
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Reverse-Engineering Malware: Malware Analysis Tools and Techniques (Forensics 610)"
at http://www.giac.org/registration/grem

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/grem

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

Malcode Context of API Abuse

GIAC (GREM) Gold Certification

malicious code context

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

Malcode Context of API Abuse 2

1. Introduction
Individuals performing a manual or deep research effort into understanding

malicious code need to establish and understand the malcode context for success. For

example, downloading by a program can be a normal function, such as locating updates

for an application. Within the malcode context a downloader event may be related to

updating a Trojan or installation of additional malicious payloads on an infected system.

As a result, malcode analysts have the unique challenge of identifying how legitimate

activities are abused for malicious means.

Establishing malcode context is a process rather than an endpoint. As an analyst

works to understand possible maliciousness related to a code of interest static and

dynamic analysis provides clues related to functionality. Experienced analysts quickly

identify common malcode practices as malicious, such as unauthorized installation of

files into the Windows System directory without any EULA, permissions, or notification

to the end user.

When working with binaries a common static and dynamic analysis procedure is

to capture "strings", sequential characters in ASCII and Unicode found within a compiled

binary. Strings quickly reveal to an analyst if a program is a normal portal executable

(PE) binary for Windows, such as is revealed via a BinText strings view of notepad.exe:

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

Malcode Context of API Abuse 3

Notepad.exe strings reveals it is a Windows program.

Analysts quickly see the "This program cannot be run in DOS mode." which is

common for a PE file with an "MZ" header:

Notepad.exe header, viewed in Notepad ++, reveals it is a Windows binary.

A deeper analysis of strings reveals Windows application programming interface

(API) strings, such as CreateThread, LoadLibrary, and other functions:

API strings found in Notepad.exe.

API strings provide important clues related to possible functionality of code. In

the notepad.exe example above, a CreateThread API (Microsoft Corp., 2007) exists

within the code is able to create a thread to run in memory. Malcode Analysts review

strings to look for APIs that might indicate other possible functions, such as downloading

code, APIs that might be abused for concealing a file or process on a system, and more.

This is part of how malcode context is created when analyzing malcode.

Experienced analysts are familiar with malcode context, even if it is not

documented, and are able to quickly identify possible functionality of code to then

evaluate or further research. For example, an analyst may find an API related to

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

Malcode Context of API Abuse 4

downloading and also find a URL within the code (static and/or dynamic analysis). This

may then lead to behavioral analysis with a sniffer to see if any actions are taken related

to the URL of interest. It may also result in more advanced behavioral analysis and

reverse engineering tactics to trigger and analyze what is likely to be the functionality of

code based upon various malcode context clues and findings to date.

The focus of this paper is to perform research on how to use freeware tools to

efficiently and consistently capture strings of interest to then identify APIs in strings that

may help establish malcode context. Several older and more recent codes were used as a

way to identify how to best capture specific types of strings, with a specific length, to

best perform research against APIs referenced in binaries.

Deep lab research was performed on over 50 different known malicious incidents,

with known behavior, from 2010 as the sample set for identifying how APIs may be

abused by malcode. Additionally, over 600 known malicious samples were analyzed for

strings to identify the top prevalent API references commonly found within codes, thanks

to a contribution by Kjell Christian Nilsen. All references to APIs were then researched

and vetted out to identify those that are clearly linked to abuse by malicious code.

Results of this output are logged in a reference table as the final component of this

research paper. Both inexperienced and experienced analysts may now use this table as a

starting point for identifying what an API might be abused for when found in suspected

malcode. The reference table of this research may be used in configuration files for

programs like APISpy32, YARA signatures (Yara-project, 2011), and more.

2. Understanding Strings
On the surface, understanding strings is a trivial concept, a set of characters in a

compiled binary that may be related to comments in code, URLs, API references, and

more. To properly analyze and research malicious code based upon strings requires a lab

qualified understanding to avoid potential pitfalls in strings analysis.

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

Malcode Context of API Abuse 5

2.1. ASCII & Unicode Strings
Strings of a compiled binary may contain both ASCII (American Standard Code

for Information Interchange) and Unicode (world language) character sets. Older

malicious codes tend to contain more ASCII only string output, where more recent codes

have a combination of strings or are heavily Unicode based. Because of a number of

caveats related to strings analysis capture of strings for samples of interest, in both ASCII

and Unicode, is performed to best collect all possible strings of interest related to a

hostile binary. For example, using the Unix "strings" command, both "-a" or "-u"

may be used to capture each character set individually.

When reviewing APIs within a binary those that end with "A" are ASCII while

those that end with "W" are Unicode. For example, "SetFileAttributesA" is an ASCII

based API reference.

2.2. String Length
The length of strings that one may look for when looking for ASCII and Unicode

characters varies, based upon a balance between "junk" or "garbage" output and highly

sanitized longer string lengths. For example, if a minimum character length of 10 is

selected a string named after an API call like ZwOpenKey would not be in the strings

output as it contains just 9 characters. If the minimum is set too low, such as 1 or 2,

gibberish is the result with a large number of strings that are meaningless. Low thresholds

for strings results in a high noise-to-signal ratio, forcing an analyst to wade through a

multitude of meaningless strings.

Most programs have a default strings output of 3, 4, or 5. BinText (McAfee,

2011), a popular Windows strings tool with a simple GUI, uses 5 as the default value for

strings captures:

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

Malcode Context of API Abuse 6

BinText defaults sets the minimum string length to 5 which misses some APIs of interest.

Strings representing API function names are normally four characters or more.

Thus, if a tool or method is used to dump strings for a compiled binary that is 5, shorter

APIs with a character length of 4, are not included in the list. As of such, the seemingly

ideal character length for a comprehensive strings analysis (ASCII and Unicode) is 4.

The Sysanalyzer program was selected as the program for this research project

since it exports both ASCII and Unicode strings with the length desired for API analysis

(4 characters).

2.3. Unpacked Binaries for Strings Analysis
Strings of most malicious codes cannot be extracted until they are unpacked, as

the majority of malcode in the wild in 2011 are packed. The image below shows in a hex

editor a variant of the Bagle worm family, with a MZ header in an unpacked sample in

the forefront and strings related to the famous UPX packer in the unpacked sample of the

worm in the background:

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

Malcode Context of API Abuse 7

Bagle is packed with UPX, unpacked to reveal more strings of value.

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

Malcode Context of API Abuse 8

Once a file is unpacked the number of APIs that can be located in strings for the

executable is significant and of high value to a malcode researcher. The image below

shows PEView (Radburn, 2010) used to view Lecna malcode packed and unpacked, and

the associated APIs of interest.

Lecna Packed Lecna Unpacked

PEView reveals a much larger list of APIs available for review in the unpacked version

of Lecna.

Unpacking files can be a nightmare if done manually. Older methods involved

using programs like UPX to then run "upx –d Trojan", where Trojan is the malicious

code of interest being unpacked. Such a process can be very time consuming, riddled

with many different unpackers and various challenges for each situation.

There exist hundreds of packers, including custom packers. Some of them can be

handled using standard unpackers, others using heuristics. Some introduce new

techniques to evade all known heuristics. Creating a universal unpacker that can handle

all types of packers is infeasible.

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

Malcode Context of API Abuse 9

To easily capture strings related to a binary of interest that are unpacked

performing a strings dump of a process in memory is highly efficient (let the code unpack

itself). Tools like Sysanalyzer and Process Explorer (Microsoft Corp., 2010d) make

capturing of a specific process fairly simple for an analyst working on a specific code of

interest.

Sysanalyzer enables an analyst to run malicious code and then perform a variety

of analysis around that malicious code, such as sniffing, monitoring processes, etc. It

automatically generates a summary report of changes to a system, including ASCII and

Unicode strings that may exist, after about a minute following execution of code. The

analyst simply clicks on the Save button to have the report saved. Strings may then be

copied from this report into a new text document to then perform strings analysis. The

image below displays what an analyst sees when analyzing code with Sysanalyzer:

Sysanalyzer generates a report that includes strings.

Strings dumped by Sysanalyzer must be four characters or more in length.

Process Explorer is similar but lowers the limit to three characters. As a result, Process

Explorer string dumps are longer and contain more data that is not of interest to API

research since APIs of interest are four characters and longer.

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

Malcode Context of API Abuse 10

Process Explorer enables string captures by double-clicking on a process. If

desired, an analyst can right-click on a process to temporarily suspend it so that such

analysis may be done before a change might take place. Once process properties have

been opened (double-clicking) the analyst simply clicks on the Strings tab, selects the

Memory radio button, and clicks on save.

When a strings dump is done on an image (packed) and a process (unpacked)

using Process Explorer the difference in details is often significant. Using Lecna as an

example, 274 strings exist that are three characters or longer in the image while 712 exist

in strings captured from the process! Most importantly, APIs and other key data points

are visible in the unpacked process that is not seen in the packed image.

Below is an image of a string comparison for Lecna for strings of the binary

based upon the image (right side) and the unpacked process (left side). A forensic

package called Fcompare (Walter Oney Software, 2011) is used to show differences

between the two strings dumps, showing a massive difference in purple where such

strings only exist (in purple) in the unpacked process.

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

Malcode Context of API Abuse 11

Unpacked strings in memory reveal many APIs of interest not seen in a packed sample.

2.4. Process Explorer Strings Backup Method
In some cases malicious code can be difficult to work with as it may attempt to

immediately terminate or perform other actions hindering strings analysis of a process.

In such cases a variety of tactics may be used to capture strings from a process, such as

hindering termination of any programs, memory analysis, and more.

One fast and easy method for capturing strings from a process in memory is to

suspend it using a program like Flypaper (HBGary, 2011) or a right-click option within

Process Explorer (or use a debugger, etc). Then use Process Explorer to capture strings

from the unpacked process in memory. The downside to using Process Explorer as the

strings tool is that it uses a 3 character limit increasing the amount of undesired strings in

the sample set when specifically looking for APIs of interest. The image below shows

Sysanalyzer being unable to capture strings but Process Explorer, working with a

suspended hostile process, used capture strings from memory:

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

Malcode Context of API Abuse 12

Sysanalyzer is unable to analyze a hostile process that may have exited.

Process Explorer exporting unpacked strings from a process to a file.

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

Malcode Context of API Abuse 13

3. Introduction to Application Programming Interface
(API)

Windows application programming interface (API) is how Windows uses

Dynamic Link Libraries (DLLs) to provide developers with consistent commonly used

functions for interacting with the operating system (Microsoft Corp., 2010a).

Microsoft Corp. has created a large number of DLL files that programmers may

use as part of their development of software for Microsoft Windows. The DLL files

commonly exist in the Windows System directory in Windows 95/98 or the Windows

System32 directory in Windows NT/XP/Vista/7.

For example, user32.dll is an API that includes support for the messaging

handling, timers, menus, and communications. The "MessageBox" function supports the

handling of characters and strings for both 1-byte ANSI and 2-byte Unicode data. When

unspecified it defaults to ANSI. A programmer may use this DLL to help display a

message containing ANSI or Unicode data. They may also use it for other supported

functions, such as a menu. When such DLL executables are run by a user they don't run

as one might expect. While an executable with an MZ header they are designed to be run

in conjunction with the Windows operating system via API calls from other applications.

Microsoft Corp. has documented APIs in the "Platform Software Development

Kit (SDK)" that is shipped with Microsoft Visual C++ and/or Microsoft Developer

Network (MSDN) subscriptions. "Platform SDK" can also be downloaded from

Microsoft Corp. if a user doesn't have access to an MSDN subscription. This is a good

starting point for understanding API calls but users must realize that not every API is

not documented. As a result a wide variety of Internet posts, snippets in books, and

other sources attempt to document such features and implementations. A good example

of this is an article online at SecurityXploded (SecurityXploded, 2011).

Third party developers can also create their own API/DLL functions as part of a

program. As a result, new DLLs may be created and installed on a system to support

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

Malcode Context of API Abuse 14

third party development. This is also true for malware developers, such as hostile DLL

and SYS files commonly associated with Windows rootkits that extend functionality of a

system for malicious purposes. Third party applications are not normally considered a

library file, even if they have the same format and structure, since they are not in general

called by other applications on the same system. In summary this means that Windows

maintains control over the official API/DLL files on a system but additional third party

add-ons may exist for individual programs, such as alternate browsers, or malware of

interest.

APIs functions are not static as a whole, undergoing changes with operating

system changes. Over 1,100 new API elements were introduced with Windows 95

(Spinellis, 1997). More recent versions of Windows, such as Windows Vista (Microsoft

Corp., 2010c) and Windows 7 (Microsoft Corp., 2010b), have documentation of new

API and functions online via Microsoft.com.

There are several Windows DLLs that are commonly used as part of the API

support on a computer but are not normally included as something reference by

applications (Microsoft Corp., 2009). A brief introduction to those DLLs and their

functionality are below as a point of reference to approaching API functionality on a

system:

DLL Name Functionality

Hal.dll

Hardware Abstraction Layer

Loaded into the kernel to manage chipset needs. Cannot be

called directly by applications so no user mode APIs exist for

HAL routines. However, most drivers for hardware are

contained in files such as SYS files.

Ntdll.dll

Native API

Interface used by user-mode components of Windows related to

NT related libraries such as NtDisplayString and use of

ntoskrnl.exe (Windows Kernel). Also related to kernel level

APIs related to kernel32.dll.

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

Malcode Context of API Abuse 15

Kernel32.dll

Memory management, input/output operations, process and

thread creation, and synchronization efforts. Closely linked to

ndtll.dll functions and the main interface to Windows.

Gdi32.dll

Graphics Device Interface

(GDI)

Drawing functions related to video displays, printers, and font

management.

User32.dll

User interface management such as Desktop, windows, and

menus. Supports a graphical user interface for Windows. Also

related to management of windows, messages, and

keyboard/mouse events.

Comctl32.dll

Supports Windows controls including File, Open, Save, Save

As, Progress bars, and List views.

Msvcrt.dll

Microsoft Visual C++ Run-

Time

Library functions to support Visual C++ applications.

Shscrap.dll Support for shell scrap files as part of the Object Linking and

Embedding (OLE) mechanism. For example, how the system

supports drag and drop operations.

Ws2_32.dll

Winsock

Interface to all functionality related to network and data

transmission such as TCP/IP.

3.1. Notable API Groups
APIs are named according to conventions for grouping and/or input requirements.

Important groups relevant to malicious code implications are identified below:

Nt May be kernel mode but not necessarily, related to

ntdll.dll; prefix.

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

Malcode Context of API Abuse 16

Zw Ensures kernel mode; relevant to kernel level

rootkits; prefix.

Ldr Loader functions for PE file handling and starting

of a new process; prefix.

Ex Windows Executive; second generation API

(extension of the original API); appended to API

name.

W Unicode input; appended to API name taking

arguments in Unicode format.

A ASCII input; appended to API name.

Many others exist, such as "Ke" (core kernel routines), "Ks" (kernel streaming),

"Ps" (process management), etc.

3.2. Undocumented Windows API Functions
Microsoft Corp. has not publicly documented all functions and features of

Windows API. This may be due to a goal to focus programmers on using primary

interfaces developed by Microsoft Corp. while providing flexibility about changing

components of the operating system. Unfortunately malicious actors are able to identify

specific DLLs and API contexts of interest to further investigate and locate

undocumented functions. Undocumented APIs, such as SetSfcFileException, have been

abused by bad actors to subvert security models of the operating system. Another form

of API abuse is to use an alternative API call to accomplish the same task as a more

common one, as a way to potentially avoid detection by anti-virus software and/or

analysis thereof.

A significant amount of "undocumented" functions related to Windows API have

been the topic of many publications to date. One such example exists at ntinternals.net

(NTinterlnals.net team, 2008). One example post of an actor initiating research into

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

Malcode Context of API Abuse 17

undocumented features related to concealment of a process is below, revealing at least

one approach to researching undocumented APIs of interest (mc_ginley, 2007):

"Hello everybody. I was playing around with Microsofts Detour 2.1 these days

and succesfully "hooked" the well known NtQuerySystemInformation function to

hide a process. Funny thing is that this does NOT work if you try tasklist.exe in

the windows command prompt.

So far i found out that tasklist.exe uses (undocumented) functions of winsta.dll to

list the running processes of a "WinStation" via Terminal Services. Googleing

around i found a topic on this site

(http://forum.sysinternals.com/forum_posts.asp?TID=7375&K W=winsta%2Edll)

in which someone asked for the calling convention of WinStationKillProcess()

which is also part of winsta.dll.

So, does anyone know how these functions are used or what their parameters are?

Unfortunately i'm not really into debugging but i could see (in IDAPro)

something like that

WinStationEnumerateProcesses(x, x)

WinStationGetAllProcesses(x, x, x, x)

The "official" documented api to terminal services is Wtsapi32.dll which itself

uses winsta.dll functions (i think at least). Any hint would be great. "

Bamital is a sophisticated code that uses an undocumented API as part of an

infection routine. Specifically, a data file ("dll") with the MD5 value of

8b0a8d3b0760bd7779b2a8b4fc0682b1, contains encrypted data referencing the

undocumented API of interest:

Decoded "dll" file reveals reference to sfc_os.dll which exploits an undocumented API

call to inject protected system files.

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

Malcode Context of API Abuse 18

In order to infect a computer and also remain hidden it attempts to modify a pair

of system applications without changing file properties, including size. Explorer.exe (and

possibly others) is infected during the routine, including the dllcache copy of the file.

To bypass Windows file protection on Windows XP Bamital uses an

undocumented SetSfcFileException API within sfc_os.dll to disable file protection. Once

disabled, changes are made to the original file and dllcache backup. Only an MD5

checksum type hash check will reveal to the analyst that the files have changed as file

size does not change with this file injection. This "undocumented API" has been reported

in a few sources online which may have been leveraged by a malicious actor or

researched as a result of an actor identifying and then exploiting such functionality

(Shevchenko, 2009).

Strings in Bamital are encrypted, and several files are used as part of the infection

routine. This hinders the common methodology used in this research from being used on

codes like Bamital. Instead, debugging and reverse engineering is required to properly

understand Bamital and the various API references made during infection.

4. Methodology of API Abuse Research
Dozens of lab qualified malicious codes obtained from incident response and

malicious code research with iSIGHT Partners was used in conjunction with deep reports

on each sample used within this study. This enables the researcher to quickly perform

API research on codes with known behaviors that are repeatable in a lab environment,

helpful in understanding and analyzing abuse of APIs associated with each malicious

code. In short, the methodology is as follows:

1. Use Flypaper and Sysanalyzer to run code in a VMware lab environment.

2. Use Sysanalyzer to export strings of the hostile process. This, by default, exports

both ASCII and Unicode strings with a minimum length of 4.

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

Malcode Context of API Abuse 19

3. If Sysanalyzer is unable to locate a new hostile process use Process Explorer for a

strings capture of the process suspended in memory using Flypaper at runtime.

4. Export strings from the malicious process, using Process Explorer.

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

Malcode Context of API Abuse 20

5. Perform an API strings analysis upon the strings captured to leverage in this

research of what the code is known to do behaviorally.

The identified method for this research works in both virtual environments, like

that of VMware, and native environments. The tools selected for this research are all in

the freeware domain enabling security experts in training to quickly use all such tools to

replicate and leverage this research when analyzing code in the lab.

4.1. Other Methods Considered but Rejected
Other methods also exist for capturing strings of hostile processes that may

terminate rapidly, such as placing a virtual machine into hibernation mode and the

analyzing the VMEM file created on the host computer or performing a dump of all

memory to a file (e.g. windd32). These methods unfortunately involve analysis of all

artifacts in memory which requires much time and effort than is necessary for the method

adopted for this research.

Windows Memory Forensic Toolkit (WMFT) also has the ability to dump

physical memory, but it also fails to work well due to a race condition with codes that

quickly exit (the hostile code may simply exit too quickly). User Mode Process dumps

require an installation and are not the type of output desired for rapid strings analysis.

Pmdump also has the wrong type of output for analysis focused upon in this research.

Windows Vista and Windows 7 Task Manager (TM) also enables a memory dump for a

process, but this is again, a race condition with malcode that quickly exits or injects

making such dumps unreliable using TM.

4.1. Strings Analysis for APIs of Interest
This is where the real work begins for the malcode analyst. Strings contain a

large number of data points that may allude to various functions or APIs commonly

abused by malcode. Strings typically reveal the structure and flow of a binary, much like

that seen in PEBrowse Professional Interactive (Osterlund, 2011):

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

Malcode Context of API Abuse 21

Flypaper viewed with PEBrowse Professional Interactive.

Notice in the image above DOS Header, File Header, sections, imports and other

components common to a Windows executable. When reviewing strings this is often

seen in the initial strings, in sequence, such as the following:

This program must be run under Win32
.text
`.itext
`.data
.bss
.idata
.tls
.rdata

When researching the above sections a few like ".itext" may lead to the discovery

of documentation about Borland Delphi containing such sections1, "PE files produced by

Delphi may contain these sections which must be located: section CODE, .itext, DATA,

BSS, .tls, .rdata, and .idata." Additional strings may then exist just after the sections of

the PE file further suggesting it is a program compiled in Borland Delphi, "FastMM

1 http://www.on time.com/rtos 32 docs/rttarget 32/programming manual/compiling/borland delphi.htm

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

Malcode Context of API Abuse 22

Borland", "Edition 2004, 2005 Pierre le Riche / Professional Software Development", and

"SOFTWARE\Borland\Delphi\RTL".

PEBrowse Professional Interactive can also help to reveal the flow of imports and

their relationships to various DLLs, as shown below:

DLLs and their imports are revealed in PEBrowse Professional.

APIs that accept ASCII input end in "A" and those that accept Unicode end in

"W". Windows Executive APIs, using the extension "Ex", are second generation APIs.

Then there are APIs that don't have any such naming appension as they only accept

numeric or binary data, such as CryptHasData. As a final note for this research, as API

groups is an exhaustive topic, there are also undocumented APIs making such research

even more challenging. Analysts must look for TitleCase strings of interest to then

research via sites like http://msdn.microsoft.com/en-us/library/ and general Internet

queries to identify possible functionality or context.

For example, an analyst may perform a query at msdn.microsoft.com for

WriteProcessMemory to arrive at http://msdn.microsoft.com/en-

us/library/ms681674%28VS.85%29.aspx which then identifies this as a documented API

responsible for writing data to an area of memory in a specified process. A Google query

for "WriteProcessMemory Worm" (or Trojan, etc) then reveals multiple results

discussing code injection, providing additional interpretive context. This can further be

qualified by looking at behaviors of the code, such as seeing injection in IceSword or

using similar tools and tactics in analysis:

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

Malcode Context of API Abuse 23

IceSword reveals injection of Haxdoor rootkit into explorer.exe (Windows).

Interpretation of strings is also logical and sequential. For example, strings

commonly begin with data related to executable statements and structure (sections of a

binary, etc). Additionally, nearby strings provide context as to what is possibly taking

place in a binary or a series of operations that are related. For example, one hostile

binary may contain strings suggesting command and control HTTP communications:

HttpSendRequestExA
HttpQueryInfoA
HttpSendRequestExW
InternetQueryDataAvailable
InternetReadFileExA
HttpSendRequestW
GetUrlCacheEntryInfoW

An analyst may review each of the above strings for possible functionality and

how it may be related to possible malicious behavior reported or seen in behavioral tests.

After strings are compared to known functionality of code, or further investigated with

reverse-engineering, a lab qualified context for abuse of APIs is then known.

4.2. APIs Commonly Found in Malcode
Strings from over 600 malicious samples were collected by Nilsen in support of

this research project. A simple count was then performed to identify those strings most

common to the codes analyzed. The more common an API string reference is the most

likely it is to be abused by malicious code (higher reliability).

Count API
571 LoadLibraryA

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

Malcode Context of API Abuse 24

133 GetUserNameA
119 GetComputerNameA
116 GetVersionExA
104 GetModuleFileNameA
101 GetStartupInfoA

96 IsCharAlphaA
92 IsBadStringPtrA
84 IsCharUpperA
78 GetWindowTextA
68 IsCharAlphaNumericA
67 IsCharLowerA
67 GetWindowTextLengthA
38 GetModuleHandleA
37 MessageBoxA
36 GetCommandLineA
19 LCMapStringA
19 GetStringTypeA
19 FreeEnvironmentStringsA
19 ChooseFontA

LoadLibraryA is the most common API referenced within the considered bots.

Reliability is not within the scope of this paper but is addressed in part.

Reliability is useful for a contextual understanding of how to work through the art of

understanding API abuse. For example, "ChooseFont" is a very common API that

provides little malcode context and is not included in the final list of commonly abused

APIs in this research. Other APIs, such as LoadLibrary, is commonly used by malicious

code to execute malicious code or perform DLL injection, highly relevant and common

for a malicious context.

The large group statistics (prevalence) for APIs found in bots are also biased

towards the codes used within the group studied. Malcode has changed significantly over

the past two years and varies greatly based upon what is being evaluated. The data also

largely represents just a few families of bots and is not that diverse (Conficker, Palevo,

and Rbot are primary). Analysts are able to accommodate such considerations in their

research to create custom contexts and reliability based upon the family of code being

analyzed. For example, analysts may create API lists related to families or types of codes

commonly analyzed, such as the family of Zeus or bots types.

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

Malcode Context of API Abuse 25

4.3. APISpy32
One popular tool for analyzing API calls is APISpy32 (Pietrek, 2011). This tool

requires that a user create a configuration file to identify which APIs to monitor, which

requires some knowledge on behalf of the analyst. A screenshot of the tool loading a

code and creating a ".out" log file is below:

APISpy32 loads malcode cutwail.exe and logs hooked APIs to cutwail.out.

The updated version reference in this report comes with a good start for

configuration compared to older versions of the tool. For example, the tool includes the

following LoadLibrary hooks in the configuration file by default:

API:KERNEL32.dll:LoadLibraryA
 LPSTR

API:KERNEL32.dll:LoadLibraryExA
 LPSTR
 HANDLE
 DWORD

API:KERNEL32.dll:LoadLibraryExW
 LPWSTR
 HANDLE
 DWORD

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

Malcode Context of API Abuse 26

NOTE: APISpy32 includes common Windows Data Types as part of its

configuration (LPSTR, HANDLE, DWORD). More information can be found on

MSDN (Microsoft Corp., 2008) related to these data types.

If an analyst extracts APIs of interest from a strings sample and populates the

APISpy32 "APISPY32.API" configuration file accordingly the tool becomes extremely

valuable, revealing handles called by malcode loaded and monitored by the tool. For

example, populating an APISpy32 configuration file with APIs commonly abused by

malcode, the primary output of this research, is a fantastic application for default malcode

monitoring.

The table below reveals some of the APISpy32 output using default configuration

values, with strings from the hostile binary in bold to show those monitored. An analyst

can simply add additional items to the configuration of the tool before using it to run the

malcode to then capture details aiding in API analysis:

Select Strings in Malcode APISpy32 Log Output (using default configuration)
…
GetCurrentProcess
GetCurrentThread
GetProcAddress
LoadLibraryExW
LeaveCriticalSection
HeapAlloc
EnterCriticalSection
LCMapStringW
FreeLibrary
lstrcpyW
ExitProcess
LoadLibraryA
QueryPerformanceCounter
…

…
GetProcAddress(HANDLE:7C800000,LPSTR:00419
0AF:"CompareStr")
GetProcAddress returns: 7C80D293
GetProcAddress(HANDLE:7C800000,LPSTR:004190
BF:"ExitProces")
GetProcAddress returns: 7C81CAA2
GetProcAddress(HANDLE:7C800000,LPSTR:004190
CC:"GetWindows")
GetProcAddress returns: 7C82293B
LoadLibraryA(LPSTR:0041B0A5:"ADVAPI32.d")
LoadLibraryA returns: 77DD0000
GetProcAddress(HANDLE:77DD0000,LPSTR:004190
EB:"LsaClose")
…

If the analyst takes other strings of interest, such as GetCurrentProcess, APISpy32

will attempt to hook and log all such handles and events accordingly.

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

Malcode Context of API Abuse 27

5. Abuse of APIs within a Malcode Context
After performing research on countless samples and correlating to malicious

behavior, the following pointers have been aggregated for how Windows APIs may be

abused by malicious code within specific contexts. This is not conclusive as a malicious

code context must be qualified before these pointers are of any value, followed with

additional lab qualified research accordingly. Additionally, more general APIs abused

are not included in the list compiled in this research, such as InternetOpen which is a

common call to initiate WinINet functions. Such APIs are useful for creating context for

nearby APIs in strings but are not included in the malcode context chart for this paper.

Other APIs that are relevant, discovered in analysis of samples, are not included

such as those related to Mozilla Firefox APIs and strings like "Autorun.inf" which may

be related to a removable drive infection routine but are not a Windows API. For

example, FireFox related APIs hooked by Zeus, PR_OpenTCPSocket and PR_Read, or

SpyEye hooked PR_Poll and PR_SetError, are not included in the table output for this

research. These APIs are authored and documented by Mozilla.

Appended characters such as "A", "W", "ExW", and "ExA" are removed to

globalize the API references, such as having only DNSQuery in the table instead of two

entries for DNSQueryA and DNSQueryW. This makes the list much more manageable

while still serving core string identification purposes. For example, looking for the string

value of "HttpSendRequest" in a Zeus sample successfully locates all four variants that

exist within the sample: HttpSendRequestW, HttpSendRequestA, HttpSendRequestExW,

and HttpSendRequestExA.

Analysts who use this table with tools like APISpy32 or custom scripts may find

benefit in assigning reliability. Some API references are almost always malicious, such

as URLDownloadToFile, while others have a high false positive rate, such as

Process32First. A practical example in this study is "BeginPaint", hooked by Zeus to

disable local screen changes when a VCN session is activated. While this is rarely used

by malcode families for malicious means it is used by Zeus, one of the most common

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

Malcode Context of API Abuse 28

families of malcode in the wild in 2011. While ratings of "reliability" are beyond the

scope of this research the author has attempted to not include APIs that are very common

and not specific to malicious context.

For a table reference of APIs identified within the malicious context as part of this

research please see Appendix A of this report.

6. References
Special thanks to David Zimmer and Robert Wang, iSIGHT Partners, for their

assistance in research and peer review of this research report. Their support and expertise

is invaluable and greatly appreciated.

Additionally, I want to thank the countless professionals that I work with in

various public and private groups globally. The following individuals specifically helped

to identify malicious APIs of interest, further supplementing findings in this report: Felix

Leder, Kjell Christian Nilsen, and Kayne Naughton.

HBGary. (2011). Flypaper. Retrieved from https://www.hbgary.com/popular/flypaper/

mc_ginley. (2007). undocumented api: winsta.dll. Retrieved from

http://forum.sysinternals.com/undocumented-api-

winstadll_topic9968_post43557.html

McAfee (2011). Bintext 3.03. Retrieved from

http://www.mcafee.com/us/downloads/free-tools/bintext.aspx

Microsoft Corp. (2007). Createthread function. Retrieved from

http://msdn.microsoft.com/en-us/library/ms682453%28VS.85%29.aspx

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

Malcode Context of API Abuse 29

Microsoft Corp. (2008). Windows data types. Retrieved from

http://msdn.microsoft.com/en-us/library/aa383751%28v=vs.85%29.aspx

Microsoft Corp. (2009). Introducing libraries. Retrieved from

http://msdn.microsoft.com/en-us/magazine/dd861346.aspx

Microsoft Corp. (2010a). Dynamic-link libraries. Retrieved from

http://msdn.microsoft.com/en-us/library/ms682589%28v=vs.85%29.aspx

Microsoft Corp. (2010b). Windows 7 api list. Retrieved from

http://msdn.microsoft.com/en-us/library/ee461765%28v=vs.85%29.aspx

Microsoft Corp. (2010c). Windows Vista api list. Retrieved from

http://msdn.microsoft.com/en-us/library/ee461768%28v=VS.85%29.aspx

Microsoft Corp. (2010d). Process explorer v14.01. Retrieved from

http://technet.microsoft.com/en-us/sysinternals/bb896653

NTinternals.net team. (2008). The undocumented functions. Retrieved from

http://undocumented.ntinternals.net/

Osterlund, R. (2011). Pebrowse professional interactive windows debugger. Retrieved

from http://www.smidgeonsoft.prohosting.com/pebrowse-pro-interactive-

debugger.html

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

Malcode Context of API Abuse 30

Pietrek, M. (2011). Apispy32 updated. Retrieved from

http://www.wheaty.net/APISPY32.zip

Radburn, W. (2010). Peview version 0.9.8. Retrieved from http://www.magma.ca/~wjr/

SecurityXploded. (2011). Hidden rootkit process detection . Retrieved from

http://securityxploded.com/hidden-process-detection.php

Shevchenko, A. (2009). Advancing malware techniques 2008. Retrieved from

http://www.virusbtn.com/virusbulletin/archive/2009/01/vb200901-advancing-

malware-techniques

Spinellis, D. (1997). A critique of the windows application programming interface.

Retrieved from http://dmst.aueb.gr/dds/pubs/jrnl/1997-CSI-

WinApi/html/win.html

Walter Oney Software. (2011). File compare utility for windows (fcompare) . Retrieved

from http://www.oneysoft.com/fcompare.htm

Yara-project (2011). Yara-Project. Retrieved from http://code.google.com/p/yara-project/

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

Malcode Context of API Abuse 31

Appendix A – Table of APIs in a Malicious Context

Items in red are for undocumented APIs.

API Malicious Context

accept
Accepts an incoming connection attempt on a socket;
possible backdoor.

AddCredentials Adds credentials to a logon session.
bind May indicate backdoor Trojan.
CertDeleteCertificateFro
mStore

Deletes the specified certificate context from the certificate
store.

CheckRemoteDebuggerP
resent Checks for a debugger.

closesocket
Closes an existing socket. Zeus hooks this API to free
resources allocated in other hooked APIs.

connect

Establishes a connection to a specified socket, potentially
related to downloader, notification, reverse shell, or Internet
connectivity events.

ConnectNamedPipe
May indicate a reverse shell backdoor. Look for a hidden
cmd process.

ControlService
Sends a control code to a service. Conficker uses this to
control a hostile service.

ConsentPromptBehavior
Admin

Defines settings that enable the administrator to configure
the behavior of the User Account Control (UAC).

CopyFile
Malcode copies an existing file to a new file during
installation.

CreateDirectory Creates a directory.

CreateFile

Create or opens a file, likely an installer. Sinowal uses this
to modify the MBR by opening Device\Harddisk0\DR0;
SpyEye.

CreateMutex
Use a mutex with a new process to run only one instance of
code in memory.

CreateNamedPipe
May indicate a reverse shell backdoor. Look for a hidden
cmd process.

CreateProcess Used to run a process.
CreateProcessAsUser Used to run a process.

CreateRemoteThread

Creates a thread that runs in the virtual address space of
another process. A common way of DLL injection is create
remote thread with start address to LoadLibrary and
parameter point to the DLL to be injected; used by
Conficker and Zeus.

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

Malcode Context of API Abuse 32

CreateService Conficker uses this to create a service.

CreateThread
Creates a thread to execute within the virual address space
of the calling processing; Bamital.

CreateToolhelp32Snapsh
ot

Possibly capturing a snapshot of current processes, as well
as heaps, modules, and threads, for reconnaissance.

CryptCreateHash

Intiates hashing of a stream of data, possibly used to encrypt
or obfuscate stolen data, netflow, or configuration
information.

CryptEncrypt Encrypts data; SpyEye.

CryptGetHashParam
Possible encryption or obfuscation of data stolen and/or
configuration data used by the malcode.

DebugActiveProcess Used by an advanced multi-process packer.
DeleteFile Deletes a file.

DeleteService

Deletes a service. May be used to disable Windows
Security Center services to lower security and avoid
detection.

DeviceIoControl Sends a control code to a driver.

DisconnectNamedPipe
May indicate a reverse shell backdoor. Look for a hidden
cmd process.

DNSQuery
Conficker hooks this API to block access to a list of
security-related domains.

EnableExecuteProtectio
nSupport

Modifications to Windows DEP security controls.
Undocumented API.

EnumProcesses Lists running processes.
EnumWindows Enumerate Windows open on a system.
ExitProcess Exits a process.
ExitThread Monitoring of threads for malicious means.

FindFirstChangeNotifica
tion

Monitoring of changes to a specified directory. May be
used by malcode to protect itself from deletion or
modifications.

FindFirstFile

Searches a directory for files and subdirectories. May be
hooked to hide files/directories protected by user-level
rootkit.

FindNextFile A function hook to hide a user-level rootkits system files.

FindWindow
Searches for a top-level windows with specified class name
and/or window name.

FinNextChangeNotificati
on

Malcode may monitor a thread or process and/or recreate a
file if deleted or modified.

FltRegisterFilter
Keyloggers hook wh_keyboard and WH
CALLWINDPROC.

FlushInstructionCache Flushes cache for specified process; SpyEye.

FreeEnvironmentStrings
Frees up environmental variables related to a process
managed by malcode.

FtpGetFile Downloads a file from an FTP server.

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

Malcode Context of API Abuse 33

FtpOpenFile
Initiates access to a remote file on an FTP server for reading
or writing.

GetClipboardData Zeus hooks this API to steal data from the clipboard.
GetCommandLine May support command line parameters.

GetComputerName
Obtains the NetBIOS name of the computer, possibly as a
form of reconnaissance for infection tracking.

GetDriveType

Determines wheter a disk drive is a removable, fixed, CD-
ROM, RAM Disk, or network drive. Potentially related to a
removal drive (USB) or network spreader.

GetDiskFreeSpace Identifies free space on a drive.

GetEnvironmentVariabl
e

Obtains variable from environmental block of calling
process. SpyEye uses this function to transfer a password
between two modules.

GetFileAttributes Zeus hooks this API.
GetHostByAddr Host information related to an IP address.
GetHostByName Host information by name.
GetHostName Retrieve a host name for for the local computer.

GetMenu
Retrieves a handle to the menu assigned to specified
window.

GetMessagePos
Retrieves cursor position for last message retrieved by the
GetMessage funciton.

GetModuleFileName Retrieves file path for a module in memory.
GetModuleHandle Retrieves a module handle.

GetNativeSystemInfo
Obtains information about current system to an application
running under WOW64, possibly for reconnaissance.

GetNetworkParams Retrieves network parameters for the local computer.
GetProcAddress Retrieves the address of an exported function from a DLL.

GetStartupInfo
Identifies the Windows station, desktop, standard handle,
and appearance of the main windows for a process.

GetStringType
Character conversions and manipulation as part of possible
data conversion or de-obfuscation.

GetSystemDirectory
Retreives the patch of the system directory as part of a
possible configuration or installation of code.

GetTempFileName Creates a filename for a temporary file.
GetTempPath Retrieves temporary files path.

GetTickCount

A function used to retrieve the number of ms since the
system was started up, possibly related to a sleep function;
Bamital.

GetTimeZoneInformatio
n Retrieves current time zone settings.
GetUpdateRect Zeus hooks this API.
GetUpdateRgn Zeus hooks this API.
GetUrlCacheEntryInfo Gathers cache entry data related to URLs; Koobface.

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

Malcode Context of API Abuse 34

GetUserName
Obtains the username associated with the current thread,
used as possible reconnaisance or installation of code.

GetVersion Malcode may only work on specified operating system(s).

GetWindowText
Copies the text of a specified windows title bar, possibly
used for monitoring triggers for malcode.

GetWindowThreadProce
ssId

Retrieves the identifier of the thread that created the
specified window and, optionally, the identifier of the
process that created the window.

htons Conversion of host TCP/IP data to nework byte order.
HttpAddRequestHeader
s

Modification of HTTP headers, possibly abused for C&C
operations; SpyEye.

HttpOpenRequest Creates an HTTP request handle.

HttpQueryInfo

Zeus hooks this API to steal HTTP authentication data of
interest. Conficker uses it to obtain date and time from
remote websites.

HttpSendRequest
Zeus hooks this API to steal HTTP authentication data of
interest; SpyEye.

IcmpSendEcho Sends out a PING.

InternetCloseHandle
Zeus hooks this API to free resources allocated by other
hooked APIs; SpyEye.

InternetConnect
Opens an FTP, Gopher, or HTTP session for a given site.
May be hooked by malcode for exfiltrating data.

InternetCrackUrl Cracks a URL into component parts.
InternetGetConnectedSt
ate

Retrieves the connected state of a local system. Conficker
hooks this API.

InternetOpen
Initializes an application use of WinINet functions. May be
downloading a hostile file.

InternetOpenURL Open a FTP or HTTP link.
InternetQueryDataAvail
able Zeus hooks this API to steal HTTP data of interest; SpyEye.
InternetQueryOption Hooked by malcode for stealing online data; SpyEye.
InternetReadFile Zeus hooks this API to steal HTTP data of interest; SpyEye.
InternetSetOption Hooked by malcode for stealing online data; Zeus.
InternetSetStatusCallbac
k Zeus uses this API for HTTP authentication theft.
InternetWriteFile Writes data to an open Internet file; Spyeye.

IsCharAlpha
A check to see if a character is alphabetical as part of
possible data conversion or de-obfuscation.

IsDebuggerPresent Checks for a debugger.

LdrLoadDll
Low level API to load a library. Hooked by Zeus to install
nspr4.dll hook; SpyEye. Undocumented API.

listen May indicate backdoor Trojan.

LoadLibrary
Used to execute malicious code or load other DLL modules
and/or injection.

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

Malcode Context of API Abuse 35

lstrcat
A function that should not be used since it can be abused for
injecting executable code into a process; Bamital.

ModifyExecuteProtectio
nSupport

Modifications to Windows DEP security controls.
Undocumented API.

Module32First Possible module enumeration and manipulation.
Module32Last Possible module enumeration and manipulation.
MoveFile Moves a file, possible during installation of malcode.

NdisRegisterProtocol
Registers an NDIS driver protocol. A method to bypass
firewalls used by Rustock and others.

NdrClientCall2 Transmits data to a remote server.
NeEnumerateKey Acquires information about a certain Windows registry key.

NetpwPathCanonicalize
Conficker hooks this API to avoid reinfections from other
machines.

NoExecuteAddFileOptO
utList

Adds executable file into DEP exclusion list.
Undocumented API.

NtCreateFile Zeus hooks this API for Murofet file infection.
NtCreateThread Zeus hooks this API for thread injection.
NtCreateUserProcess Zeus hooks this API for thread injection.

NtDeviceIoControlFile

This function is called by netstat and all other ws32
applications, including winsock creation and opening of a
socket. MigBot reroutes control flow from this kernel
function.

NtDuplicateObject Used to duplicate a handle in memory.

NtEnumerateValueKey
Obtains information about the value of an open Windows
registry key; SpyEye.

NtLoadDriver Loads a driver.

NtOpenProcess
Opens an existing process. May be hooked by rootkits to
manage processes opened or terminated.

NtQueryDirectoryFile Retrieves contents of a directory; Spyeye.
NtQueryInformationPro
cess Checks for a debugger.
NtQuerySystemInformat
ion Obtain information the system.

NtQueueApcThread

Conficker enumerates all threats running inside a targeted
process, adding to the queue an Asynchronous Procedure
Call (APC). Leads to LoadLibraryExA to run the code.
Bamital uses it for thread injection and downloading.
Undocumented API.

NtResumeThread
Low-level implementation of ResumeThread related to DLL
injection; SpyEye; Undocumented API.

NtVdmControl

NT Virtual DOS Machine API for working with DOS
emulated program support; hooked by SpyEye.
Undocumented API.

NtWriteVirtualMemory Possible injection of a malicious component into a process.

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

Malcode Context of API Abuse 36

ObtainUserAgentString Malcode capturing user-agent strings from netflow data.

OpenInputDesktop
Zeus hooks this API to to use a different desktop for a VNC
module.

OpenProcess Opens a process.
OpenProcessToken Opens an access token associated with a process.
OpenScManager Establishes a connection to athe service control manager.
OpenThread Opens a thread within a process.

OutputDebugString
Sends a string to a debugger; sometimes left in code by
developers.

PeekMessage Zeus hooks this API.

PeekNamedPipe
May indicate a reverse shell backdoor. Look for a hidden
cmd process.

PFXImportCertStore
Rohimafo, SpyEye, Sinowal and many others hook this API
to steal Internet Explorer passwords and/or certificates.

PrintWindow
Copies a visual window into the specified device context,
typically a printer.

Process32First Lists running processes.
Process32Next Lists running processes.
PsSetCreateProcessNotif
yRoutine

Manages drive-supplied callback routines related to process
creation and deletion.

ReadDirectoryChanges
Malcode may monitor a thread or process and/or recreate a
file if deleted or modified.

ReadProcessMemory Stealing information from targeted process.

recv
Receives data from a socket. May indicate a backdoor
Trojan or downloading of a file.

RegCloseKey Closes a handle to a specified Windows registry key.
RegCreateKey Creates a specified registry key.
RegDeleteKey Deletes specified registry key.
RegDeleteValue Deletes a named value from specified registry key.
RegEnumKey Enumerates subkeys of a specified open registry key.
RegOpenKey Opens a specified Windows registry key.
RegQueryValue Retrieves data associated with a Windows registry key.
RegSetValue Sets data and type of a Windows registry key.
RpcMgmtIsServerListen
ing

Identify if a remote server is listening for remote procedure
calls.

SeAccessCheck

Determines whether the requested access rights can be
granted. MigBot reroutes control flow from this kernel
function.

send
Sends data related to a socket. Zeus uses this API to
exfiltrate data to a remote server; SpyEye.

sendto
Sends data to a specific destination. Conficker hooks this
API as part of blocking access to security-related domains.

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

Malcode Context of API Abuse 37

SetCapture Set the mouse capture to a specified window.

SetEnvironmentalVariab
le

Sets variable from environmental block of calling process.
SpyEye uses this function to transfer a password between
two modules.

SetFileAttributes
Sets file attributes of a file, such as making it hidden to
conceal it from a user.

SetKeyboardState Keylogging.
SetPrivilege Change privileges.

SetSfcFileException

Bamital uses this undocumented API to disable Windows
File Protection of system files to inject into explorer.exe on
Windows XP. Undocumented API.

SetSystemTime Sets the current system time and date.
SetThreadContext Possible thread injection.
SetTimer Possible logic bomb or timed event.

SetWindowsHook
Installs and application-defined hook procedure into a hook
chain. May be used by keyloggers; Bayrob.

SetWindowsText
Zeus hooks this API to steal logon data when the user is
forced to enter new credentials for Full Tilt Poker.

SetWinEventHook

Sets an event hook function for a range of events. Possible
keylogging or DLL injection, able to install and uninstall a
Windows hook.

ShellExecute

Possibly used to run a 32-bit PE file without knowing the
name of the extension, such as running an executable with
an extension such as .tmp or some other proprietary
assignment.

Sleep
Suspends execution of a thread for the interval (time)
specified.

socket Create a socket for netflow operations.
StartService Starts a service.
Thread32First Possible enumeration and manipulate of threads.
Thread32List Possible enumeration and manipulate of threads.
Toolhelp32ReadProcess
Memory Possible theft of targeted process.
TranslateMessage Zeus hooks this API; SpyEye.

UnhookWindowsHook
Possible keylogging or DLL injection, able to install and
uninstall a Windows hook.

UnhookWinEvent
Possible keylogging or DLL injection, able to install and
uninstall a Windows hook.

URLDownloadToCache
File

Downloads data to the Internet cache, such as related to a
drive-by exploitation and installation event.

URLDownloadToFile Downloads from the Internet and saves to a file.

UrlUnescape

Unescape function to convert a URL into ordinary
characters. Other strings suggest manipulation or
construction of a URL from encoded data.

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

Malcode Context of API Abuse 38

WinExec Related to possible opening of a new process.
WNetUseConnection Connection to a network resource; Bamital.
WriteFile Creating a file, likely an installer.

WriteProcessMemory
Writes data to an area of memory in a specified process.
Conficker uses this to perform thread injection.

WSASend
Sends data on a connected socket. Zeus hooks this API to
steal authenticated data.

WSASocket Creates a socket for netflow operations.
WSAStartup Initiates use of the Winsock DLL by a process.

ZwConnectPort

TDL3 hooks this kernel level API in its own memory space
and attempts to connect to a named port to establish a Local
Procedure Call connection.

ZwCreateFile Kernel level file creation possibly related to a rootkit.
ZwCreateKey Kernel level routine to open an existing registry key.
ZwCreateLinkObject Kernel level method to create a new link object.
ZwDeviceIoControlFile Kernel mode control of a specific device driver.

ZwLoadDriver
Loads a device or file system driver into the currently
running system.

ZwOpenFile
Opens an existing directory, device, or volume at kernel
level, possibly related to a rootkit.

ZwOpenKey Kernel level routine to open an existing registry key.

ZwOpenProcess
Kernel level routine to open a handle to a process object and
set accrss rights.

ZwOpenSection
Kernel level routine to open a handle, possibly related to a
rootkit.

ZwProtectVirtualMemor
y

Possible poisoning (API-splicing) of browser process,
website redirection, and remote C&C communications.
TDL3; Undocumented API.

ZwQueryDirectoryFile
Carberp uses this kernel mode control to conceal itself on a
file system.

ZwQueryInformationFil
e Possible rootkit retrieving kernel level information.
ZwQueryInformationPo
rt Possible rootkit retrieving kernel level information.
ZwQueryInformationPr
ocess Possible rootkit retrieving kernel level information.
ZwQuerySystemInforma
tion Hooked by a rootkit to manipulate a system.
ZwQuerySystemThread Hooked by a rootkit to manipulate a system.
ZwResumeThread Management of threads at the kernel level.
ZwSetInformationFile Possible rootkit retrieving kernel level information.
ZwSetInformationInfor
mation Possible rootkit retrieving kernel level information.

© 2
011
 SA
NS
 Ins
titu
te,
Au
tho
r re
tain
s fu
ll ri
gh
ts.

Author retains full rights.© 2011 The SANS Institute

Malcode Context of API Abuse 39

ZwSetInformationPort Possible rootkit retrieving kernel level information.
ZwSetInformationProces
s Possible rootkit retrieving kernel level information.
ZwSetInformationThrea
d Possible rootkit retrieving kernel level information.

ZwSetSystemInformatio
n

Subversion of ServerLock to load a rootkit DLL. May also
interact with Windows Service Control Manager (SCM)
without using common method. Undocumented API.

ZwSetValueKey Creates or replaces a registry key value.

ZwSystemDebugControl
Execute code into kernal mode; Undocumented API;
Bredolab.

ZwWriteVirtualMemory

Possible poisoning (API-splicing) of browser process,
website redirection, and remote C&C communications.
TDL3; Undocumented API.

