERROR, ans=Net::DNS::RR::A=HASH(0x9a5d498), auth=, add=, aa=1
request: name=q.mwa.att.com, class=IN, type=A, peer=4.5.6.7
responseIP: 4.3.2.115
responseIP: 4.3.2.53
response: rcode=NOERROR, ans=Net::DNS::RR::A=HASH(0x9a5d498)
Net::DNS::RR::A=HASH(0x9a647a8), auth=, add=, aa=1
request: name=\194\184.mwa.att.com, class=IN, type=A, peer=4.5.6.7
responseIP: 4.3.2.156
responseIP: 4.3.2.178
response: rcode=NOERROR, ans=Net::DNS::RR::A=HASH(0x9a6833c)
Net::DNS::RR::A=HASH(0x9a52930), auth=, add=, aa=1
request: name=wpad.mwa.att.com, class=IN, type=A, peer=4.5.6.7
responseIP: 4.3.2.191
responseIP: 4.3.2.77
response: rcode=NOERROR, ans=Net::DNS::RR::A=HASH(0x9a68318)
Net::DNS::RR::A=HASH(0x9a5bc84), auth=, add=, aa=1
request: name=\195\165.mwa.att.com, class=IN, type=A, peer=4.5.6.7
responseIP: 4.3.2.192
responseIP: 4.3.2.60
response: rcode=NOERROR, ans=Net::DNS::RR::A=HASH(0x9a5bb04)
Net::DNS::RR::A=HASH(0x9a5bdec), auth=, add=, aa=1

IRC>>>
2009-02-04-10:50:28: Connection from 4.5.6.7
2009-02-04-10:50:28: NICK [USA|00||217496]
2009-02-04-10:50:29: USER XP-7867 * 0 :ATT
2009-02-04-10:50:29: MODE [USA|00||217496] -ix
2009-02-04-10:50:29: JOIN ##d0 d!
2009-02-04-10:57:08: QUIT Ping Timeout? (419-20)399/200

SMTP>>>

HTTP>>>

mod_http: Capturing HTTP traffic (port 80)
1 arg remaining, starting with '../small.pcap'
Ostermann's tcptrace -- version 6.6.7 -- Thu Nov 4, 2004

70 packets seen, 70 TCP packets traced
elapsed wallclock time: 0:00:00.014828, 4720 pkts/sec analyzed
trace file elapsed time: 0:07:28.438956
Http module output:
4.5.6.7:1048 ==> 4.3.2.115:80 (a2b)
 Server Syn Time: Wed Feb 4 10:53:32.416062 2009 (1233762812.416)
 Client Syn Time: Wed Feb 4 10:53:32.416021 2009 (1233762812.416)
 Server Fin Time: Wed Feb 4 10:53:32.433715 2009 (1233762812.434)
 Client Fin Time: Wed Feb 4 10:53:32.434261 2009 (1233762812.434)
 OPTIONS / HTTP/1.1
 Response Code: 200 (OK)

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

 Building an Automated Behavioral Analysis Environment

Jim Clausing 23

 Request Length: 135
 Reply Length: 197
 Content Length: 0
 Content Type : httpd/unix-directory
 Time request sent: Wed Feb 4 10:53:32.416526 2009 (1233762812.417)
 Time reply started: Wed Feb 4 10:53:32.433628 2009 (1233762812.434)
 Time reply ACKed: Wed Feb 4 10:53:32.434012 2009 (1233762812.434)
 Elapsed time: 17 ms (request to first byte sent)
 Elapsed time: 17 ms (request to content ACKed)
4.5.6.7:1049 ==> 4.3.2.115:80 (c2d)
 Server Syn Time: Wed Feb 4 10:53:32.435801 2009 (1233762812.436)
 Client Syn Time: Wed Feb 4 10:53:32.435760 2009 (1233762812.436)
 Server Fin Time: Wed Feb 4 10:53:32.436892 2009 (1233762812.437)
 Client Fin Time: Wed Feb 4 10:53:32.437283 2009 (1233762812.437)
4.5.6.7:1052 ==> 4.3.2.191:80 (e2f)
 Server Syn Time: Wed Feb 4 10:53:43.473343 2009 (1233762823.473)
 Client Syn Time: Wed Feb 4 10:53:43.473295 2009 (1233762823.473)
 Server Fin Time: Wed Feb 4 10:53:43.482897 2009 (1233762823.483)
 Client Fin Time: Wed Feb 4 10:53:43.483289 2009 (1233762823.483)
 GET /wpad.dat HTTP/1.0
 Response Code: 404 (Not Found)
 Request Length: 109
 Reply Length: 461
 Content Length: 282
 Content Type : text/html;
 Time request sent: Wed Feb 4 10:53:43.473794 2009 (1233762823.474)
 Time reply started: Wed Feb 4 10:53:43.482832 2009 (1233762823.483)
 Time reply ACKed: Wed Feb 4 10:53:43.483043 2009 (1233762823.483)
 Elapsed time: 9 ms (request to first byte sent)
 Elapsed time: 9 ms (request to content ACKed)
4.5.6.7:1061 ==> 4.3.2.156:80 (g2h)
 Server Syn Time: Wed Feb 4 10:56:12.353494 2009 (1233762972.353)
 Client Syn Time: Wed Feb 4 10:56:12.353443 2009 (1233762972.353)
 Server Fin Time: Wed Feb 4 10:56:12.354455 2009 (1233762972.354)
 Client Fin Time: Wed Feb 4 10:56:12.354943 2009 (1233762972.355)
 OPTIONS / HTTP/1.1
 Response Code: 200 (OK)
 Request Length: 135
 Reply Length: 197
 Content Length: 0
 Content Type : httpd/unix-directory
 Time request sent: Wed Feb 4 10:56:12.353944 2009 (1233762972.354)
 Time reply started: Wed Feb 4 10:56:12.354371 2009 (1233762972.354)
 Time reply ACKed: Wed Feb 4 10:56:12.354696 2009 (1233762972.355)
 Elapsed time: 0 ms (request to first byte sent)
 Elapsed time: 1 ms (request to content ACKed)
4.5.6.7:1062 ==> 4.3.2.156:80 (i2j)
 Server Syn Time: Wed Feb 4 10:56:12.356234 2009 (1233762972.356)
 Client Syn Time: Wed Feb 4 10:56:12.356192 2009 (1233762972.356)
 Server Fin Time: Wed Feb 4 10:56:12.357135 2009 (1233762972.357)
 Client Fin Time: Wed Feb 4 10:56:12.357465 2009 (1233762972.357)
4.5.6.7:1081 ==> 4.3.2.192:80 (k2l)
 Server Syn Time: Wed Feb 4 11:01:00.850749 2009 (1233763260.851)
 Client Syn Time: Wed Feb 4 11:01:00.850710 2009 (1233763260.851)
 Server Fin Time: Wed Feb 4 11:01:00.851744 2009 (1233763260.852)
 Client Fin Time: Wed Feb 4 11:01:00.852209 2009 (1233763260.852)
 OPTIONS / HTTP/1.1
 Response Code: 200 (OK)
 Request Length: 135

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

 Building an Automated Behavioral Analysis Environment

Jim Clausing 24

 Reply Length: 197
 Content Length: 0
 Content Type : httpd/unix-directory
 Time request sent: Wed Feb 4 11:01:00.851211 2009 (1233763260.851)
 Time reply started: Wed Feb 4 11:01:00.851658 2009 (1233763260.852)
 Time reply ACKed: Wed Feb 4 11:01:00.851963 2009 (1233763260.852)
 Elapsed time: 0 ms (request to first byte sent)
 Elapsed time: 1 ms (request to content ACKed)
4.5.6.7:1082 ==> 4.3.2.192:80 (m2n)
 Server Syn Time: Wed Feb 4 11:01:00.853494 2009 (1233763260.853)
 Client Syn Time: Wed Feb 4 11:01:00.853458 2009 (1233763260.853)
 Server Fin Time: Wed Feb 4 11:01:00.854522 2009 (1233763260.855)
 Client Fin Time: Wed Feb 4 11:01:00.854958 2009 (1233763260.855)

IP traffic>>>
4.5.6.7 4.3.2.133 6 1030 18067 697 617 8 9 2009-02-04-10:50:28.7052 2009-02-04-11:01:24.6877
1 1
4.5.6.7 224.0.0.22 2 0 0 0 216 0 4 2009-02-04-10:50:35.6915 2009-02-04-11:01:32.8117 1 1
4.5.6.7 4.3.2.115 1 2048 0 0 296 0 4 2009-02-04-10:50:52.4601 2009-02-04-10:51:04.8164 1 1
4.5.6.7 4.3.2.53 1 2048 0 0 296 0 4 2009-02-04-10:50:57.3166 2009-02-04-10:51:09.8163 1 1
4.5.6.7 4.3.2.115 6 1037 445 640 675 6 6 2009-02-04-10:51:02.3173 2009-02-04-10:51:32.3232 1
2
4.5.6.7 4.3.2.115 6 1040 445 640 675 6 6 2009-02-04-10:51:32.3244 2009-02-04-10:52:02.3297 1
2
4.5.6.7 4.3.2.115 6 1041 139 0 62 0 1 2009-02-04-10:51:32.3244 2009-02-04-10:51:32.3244 1 1
4.5.6.7 4.3.2.115 6 1042 445 640 675 6 6 2009-02-04-10:52:02.3305 2009-02-04-10:52:32.3366 1
2
4.5.6.7 4.3.2.115 6 1044 445 640 675 6 6 2009-02-04-10:52:32.3373 2009-02-04-10:53:02.3437 1
2
4.5.6.7 4.3.2.115 6 1046 445 640 675 6 6 2009-02-04-10:53:02.3447 2009-02-04-10:53:32.3503 1
2
4.5.6.7 4.3.2.115 6 1047 139 0 62 0 1 2009-02-04-10:53:02.3447 2009-02-04-10:53:02.3447 1 1
4.5.6.7 4.3.2.115 6 1048 80 477 415 5 5 2009-02-04-10:53:32.4160 2009-02-04-10:53:32.4342 1
2
4.5.6.7 4.3.2.115 6 1049 80 807 449 5 5 2009-02-04-10:53:32.4357 2009-02-04-10:53:32.4373 1
2
4.5.6.7 4.3.2.156 1 2048 0 0 296 0 4 2009-02-04-10:53:32.5784 2009-02-04-10:53:44.8152 1 1
4.5.6.7 4.3.2.178 1 2048 0 0 296 0 4 2009-02-04-10:53:37.3152 2009-02-04-10:53:49.8152 1 1
4.5.6.7 4.3.2.156 6 1050 445 640 675 6 6 2009-02-04-10:53:42.3154 2009-02-04-10:54:12.3205 1
2
4.5.6.7 4.3.2.191 6 1052 80 741 389 5 5 2009-02-04-10:53:43.4732 2009-02-04-10:53:43.4833 1
2
4.5.6.7 4.3.2.156 6 1053 445 913 675 7 6 2009-02-04-10:54:12.3220 2009-02-04-10:54:42.3284 1
2
4.5.6.7 4.3.2.156 6 1054 139 0 62 0 1 2009-02-04-10:54:12.3221 2009-02-04-10:54:12.3221 1 1
4.5.6.7 4.3.2.156 6 1055 445 640 675 6 6 2009-02-04-10:54:42.3291 2009-02-04-10:55:12.3350 1
2
4.5.6.7 4.3.2.156 6 1056 139 0 62 0 1 2009-02-04-10:54:42.3293 2009-02-04-10:54:42.3293 1 1
4.5.6.7 4.3.2.156 6 1057 445 640 675 6 6 2009-02-04-10:55:12.3359 2009-02-04-10:55:42.3413 1
2
4.5.6.7 4.3.2.156 6 1058 139 0 62 0 1 2009-02-04-10:55:12.3360 2009-02-04-10:55:12.3360 1 1
4.5.6.7 4.3.2.156 6 1059 445 640 675 6 6 2009-02-04-10:55:42.3423 2009-02-04-10:56:12.3482 1
2
4.5.6.7 4.3.2.156 6 1061 80 477 415 5 5 2009-02-04-10:56:12.3534 2009-02-04-10:56:12.3549 1
2
4.5.6.7 4.3.2.156 6 1062 80 807 449 5 5 2009-02-04-10:56:12.3561 2009-02-04-10:56:12.3574 1
2
4.5.6.7 4.3.2.192 1 2048 0 0 296 0 4 2009-02-04-10:58:21.0009 2009-02-04-10:58:33.3133 1 1
4.5.6.7 4.3.2.60 1 2048 0 0 296 0 4 2009-02-04-10:58:25.8132 2009-02-04-10:58:38.3132 1 1

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

 Building an Automated Behavioral Analysis Environment

Jim Clausing 25

4.5.6.7 4.3.2.192 6 1069 445 640 675 6 6 2009-02-04-10:58:30.8134 2009-02-04-10:59:00.8190 1
2
4.5.6.7 4.3.2.192 6 1071 445 640 675 6 6 2009-02-04-10:59:00.8203 2009-02-04-10:59:30.8259 1
2
4.5.6.7 4.3.2.192 6 1072 139 0 62 0 1 2009-02-04-10:59:00.8205 2009-02-04-10:59:00.8205 1 1
4.5.6.7 4.3.2.192 6 1073 445 640 675 6 6 2009-02-04-10:59:30.8269 2009-02-04-11:00:00.8325 1
2
4.5.6.7 4.3.2.192 6 1074 139 0 62 0 1 2009-02-04-10:59:30.8269 2009-02-04-10:59:30.8269 1 1
4.5.6.7 4.3.2.192 6 1075 445 640 675 6 6 2009-02-04-11:00:00.8335 2009-02-04-11:00:30.8396 1
2
4.5.6.7 4.3.2.192 6 1077 445 640 675 6 6 2009-02-04-11:00:30.8408 2009-02-04-11:01:00.8464 1
2
4.5.6.7 4.3.2.192 6 1078 139 0 62 0 1 2009-02-04-11:00:30.8409 2009-02-04-11:00:30.8409 1 1
4.5.6.7 4.3.2.192 6 1081 80 477 415 5 5 2009-02-04-11:01:00.8507 2009-02-04-11:01:00.8522 1
2
4.5.6.7 4.3.2.192 6 1082 80 805 441 5 5 2009-02-04-11:01:00.8534 2009-02-04-11:01:00.8549 1
2

AIDE>>>

Start timestamp: 2009-02-04 11:07:09

Summary:
 Total number of files: 8688
 Added files: 11
 Removed files: 0
 Changed files: 46

Added files:

added: /mnt/new/System Volume Information/_restore{786D3857-363B-401B-B0E3-
5098A38A2814}/RP2/A0000088.ini
added: /mnt/new/System Volume Information/_restore{786D3857-363B-401B-B0E3-
5098A38A2814}/RP2/A0000089.ini
added: /mnt/new/System Volume Information/_restore{786D3857-363B-401B-B0E3-
5098A38A2814}/RP2/A0000090.ini
added: /mnt/new/System Volume Information/_restore{786D3857-363B-401B-B0E3-
5098A38A2814}/RP2/A0000091.cfg
added: /mnt/new/System Volume Information/_restore{786D3857-363B-401B-B0E3-
5098A38A2814}/RP2/A0000092.ini
added: /mnt/new/System Volume Information/_restore{786D3857-363B-401B-B0E3-
5098A38A2814}/RP2/change.log.1
added: /mnt/new/WINDOWS/Prefetch/NETSTAT.EXE-2B2B4428.pf
added: /mnt/new/WINDOWS/system/spoolsv.exe
added: /mnt/new/WINDOWS/system32/Microsoft/Protect/S-1-5-18/User/7dff95ec-cfc7-45d3-9e6d-
5124c7266e73
added: /mnt/new/WINDOWS/system32/sandnet.exe

Changed files:

changed: /mnt/new/System Volume Information/_restore{786D3857-363B-401B-B0E3-
5098A38A2814}/drivetable.txt
changed: /mnt/new/System Volume Information/_restore{786D3857-363B-401B-B0E3-
5098A38A2814}/RP2/change.log

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

 Building an Automated Behavioral Analysis Environment

Jim Clausing 26

changed: /mnt/new/System Volume Information/_restore{786D3857-363B-401B-B0E3-
5098A38A2814}/_driver.cfg
changed: /mnt/new/WINDOWS/Debug/UserMode/userenv.log
changed: /mnt/new/WINDOWS/Prefetch/NTOSBOOT-B00DFAAD.pf
changed: /mnt/new/WINDOWS/SoftwareDistribution/DataStore/DataStore.edb
changed: /mnt/new/WINDOWS/SoftwareDistribution/DataStore/Logs/edb.chk
changed: /mnt/new/WINDOWS/SoftwareDistribution/DataStore/Logs/edb.log
changed: /mnt/new/WINDOWS/system32/Microsoft/Protect/S-1-5-18/User
changed: /mnt/new/WINDOWS/system32/Microsoft/Protect/S-1-5-18/User/Preferred
changed: /mnt/new/WINDOWS/system32/wbem/Logs/wbemess.log
changed: /mnt/new/WINDOWS/system32/wbem/Logs/wmiprov.log
changed: /mnt/new/WINDOWS/system32/wbem/Repository/FS/INDEX.BTR
changed: /mnt/new/WINDOWS/system32/wbem/Repository/FS/INDEX.MAP
changed: /mnt/new/WINDOWS/system32/wbem/Repository/FS/MAPPING1.MAP
changed: /mnt/new/WINDOWS/system32/wbem/Repository/FS/MAPPING2.MAP
changed: /mnt/new/WINDOWS/system32/wbem/Repository/FS/OBJECTS.DATA
changed: /mnt/new/WINDOWS/system32/wbem/Repository/FS/OBJECTS.MAP
changed: /mnt/new/WINDOWS/system32/config/AppEvent.Evt
changed: /mnt/new/WINDOWS/system32/config/default
changed: /mnt/new/WINDOWS/system32/config/default.LOG
changed: /mnt/new/WINDOWS/system32/config/SAM
changed: /mnt/new/WINDOWS/system32/config/SAM.LOG
changed: /mnt/new/WINDOWS/system32/config/SECURITY
changed: /mnt/new/WINDOWS/system32/config/SECURITY.LOG
changed: /mnt/new/WINDOWS/system32/config/software
changed: /mnt/new/WINDOWS/system32/config/software.LOG
changed: /mnt/new/WINDOWS/system32/config/SysEvent.Evt
changed: /mnt/new/WINDOWS/system32/config/system
changed: /mnt/new/WINDOWS/system32/config/system.LOG
changed: /mnt/new/WINDOWS/system32/wpa.dbl
changed: /mnt/new/WINDOWS/WindowsUpdate.log
changed: /mnt/new/Documents and Settings/LocalService/Local Settings/Application
Data/Microsoft/Windows/UsrClass.dat
changed: /mnt/new/Documents and Settings/LocalService/Local Settings/Application
Data/Microsoft/Windows/UsrClass.dat.LOG
changed: /mnt/new/Documents and Settings/LocalService/NTUSER.DAT
changed: /mnt/new/Documents and Settings/LocalService/ntuser.dat.LOG
changed: /mnt/new/Documents and Settings/NetworkService/Local Settings/Application
Data/Microsoft/Windows/UsrClass.dat
changed: /mnt/new/Documents and Settings/NetworkService/Local Settings/Application
Data/Microsoft/Windows/UsrClass.dat.LOG
changed: /mnt/new/Documents and Settings/NetworkService/NTUSER.DAT
changed: /mnt/new/Documents and Settings/NetworkService/ntuser.dat.LOG
changed: /mnt/new/Documents and Settings/User/Local Settings/Application Data/IconCache.db
changed: /mnt/new/Documents and Settings/User/Local Settings/Application
Data/Microsoft/Windows/UsrClass.dat
changed: /mnt/new/Documents and Settings/User/Local Settings/Application
Data/Microsoft/Windows/UsrClass.dat.LOG
changed: /mnt/new/Documents and Settings/User/NTUSER.DAT
changed: /mnt/new/Documents and Settings/User/NTUSER.DAT.LOG

--

Interesting strings>>>

_0014.jpeg-www.imageshack.com
102.54.94.97 rhino.acme.com # source server
127.0.0.1 avp.com
127.0.0.1 ca.com

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

 Building an Automated Behavioral Analysis Environment

Jim Clausing 27

127.0.0.1 customer.symantec.com
127.0.0.1 dispatch.mcafee.com
127.0.0.1 download.mcafee.com
127.0.0.1 f-secure.com
127.0.0.1 kaspersky.com
127.0.0.1 kaspersky-labs.com
127.0.0.1 liveupdate.symantec.com
127.0.0.1 liveupdate.symantecliveupdate.com
127.0.0.1 mast.mcafee.com
127.0.0.1 mcafee.com
127.0.0.1 my-etrust.com
127.0.0.1 nai.com
127.0.0.1 networkassociates.com
127.0.0.1 rads.mcafee.com
127.0.0.1 scanner.novirusthanks.org
127.0.0.1 secure.nai.com
127.0.0.1 securityresponse.symantec.com
127.0.0.1 sophos.com
127.0.0.1 symantec.com
127.0.0.1 threatexpert.com
127.0.0.1 trendmicro.com
127.0.0.1 updates.symantec.com
127.0.0.1 update.symantec.com
127.0.0.1 us.mcafee.com
127.0.0.1 virscan.org
127.0.0.1 viruslist.com
127.0.0.1 virusscan.jotti.org
127.0.0.1 virustotal.com
127.0.0.1 www.avp.com
127.0.0.1 www.ca.com
127.0.0.1 www.f-secure.com
127.0.0.1 www.grisoft.com
127.0.0.1 www.kaspersky.com
127.0.0.1 www.mcafee.com
127.0.0.1 www.my-etrust.com
127.0.0.1 www.nai.com
127.0.0.1 www.networkassociates.com
127.0.0.1 www.scanner.novirusthanks.org
127.0.0.1 www.sophos.com
127.0.0.1 www.symantec.com
127.0.0.1 www.trendmicro.com
127.0.0.1 www.virscan.org
127.0.0.1 www.viruslist.com
127.0.0.1 www.virusscan.jotti.org
127.0.0.1 www.virustotal.com
32.dll
38.25.63.10 x.acme.com # x client host
4:v15:v$C:v
accwiz.exe
aC:\WINDOWS\System32\rasctrs.dll
advapi32.dll
ADVAPI32.dll
ADVAPI32.DLL
advpack.dll
ADVPACK.DLL
aim.stop
ALLUSERSPROFILE=C:\Documents and Settings\All Users
alrpc:[DNSResolver,Security=Impersonation Dynamic False]
alrpc:[ntsvcs]

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

 Building an Automated Behavioral Analysis Environment

Jim Clausing 28

APPDATA=C:\Documents and Settings\User\Application Data
appHelp.dll
ATL.DLL
AUTHZ.dll
Autoloader.exe
AUTPRX32.DLL
BidLab.dll
browseui.dll
BypassFtpTimeCheck
BypassHTTPNoCacheCheck
BypassSSLNoCacheCheck
Can not run Unicode version of ATL.DLL on Windows 95.
c:\autoexec.bat
=C:=C:\Documents and Settings\User
{cc.republicofskorea.info
cc.republicofskorea.info
<CDispenser::GetActiveConnection|POOL|ERR> FreeResource failed, %p{.}, %p{IHolder*}, lpDbc:
%p{LPDBC}, 0x%08X{HRESULT}
<CDispenser::TryAllocResource|POOL|ERR> FreeResource failed, %p{.}, %p{IHolder*}, *ppDbc:
%p{LPDBC}, 0x%08X{HRESULT}
<CDispenser::TryAllocResource|POOL|RET> %p{.}, lpIDbc: %p{LPIDBC}, ppDbc*: %p{LPDBC}
C:\DOCUME~1\User\LOCALS~1\Temp\Perflib_Perfdata_c4.dat
C:\DOCUME~1\User\LOCALS~1\Temp\SQL.LOG
C:\Documents and Settings\All Users\Application Data
C:\Documents and Settings\User\Application Data\Micros
C:\Documents and Settings\User\Cookies
C:\Documents and Settings\User\Cookies\
C:\Documents and Settings\User\Cookies\index.dat
C:\Documents and Settings\User\Local Settings\History
C:\Documents and Settings\User\Local Settings\History\History.IE5\
C:\Documents and Settings\User\Local Settings\History\History.IE5\index.dat
C:\Documents and Settings\User\Local Settings\History\History.IE5\MSHist012008010920080110\
C:\Documents and Settings\User\Local Settings\Temporary Internet Files
C:\Documents and Settings\User\Local Settings\Temporary Internet Files\Content.IE5\
C:\Documents and Settings\User\Local Settings\Temporary Internet Files\Content.IE5\index.dat
cfgmgr32.dll
Choose OK to attempt to use the GT or Cancel to abort.HFailed to enlist in DTC: SQL state
%s, native error %d, error message %s
CLocator::GetWbemLocator: Load of ole32.dll failed
cmd.exe

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

 Building an Automated Behavioral Analysis Environment

Jim Clausing 29

10. Appendix B

