Interested in learning more?

Check out the list of upcoming events offering
"Security Essentials Bootcamp Style (Security 401)"
at http://www.giac.org/registration/gsec
Secure Browsing Environment

GIAC (GSEC) Gold Certification

Author: Robert Sorensen, rssoren@gmail.com
Advisor: Egan Hadsell

Accepted: September 20, 2011
Updated: May 11, 2012

Abstract

This paper will describe the current browsing environment and potential security issues. This is a very relevant topic as one reads about zero-day exploits or vulnerabilities in current browsers and/or applications like Adobe Flash or Acrobat Reader. Also, this paper will describe and detail the technical implementation of a Linux-based VM browsing environment with a step-by-step install and configuration guide. As people use web browsers on a daily basis, an interest in how one can securely and confidently conduct financial business using Windows is critical in today's computing environment.
1. Introduction

Today’s computing environment is fraught with much treachery. It used to be that one could surf the web without any thought of infection or loss of private information. Those times have changed! One might argue that the safest connection to the web is no connection at all. However, this is not feasible in today’s social networked world (Powell, 2011). The target has only increased for hackers.

The challenge is how to be an interactive player in a scary playground called the web. From image searches that are poisoned by cybercriminals (Hecht, 2011), to high-profile websites with booby-trapped ads (Smith, 2011), one can only sense a fear of an impending cybergeddon attack on a much larger and disruptive scale (Davis, 2011).

With the recent report from McAfee described as “Operation Shady RAT,” that hackers have been lurking in the systems of major organizations for up to five years, accessing and reviewing top-secret data, is a scary thought (Lau, 2011). While this attack is sophisticated and advanced, it is one of many similar attacks taking place daily.

Additionally, older exploits are continually being updated and morphed into more serious threats. A recent example is the Ramnit worm variant that was transformed into financial-focused malware capable of draining bank accounts, which has reportedly incorporated bits and pieces of the publicly available Zeus malcode to make it more effective (Westervelt, 2011).

The question one must seriously consider is, “How can one defend themselves against such seemly impossible odds?” To this end, this research paper attempts to present a Secure Browsing Environment Virtual Machine (SBE VM) in which to provide a fighting chance against today’s sophisticated and determined hacker.

2. Current Trends

One of the best sources to depict the current trends in IT security is the annual report produced by Sophos, Security Threat Report 2011. A highlight from the report really depicts the strategy of the cybercriminal: “By preying on our curiosity,

Robert Sorensen, rssoren@gmail.com
cybercriminals are able to use psychological traps to profit from unsuspecting users of technology. Malware scams and exploits are targeting social networking websites, applications, devices, and users proliferate” (Sophos, 2011, p. 2).

The report goes on to indicate that 95,000 malware pieces were analyzed by SophosLabs every day in 2010, nearly doubling the number of malware pieces tracked in 2009 (Sophos, 2011, p. 4). This is an extraordinary rate of growth.

Symantec publishes an annual report, Symantec Internet Security Threat Report – Trends for 2010, that presents some very alarming numbers. As summarized in this report, “Polymorphism and new delivery mechanisms such as Web-attack toolkits continued to drive up the number of malware variants in common circulation. In 2010, Symantec encountered more than 286 million unique variants of malware (Fossl, 2011, p. 6). The 2010 trend showed attacks through spear phishing, focusing on compromising specific organizations or individuals through social engineering techniques. There is a growing prevalence of Web-based attacks and the increased use of attack toolkits. “The Phoenix toolkit was responsible for the largest amount of Web-based attack activity in 2010. This kit, as well as many others, also incorporates exploits for Java vulnerabilities” (Fossl, 2011, p. 12).

Another report that epitomizes the current trend is from Blue Coat, 2011 Mid-Year Security Report, and detailed in the Executive Overview, “The majority of web threats are now delivered from trusted and popular web sites that have been hacked for use by cybercrime. For this reason, reputation defenses become less effective. The once obscure link farm for search engine poisoning now resides within popular web sites. Phishing attacks overwhelmingly come from popular and trusted web sites hacked by cybercrime. Search engine Poisoning (SEP) ranks as the number one web threat delivery method at this point in the year” (Clare, 2011, p. 2). Also from their press release, “Web-based malware has become so dynamic that it is nearly impossible to protect every user from every new attack with traditional defenses.” Continuing on, the leading malware delivery network, Shnakule, “had 2,000 unique host names per day with a peak of more than 4,300 per day. It is a broad-based malware delivery network whose malicious activities include drive-by downloads, fake anti-virus and codecs, fake flash and Firefox updates, fake warez, and botnet/command and controls” (Blue Coat, 2011).

Robert Sorensen, rssoren@gmail.com
In addition, a report from McAfee Labs, *McAfee Threats Report: Second Quarter 2011*, summarizes, “Malware continued its overall growth during the quarter as did rootkit malware. Rootkits, used primarily for stealth and resilience, makes malware more effective and persistent; its popularity is rising. The amount of malware that attacks vulnerabilities in Adobe products continues to overwhelm those in Microsoft products” (Dirro, Greve, Kashyap, Marcus, Paget, Schmugar, Shah, Wosotowsky, 2011, p. 2).

A common denominator to any malware delivery system is the human element. A quote from the book, *Information Security Management Handbook, Sixth Edition*, “It is well recognized that the greatest information security danger to any organization is not a particular process, technology, or equipment, rather it is the people who work within the “system” that hide the inherent danger” (Tipon, Krause, 2007, Ch. 43). No matter how secure we make our browsing environment, it still depends heavily on the human factor. Common sense must be prevalent in browsing habits and tendencies.

3. Introduction of VM

As current research has confirmed, the need of a secure browsing environment is very evident. Oracle VM VirtualBox, originally created by software company innotek GmbH, purchased by Sun Microsystems, and now owned by Oracle, is a general-purpose virtualization product for x86 and AMD64/intel64 hardware was selected as the virtualization environment (innotek GmbH). It is also the only professional solution that is freely available as Open Source Software under the terms of the GNU General Public License version 2 (VirtualBox).

VirtualBox was chosen over other virtualization products due to its feature set, and most importantly, being Open Source. Oracle Corporation has continued to aggressively develop Virtualbox after it completed its acquisition of Sun Microsystems in 2010 (Oracle Media Relations, 2010).

VirtualBox provides a special software package, Guest Additions, which is designed to be installed inside the VM to improve performance of the guest OS and to add extra features. Guest Additions offers the following features:

- **Mouse pointer integration** which provides seamless mouse support.
- **Shared folders** provides an easy way to exchange files between the host and the

Robert Sorensen, rssoren@gmail.com
guest. VirtualBox makes this available to the guest operating system as a network share, even without networking support enabled.

- **Better video support** provides extra high and non-standard video modes as well as accelerated video performance. To further enhance video support, one can resize the virtual machine’s window.

- **Seamless windows** suppresses the display of the Desktop background of the guest, allowing to run the windows of your guest operating system seamlessly next to the windows of your host. As shown in the screenshot below, SBE VM is running within Windows 7 environment with the LXPanel displayed just above the Windows task bar.

- **Generic host/guest communication channels** enables one to control and monitor guest execution.

- **Time synchronization** ensures the guest’s system time is better synchronized with that of the host.

- **Shared clipboard** can be optionally shared with the host OS as well. (Introduction to Guest Additions, 2011, Chpt. 4).

Robert Sorensen, rssoren@gmail.com
3.1. **SBE VM Objectives**

The main objectives in researching and developing SBE VM are twofold: 1) Minimize, or ultimately, eliminate malware and/or virus infection in Windows operating systems by leveraging a Linux-based VM, and 2) Provide a bridge between the native OS and the virtual environment by the means of a shared directory. Introducing Windows users to a Linux-based browsing framework built using all Open-Source tools and custom scripts, is a critical element of this research paper.

4. **Development of SBE VM**

4.1. **Linux wattOS Distribution Base**

In conducting research for this project, many Linux distributions were considered. These included Aptosid, XPud, TinyLinux, CromeOS, Puppy Linux, Lubuntu, CrunchBang, Damn Small Linux, and SalixOS. Distrowatch.com was my main source of evaluating potential distribution where the top 100 Linux distributions are tracked and ranked (Distrowatch). Even though wattOS is ranked in the bottom third of the distributions according to Distrowatch, the description found on its web site is what set it apart from the many other distributions that were evaluated. “wattOS is a lightweight Linux operating system re-mastered from the core Ubuntu Linux build. It is a free operating system that focuses on a small footprint, low power, and a simple quick interface. Bring your old computer back to life again with a fresh install of wattOS!” (Baxter, 2011). In addition to meeting the performance objectives, the look and feel of wattOS felt right with the simple and efficient interface based on OpenBox (OpenBox) and LXDE (LXDE). When wattOS was initially installed on VirtualBox, it rocked! The only distribution found to have a faster boot time was ChromeOS, which lacked the ability to add custom security enhancements. Mainstream distributions like Ubuntu or Fedora were not even considered due to the bloated nature of them. All of the other lightweight distributions were eliminated for various aesthetic and/or performance issues.

A detailed step-by-step installation and configuration guide is included in Appendix A – SBE VM Step-by-Step Guide. It was felt that this detailed approach can

Robert Sorensen, rssoren@gmail.com
allow setup of their own SBE VM from scratch using the tools and techniques outlined in this guide. The following screenshot shows the desktop of the fully installed and configured SBE VM. Key applications have desktop shortcuts as well as panel shortcuts to facilitate ease of use and functionality of the environment.

4.2. Browser Security in Depth

Just like architecting a solution for the enterprise, one designs security in depth. This would include perimeter router with appropriate ACLs, firewalls, IDS/IPS, and anti-virus/anti-spam enterprise solution. Quoting an article concerning this, “No matter how good any single security application is, there is someone out there smarter than the people who designed it with more time on his hands than scruples who will eventually get past it. It is for this reason that common security practice suggests multiple lines of defense,

Robert Sorensen, rssoren@gmail.com
or in-depth security” (Bradley, 2009). This would allow the enterprise to attempt to protect and defend more vulnerable hosts. This is where SBE VM comes into play. It adds an additional layer on the client side, because we all know, no matter how good the enterprise defenses are, with targeted spear phishing or social engineering attacks, the host is still vulnerable.

In their book entitled, Counter Hack Reloaded, Ed Skoudis and Tom Liston points out browser vulnerabilities are discovered on a regular basis, especially (but not exclusively) in Internet Explorer. “Various types of browser holes, including buffer overflows, flaws that let an attacker escape the security restrictions on scripts or other active Web content (such as Java runtime environment), exploits that let malicious code bypass cryptographic signature checks, and problems that let malicious code execute in a different security zone than it should. All of these problem could be triggered if the victim surfs to the wrong Web site with a vulnerable browser” (Skoudis, and Liston, 2006, p. 432). The majority of these vulnerabilities exposes the Windows operating system, and thus, using SBE VM Linux-based OS, reduces the risk.

OpenDNS will be configured to provide an initial defense against phishing websites. Shared folders are established between host OS and SBE VM and all downloads are scanned for viruses using clamAV. In addition, Snort has been configured to act as a Host-based Intrusion Prevention System (HIPS). Finally, browser “add-ons” or “extensions” have been installed and configured to provide an additional front-line defense. These security features will now be discussed in more detail.

4.3. OpenDNS

OpenDNS is a free DNS server that typically outperforms local ISP DNS services due to the many millions of IP addresses of websites stored in their cache, thus taking less time to resolve a request. Another big advantage of using OpenDNS is that it blocks phishing websites from loading onto your computer. It uses data from Phishtank, a collaborative clearing house for data and information about phishing on the Internet (Phishtank). Another advantage of OpenDNS is that it addresses typos that one might make while entering a URL. For example, one might type “gogle.com.” OpenDNS will open the main “google.com” web site automatically (Agarwal, 2008).

Robert Sorensen, rssoren@gmail.com
To configure OpenDNS in SBE VM, we first need to introduce a new network manager. The default manager that is installed in wattOS is ‘wicd.’ In order to configure OpenDNS, as well as have the network settings compatible with our later configuration of Snort in-line, it necessitates the change to ‘network-manager’ that is standard with a typical Ubuntu install. The details can be found in Appendix A – SBE VM Step-by-Step Guide.

4.4. VM Shared Folder - ClamAV – goinotify Script

To meet one of the main objectives of the project, there has to be a bridge tying the native OS with the virtual environment. This bridge is provided by the VirtualBox Shared Folders feature and can be established even without any network established. Much thought was given on how best to allow downloads from SBE VM back to the native OS in a safe manner. This was accomplished using a custom script and clamAV GPL open source project owned by SourceFire (clamAV).

A script, goinotify, was developed to monitor and scan those files that are expressly downloaded. The core component of the script is the use of the event-monitoring built-in starting with the 2.6 Linux kernel. Inotifywait is part of the inotify-tools package, which efficiently waits for changes to files using Linux’s inotify interface (inotify-tools). This was found to be a very efficient manner of validating downloads before moving them to the shared folder between the native OS and SBE VM.

We first need to establish the shared folder environment. A specific directory structure is created in the home directory of the SBE VM user, sbe. Next, clamAV and inotify-tools are installed.

```
sbe@vb-sbe:~$ mkdir GuestVBShare
sbe@vb-sbe:~$ mkdir .infected
sbe@vb-sbe:~$ mkdir clamscan
sbe@vb-sbe:~$ touch clamscan/clamscan.log
sbe@vb-sbe:~$ sudo apt-get install inotify-tools clamav
[sudo] password for sbe:
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following extra packages will be installed:
  clamav-base clamav-freshclam libclamav6 libtommath0
```

Robert Sorensen, rssoren@gmail.com
Secure Browsing Environment

Robert Sorensen, rssoren@gmail.com

Suggested packages:
clamav-docs libclamunrar6
The following NEW packages will be installed:
clamav clamav-base clamav-freshclam inotify-tools libclamav6 libtommath0
0 upgraded, 6 newly installed, 0 to remove and 2 not upgraded.
Need to get 4,302 kB of archives.
After this operation, 12.1 MB of additional disk space will be used.
Do you want to continue [Y/n]? y
Setting up libclamav6 (0.97+dfsg-2ubuntu1.1) ...
Setting up clamav-base (0.97+dfsg-2ubuntu1.1) ...
Setting up clamav-freshclam (0.97+dfsg-ubuntu1.1) ...
* Starting ClamAV virus database updater freshclam [OK]
Setting up clamav (0.97+dfsg-2ubuntu1.1) ...
Setting up inotify-tools (3.13-3) ...

Now that clamAV and inotify-tools are installed and a directory structure created,
VirtualBox shared folders will now be configured. As mentioned earlier, VirtualBox
Guest Additions must be installed in order to establish this shared folder structure. With
SBE VM shutdown, shared folders are configured.

• From Oracle VM VirtualBox Manager, highlight ‘sbe’ VM and click
 ‘Settings’.

Robert Sorensen, rssoren@gmail.com
• Select ‘Shared Folders’ on left, then click on ‘Add Shared Folder’ icon.

• Select desired folder on host OS, typically, the ‘Downloads’ folder is selected but any folder can be shared. For the Folder Name, it must be ‘VBShare’ when the share is mounted at boot up.
Secure Browsing Environment

Robert Sorensen, rssoren@gmail.com

- With a shared folder created, click ‘OK’ to close settings dialogue.

In order to automatically mount the share upon boot up, the following entry must be made in /etc/rc.local, which runs at the end of all the multi-user boot levels. The mount type ‘-t vboxsf’ is enabled by Guest Additions. Once the mount command is added, reboot the VM. The ‘VBShare’ will now be available and mounted as /home/sbe/GuestVBShare.

```
sbe@vb-sbe:~$ sudo vi /etc/rc.local
[sudo] password for sbe:
#!/bin/sh -e
#
#/etc/rc.local
#
# This script is executed at the end of each multiuser runlevel.
# Make sure that the script will "exit 0" on success or any other
# value on error.
#
# In order to enable or disable this script just change the execution
# bits.
#
# By default this script does nothing.

mount -t vboxsf -o uid=1000,gid=1000 VBShare /home/sbe/GuestVBShare/
```
Secure Browsing Environment

Robert Sorensen, rssoren@gmail.com

```bash
/usr/local/bin/goinotify >/dev/null 2>&1

exit 0
```

```
sbe@vb-sbe:~$ sudo reboot

sbe@vb-sbe:~$ df -h
Filesystem            Size  Used Avail Use% Mounted on
/dev/sda1             6.0G  2.6G  3.1G  45% /
udev                  997M  4.0K  997M   1% /dev
tmpfs                 403M  760K  403M   1% /run
none                  5.0M  4.0K  5.0M   1% /run/lock
none                 1007M  4.0K 1007M   1% /run/shm
VBShare               922G  668G  255G  73% /home/sbe/GuestVBShare/
```

With the share now established, the ‘goinotify’ script will be created in `/usr/local/bin`.

```
sbe@vb-sbe:~$ sudo vi /usr/local/bin/goinotify

[Paste contents of /usr/local/bin/goinotify script]

sbe@vb-sbe:~$ sudo chmod 755 /usr/local/bin/goinotify
```

```bash
#!/bin/bash

# /usr/local/bin/goinotify

IFS='\n'
dl_dir=/home/sbe/Downloads
infect_dir=/home/sbe/.infected
share_dir=/home/sbe/GuestVBShare
log_file=/home/sbe/clamscan/clamscan.log

# Verify after copy/paste echo -e command is one line
dline () {
    echo -e
    "====================================================================="  
    tee -a $log_file
}

# Inotifywait command below is one line!!
inotifywait --monitor --exclude=".com.google.com.|.crdownload|.part" --
event moved_to,close_write --format '%:e@%f' "$dl_dir" | while read file;
do

file=`echo $file | awk -F@ ' { print $2 }'

if [ "$file" = "" ]
then

```
Robert Sorensen, rssoren@gmail.com
```
Secure Browsing Environment

Robert Sorensen, rssoren@gmail.com

```
if [-f $dl_dir/$file]
then
 file_count=`ls $dl_dir/$file | egrep -v '.com.google|.crdownload|.part' | wc -l`
 if ["$file_count" = "0"]
 then
 echo -e "Partial download..ignoring file $file...
 else
 echo -e "Starting scan at `date`..." | tee -a $log_file
 echo -e "Verifying file '$file'..."
 clamscan --move=$infect_dir --no-summary --infected --bell --
 log=$log_file $dl_dir/$file
 if [-f $dl_dir/$file]
 then
 echo -e "File '$file' was clean! Moving to $share_dir..." | tee -a $log_file
 mv $dl_dir/$file $share_dir
done else
 fi
fi
```
When a file download triggers inotifywait, the file name event is passed in the do loop of the script. Each file is then verified to ensure that it is a valid file name as both Chrome and Firefox uses temporary file names during download. Once a download is deemed complete, it is scanned by clamAV using the command that is described below:

```
clamscan --move=$infect_dir --no-summary --infected --bell --log=$log_file $dl_dir/$file
```

---

**Secure Browsing Environment**

---

**4.5. Snort In-Line/Oinkmaster/Swatch alert scripts**

The goal for SBE VM is to provide security in depth. The already obvious advantage of running in a Linux environment is only enhanced when a host-based intrusion prevention system like Snort in-line is incorporated. An excellent resource to build Snort in-line as provided by Phillip Bailey was used as a guide (Bailey, 2010).

The installation and configuration of Snort in-line will now be outlined. Some dependent packages are installed. Libdnet is downloaded from code.google.com. It provides a simplified, portable interface to several low-level networking routines, including network address manipulation, kernel arp cache, network firewalling, network interface lookup and manipulation, IP tunneling, and raw IP packet and Ethernet frame transmission (Libdnet).

---

Robert Sorensen, rssoren@gmail.com
Secure Browsing Environment

Snort Data AcQuisition (DAQ) library is downloaded and compiled. The DAQ replaces direct calls into packet capture libraries like PCAT with an abstraction layer that make it easy to add additional software or hardware packet capture implementations (DAQ, 2010).

Finally, Snort source code is downloaded and compiled to support inline mode. Specific switches are included when running the ‘./configure’ command. One additional package, libzip-dev, was required to support compression.

```
sbe@vb-sbe:~$ mkdir temp; cd temp
sbe@vb-sbe:~/temp$ sudo apt-get install flex bison checkinstall libpcap0.8-dev libnet1-dev libpcre3-dev libnetfilter-queue-dev iptables-dev
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following extra packages will be installed:
 libnet1 libnetfilter-queue1 libnfnetwork-dev libpcrecpp0 m4 pkg-config
Suggested packages:
bison-doc gettext
The following NEW packages will be installed:
 bison checkinstall flex iptables-dev libnet1-dev libnetfilter-queue-dev libnetfilter-queue1 libnfnetwork-dev libpcap0.8-dev libpcre3-dev libpcrecpp0 m4 pkg-config
0 upgraded, 14 newly installed, 0 to remove and 6 not upgraded.
Need to get 1,812 kB of archives.
After this operation, 6,722 kB of additional disk space will be used.
Do you want to continue [Y/n]? y

sbe@vb-sbe:~/temp$ wget http://libdnet.googlecode.com/files/libdnet-1.12.tgz
sbe@vb-sbe:~/temp$ tar xvfz libdnet-1.12.tgz
sbe@vb-sbe:~/temp/libdnet-1.12$/
sbe@vb-sbe:~/temp/libdnet-1.12$./configure CFLAGS="-fPIC -g -O2"
sbe@vb-sbe:~/temp/libdnet-1.12$ make
sbe@vb-sbe:~/temp/libdnet-1.12$ sudo checkinstall
[sudo] password for sbe:

checkinstall 1.6.2, Copyright 2009 Felipe Eduardo Sanchez Diaz Duran
This software is released under the GNU GPL.

The package documentation directory ./doc-pak does not exist.
Should I create a default set of package docs? [y]: ENTER

Preparing package documentation...OK
```

Robert Sorensen, rssoren@gmail.com
Secure Browsing Environment

Please write a description for the package.
End your description with an empty line or EOF.

>> ENTER

**********************************************************************************
**** Debian package creation selected ***
**********************************************************************************

This package will be built according to these values:

0 - Maintainer: [ root@vb-sbe ]
1 - Summary: [ Package created with checkinstall 1.6.2 ]
2 - Name: [ libdnet ]
3 - Version: [ 1.12 ]
4 - Release: [ 1 ]
5 - License: [ GPL ]
6 - Group: [ checkinstall ]
7 - Architecture: [ i386 ]
8 - Source location: [ libdnet-1.12 ]
9 - Alternate source location: [ ]
10 - Requires: [ ]
11 - Provides: [ libdnet ]
12 - Conflicts: [ ]
13 - Replaces: [ ]

Enter a number to change any of them or press ENTER to continue: ENTER

Installing with make install...

**********************************************************************************
Done. The new package has been installed and saved to /home/sbe/temp/libdnet-1.12/libdnet_1.12-1_i386.deb
You can remove it from your system anytime using:

dpkg -r libdnet
**********************************************************************************

sbe@vb-sbe:~/.temp/libdnet-1.12$ sudo dpkg -i libdnet_1.12-1_i386.deb
sbe@vb-sbe:~/.temp/libdnet-1.12$ sudo ln -s /usr/local/lib/libdnet.1.0.1 /usr/lib/libdnet.1
sbe@vb-sbe:~/.temp/libdnet-1.12$ cd ..
sbe@vb-sbe:~/.temp$ wget http://www.snort.org/downloads/1525
sbe@vb-sbe:~/.temp$ tar xvzf 1525
sbe@vb-sbe:~/.temp$ cd daq-0.6.2
sbe@vb-sbe:~/.temp$ ./configure

Build AFPacket DAQ module.. : yes

Robert Sorensen, rssoren@gmail.com
Secure Browsing Environment

Robert Sorensen, rssoren@gmail.com

Build Dump DAQ module...... : yes
Build IPFW DAQ module...... : yes
Build IPQ DAQ module...... : yes
Build NFQ DAQ module...... : yes
Build PCAP DAQ module...... : yes

sbe@vb-sbe:~/temp/daq-0.5$ make
sbe@vb-sbe:~/temp/daq-0.5$ sudo checkinstall
[sudo] password for sbe:

checkinstall 1.6.2, Copyright 2009 Felipe Eduardo Sanchez Diaz Duran
This software is released under the GNU GPL.

The package documentation directory ./doc-pak does not exist.
Should I create a default set of package docs? [y]: ENTER

Preparing package documentation...OK

Please write a description for the package.
End your description with an empty line or EOF.

> ENTER

*****************************************
**** Debian package creation selected ***
*****************************************

This package will be built according to these values:

0 - Maintainer: [ root@vb-sbe ]
1 - Summary: [ Package created with checkinstall 1.6.2 ]
2 - Name: [ daq ]
3 - Version: [ 0.6.2 ]
4 - Release: [ 1 ]
5 - License: [ GPL ]
6 - Group: [ checkinstall ]
7 - Architecture: [ i386 ]
8 - Source location: [ daq-0.6.2 ]
9 - Alternate source location: [ ]
10 - Requires: [ ]
11 - Provides: [ daq ]
12 - Conflicts: [ ]
13 - Replaces: [ ]

Enter a number to change any of them or press ENTER to continue: ENTER

Installing with make install...

Robert Sorensen, rssoren@gmail.com
Secure Browsing Environment

19

Robert Sorensen, rssoren@gmail.com

sbe@vb-sbe:~/temp/daq-0.6.2$ sudo dpkg -i daq_0.6.2-1_i386.deb
(Reading database ... 132264 files and directories currently installed.)
Preparing to replace daq 0.6.2-1 (using daq_0.6.2-1_i386.deb) ...
Unpacking replacement daq ...
Setting up daq (0.6.2-1) ...

sbe@vb-sbe:~/temp$ cd ..
sbe@vb-sbe:~/temp$ sudo apt-get install libzip-dev

sbe@vb-sbe:~/temp$ wget http://www.snort.org/downloads/1538
sbe@vb-sbe:~/temp$ tar xvfz 1538
sbe@vb-sbe:~/temp$ cd snort-2.9.2.2

./configure --enable-build-dynamic-examples --enable-gre --enable-reload --enable-linux-smp-stats --enable-zlib --enable-active-response --enable-react --enable-flexresp3 --enable-ipv6
[Note: Best to type in the ./configure options! Copy/paste may not work properly.]
sbe@vb-sbe:~/temp/snort-2.9.2.2$ make
sbe@vb-sbe:~/temp/snort-2.9.2.2$ sudo make install

sbe@vb-sbe:~/temp/snort-2.9.2.2$ cd ..
sbe@vb-sbe:~/temp$ sudo mv snort-2.9.2.2/ /root
sbe@vb-sbe:~/temp$ sudo bash
root@vb-sbe:~/temp# cd /root/snort-2.9.2.2/
root@vb-sbe:/root/snort-2.9.2.2# checkinstall

checkinstall 1.6.2, Copyright 2009 Felipe Eduardo Sanchez Diaz Duran
This software is released under the GNU GPL.

The package documentation directory ./doc-pak does not exist.
Should I create a default set of package docs? [y]: ENTER

Preparing package documentation...OK

Please write a description for the package.
End your description with an empty line or EOF.

>> ENTER

*******************************************************************************
**** Debian package creation selected ***
*******************************************************************************

This package will be built according to these values:

0 - Maintainer: [ root@vb-sbe ]
1 - Summary: [ Package created with checkinstall 1.6.2 ]
2 - Name: [ snort ]
3 - Version: [ 2.9.2.2 ]

Robert Sorensen, rssoren@gmail.com
Secure Browsing Environment

Robert Sorensen, rssoren@gmail.com

4 - Release: [1]
5 - License: [GPL]
6 - Group: [checkinstall]
7 - Architecture: [i386]
8 - Source location: [snort-2.9.2.2]
9 - Alternate source location: [
10 - Requires: [
11 - Provides: [snort]
12 - Conflicts: [
13 - Replaces: [

Enter a number to change any of them or press ENTER to continue: ENTER

Installing with make install...

**********************************************************************
Done. The new package has been installed and saved to
/root/snort-2.9.2.2/snort_2.9.2.2-1_i386.deb

You can remove it from your system anytime using:

dpkg -r snort
**********************************************************************

Due to the fact that the libdnet source was downloaded and compiled specifically
for Snort, we must guarantee that no Ubuntu updates for this library are applied. If
libdnet is ever updated via apt-get, it will break Snort. In addition, ‘libdbus-1-3’ will be
withheld as well to prevent a similar situation.

Robert Sorensen, rssoren@gmail.com
Once Snort is installed and verified, configuration is the next critical step. Also, oinkmaster will be installed and configured to support the ease of updating the emerging-threat rule base that is used in SBE VM.

<table>
<thead>
<tr>
<th>Line</th>
<th>Original Variable</th>
<th>Modified Variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>ipvar HOME_NET any</td>
<td>ipvar HOME_NET 10.0.2.15/32</td>
</tr>
<tr>
<td>48</td>
<td>Ipvar EXTERNAL_NET any</td>
<td>Ipvar EXTERNAL_NET !$HOME_NET</td>
</tr>
<tr>
<td>80</td>
<td>var RULE_PATH ../rules</td>
<td>var RULE_PATH rules</td>
</tr>
<tr>
<td>159-161</td>
<td># config daq: &lt;type&gt;</td>
<td>config daq: nfq</td>
</tr>
<tr>
<td></td>
<td># config daq_dir: &lt;dir&gt;</td>
<td>config daq_dir: /usr/local/lib/daq</td>
</tr>
<tr>
<td></td>
<td># config daq_mode: &lt;mode&gt;</td>
<td>config daq_mode: inline</td>
</tr>
<tr>
<td>265-269</td>
<td>preprocessor normalize_ip4</td>
<td>#preprocessor normalize_ip4</td>
</tr>
<tr>
<td></td>
<td>preprocessor normalize_tcp: ips ecn stream</td>
<td>#preprocessor normalize_tcp: ips ecn stream</td>
</tr>
<tr>
<td></td>
<td>preprocessor normalize_icmp4</td>
<td>#preprocessor normalize_icmp4</td>
</tr>
<tr>
<td></td>
<td>preprocessor normalize_ip6</td>
<td>#preprocessor normalize_ip6</td>
</tr>
<tr>
<td></td>
<td>preprocessor normalize_icmp6</td>
<td>#preprocessor normalize_icmp6</td>
</tr>
</tbody>
</table>

Robert Sorensen, rssoren@gmail.com
<table>
<thead>
<tr>
<th></th>
<th>Secure Browsing Environment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Normanize icmp6</td>
</tr>
<tr>
<td>273</td>
<td>preprocessor frag3_engine:</td>
</tr>
<tr>
<td></td>
<td>policy windows</td>
</tr>
<tr>
<td></td>
<td>detect_anomalies</td>
</tr>
<tr>
<td></td>
<td>overlap_limit 10</td>
</tr>
<tr>
<td></td>
<td>min_fragment_length 100</td>
</tr>
<tr>
<td></td>
<td>timeout 180</td>
</tr>
<tr>
<td>283</td>
<td>preprocessor stream5_tcp:</td>
</tr>
<tr>
<td></td>
<td>policy windows</td>
</tr>
<tr>
<td></td>
<td>detect_anomalies</td>
</tr>
<tr>
<td></td>
<td>require_3whs 180</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>297</td>
<td>preprocessor http_inspect:</td>
</tr>
<tr>
<td></td>
<td>global iis_unicode_map</td>
</tr>
<tr>
<td></td>
<td>unicode.map 1252</td>
</tr>
<tr>
<td></td>
<td>compress_depth 65535</td>
</tr>
<tr>
<td></td>
<td>decompress_depth 65535</td>
</tr>
<tr>
<td>506-511</td>
<td>preprocessor reputation:</td>
</tr>
<tr>
<td></td>
<td>memcap 500,</td>
</tr>
<tr>
<td></td>
<td>priority whitelist,</td>
</tr>
<tr>
<td></td>
<td>nested_ip inner,</td>
</tr>
<tr>
<td></td>
<td>whitelist $WHITE_LIST_PATH/white_list.rules,</td>
</tr>
<tr>
<td></td>
<td>blacklist $BLACK_LIST_PATH/black_list.rules</td>
</tr>
<tr>
<td>540</td>
<td>include classification.config</td>
</tr>
<tr>
<td></td>
<td>include rules/classification.config</td>
</tr>
<tr>
<td>541</td>
<td>include reference.conf</td>
</tr>
<tr>
<td></td>
<td>include rules/reference.conf</td>
</tr>
<tr>
<td>552</td>
<td>include $RULE_PATH/local.rules</td>
</tr>
<tr>
<td></td>
<td>include emerging.conf</td>
</tr>
<tr>
<td>554-607</td>
<td>include $RULE_PATH/attack-</td>
</tr>
<tr>
<td></td>
<td>responses.rules</td>
</tr>
<tr>
<td></td>
<td>…</td>
</tr>
<tr>
<td></td>
<td>include $RULE_PATH/x11.rules</td>
</tr>
</tbody>
</table>

Refer to ‘Appendix B – Configuration Files’, for full version of /etc/snort.conf.

Robert Sorensen, rssoren@gmail.com
We next need to download and create the /etc/snort/rules/emerging.conf file.

```
sbe@vb-sbe:~$ sudo bash
root@vb-sbe:~# cd /etc/snort
root@vb-sbe:/etc/snort# wget http://rules.emergingthreats.net/open/snort-2.9.0/emerging.conf
Resolving rules.emergingthreats.net... 69.195.137.28, 216.40.222.19
Connecting to rules.emergingthreats.net|69.195.137.28|:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: 3543 (3.5K) [text/plain]
Saving to: `emerging.conf'

100%[=====================================>] 3,543 --.-K/s in 0.04s
```

2011-09-13 20:26:37 (85.9 KB/s) - ’emerging.conf’ saved [3543/3543]

```
root@vb-sbe:/etc/snort# vi emerging.conf
```

Uncomment the following rules:

```plaintext
include $RULE_PATH/emerging-policy.rules
include $RULE_PATH/emerging-trojan.rules
include $RULE_PATH/emerging-games.rules
include $RULE_PATH/emerging-user_agents.rules
include $RULE_PATH/emerging-activex.rules
include $RULE_PATH/emerging-virus.rules
include $RULE_PATH/emerging-attack_response.rules
include $RULE_PATH/emerging-icmp.rules
include $RULE_PATH/emerging-icmp_info.rules
include $RULE_PATH/emerging-shellcode.rules
include $RULE_PATH/emerging-web_client.rules
include $RULE_PATH/emerging-current_events.rules
include $RULE_PATH/emerging-inappropriate.rules
include $RULE_PATH/emerging-deleted.rules
include $RULE_PATH/emerging-malware.rules
include $RULE_PATH/emerging-worm.rules
include $RULE_PATH/emerging-dos.rules
include $RULE_PATH/emerging-misc.rules
include $RULE_PATH/emerging-dns.rules
include $RULE_PATH/emerging-mobile_malware.rules
include $RULE_PATH/emerging-tftp.rules
include $RULE_PATH/emerging-botscc.rules
include $RULE_PATH/emerging-compromised.rules
include $RULE_PATH/emerging-drop.rules
include $RULE_PATH/emerging-dshield.rules
include $RULE_PATH/emerging-rbn.rules
```
Create local.rules by copy/pasting into file as shown below.

```
sbe@vb-sbe:$ sudo vi /etc/snort/rules/local.rules

[Copy/paste rules below.]

#/etc/snort/rules/local.rules
#drop icmp any any -> any any (msg:"ICMP Packet Dropped!"; sid:100001; rev:3;)
alert icmp any any -> any any (msg:"ICMP Packet Allowed"; sid:100001; rev:3;)
```

```
sbe@vb-sbe:$ sudo apt-get install oinkmaster

Reading package lists... Done
Building dependency tree
Reading state information... Done
The following NEW packages will be installed:
 oinkmaster
0 upgraded, 1 newly installed, 0 to remove and 3 not upgraded.
Need to get 0 B/93.1 kB of archives.
After this operation, 340 kB of additional disk space will be used.
Selecting previously deselected package oinkmaster.
(Reading database ... 115527 files and directories currently installed.)
Unpacking oinkmaster (from .../oinkmaster_2.0-3_all.deb) ...
Processing triggers for man-db ...
Setting up oinkmaster (2.0-3) ...
```

Oinkmaster is configured to pull and configure the Emerging Threats open community ruleset. They are considered the fastest moving and most diverse Snort rulesets and firewall rules available (Emerging Threats). Emerging Threats exists because of the contributors of intelligence and signatures by the community. Updates are provided on a daily basis. Oinkmaster runs every time the system is booted to ensure that the rules are current and up to date. A script, gooinkmaster, was written to facilitate this process and can be run at any point to update the rulesets. Another script, pop, is used to capture the process ID of the active Snort process.

Robert Sorensen, rssoren@gmail.com
Secure Browsing Environment

#!/bin/bash
#/usr/local/bin/gooinkmaster

# Update Snort rule set
echo -e "Updating Snort rule set...\n"
oinkmaster -o /etc/snort/rules/
# Get Snort PID
snort_pid=`/usr/local/bin/pop snort.conf | awk '{ print $2 }'`
# Reload updated rule set
echo -e "Bumping Snort to reload updated rule set...\n"
echo -e "kill -HUP $snort_pid...\n"
killsnort_pid

#!/bin/bash
#/usr/local/bin/pop

# Use ps aux and egrep to find pop command
ps aux | grep -i $1 | grep -v "pop|grep"

Create the scripts by copy/pasting into files as shown below.

sbe@vb-sbe:~$ sudo vi /usr/local/bin/gooinkmaster
[sudo] password for sbe:
sbe@vb-sbe:~$ sudo chmod 755 /usr/local/bin/gooinkmaster
sbe@vb-sbe:~$ sudo vi /usr/local/bin/pop
sbe@vb-sbe:~$ sudo chmod 755 /usr/local/bin/pop

One of the key features enabled in the /etc/oinkmaster.conf file is the ability to modify rules after they have been downloaded. An example of the syntax is taken from the configuration file, modifysid * "replace this"  "with this."  Two directives have been implemented in SBE VM:

- modifysid "alert"  "reject"
- modifysid "msg:"  "msg:"  "Rejected!"
- modifysid emerging-rbn.rules "(.+) \[(.+)] (.+) \$HOME_NET (.+)"  "${1} \$HOME_NET ${3} \[${2}\] ${4}"
- modifysid emerging-rbn-malvertisers.rules "(.+) tcp (.+) any \->[ $HOME_NET (.+)"  "$1\$HOME_NET\$2$3"
- modifysid emerging-rbn-malvertisers.rules "(.+) udp (.+) any \->[ $HOME_NET (.+)"  "$1\$HOME_NET\$2$3"

Robert Sorensen, rssoren@gmail.com
The first directive, changes each rule to have the action “reject” instead of just “alert”. ‘Reject – remove the packet from the wire and return an ICMP “Communication administratively prohibited” (ICMP type 3, code 13) error packet’ was chosen over ‘drop – remove the packet from the wire and generate no error packet’ to reduce retransmission time and provide the user with immediate results. An excellent comparison of reject verses drop is provided by Peter Benie and his conclusions summaries the reason why ‘reject’ was chosen, “Drop offers no effective barrier to hostile forces but can dramatically slow down applications run by legitimate users. Drop should not normally be used” (Benie).

The second directive changes the Snort alert to annotate in the alert that the packet was rejected. Swatch is configured to watch for ‘Rejected!’ and alert accordingly.

The third directive changes the emerging-rbn and emerging-rbn-malvertisers rules to switch the src/dst to trigger any connections to known Russian Business Networks.

In addition to the directive changes, two SIDs will be disabled. They are associated with the Ubuntu apt-get update/upgrade cycle and are SIDs 2013504 and 1390. Snort was preventing access to the updates due to a potential policy violation. As this is a functionality that must exist in SBE VM, steps were implemented in the /etc/oinkmaster.conf file to ensure these SIDs are disabled.

It is straightforward to disable specific SIDs in oinkmaster. Based on the guidance provided in the /etc/oinkmaster.conf file, SIDs to comment out, i.e. disable, after each update is done by placing a ‘#’ in front of the rule. Syntax: disablesid SID. The following entries were added at the end of this section in order to disable these specific rules.

- disablesid 1390 [Generic GPL SHELLCODE NOOP (False Positive)]
- disabledsid 2013504 [Allow apt-get updates for Ubuntu]

Robert Sorensen, rssoren@gmail.com
Secure Browsing Environment

Robert Sorensen, rssoren@gmail.com

```bash
sbe@vb-sbe:~$ sudo vi /etc/oinkmaster.conf
```

### Key Variables to Modify

<table>
<thead>
<tr>
<th>Line</th>
<th>Original Value</th>
<th>Modified Value</th>
</tr>
</thead>
</table>
| 46   | #Snort site in your registered user profile. | #Snort site in your registered user profile.  
     | `url = http://rules.emergingthreats.net/open/snort-2.9.0/emerging.rules.tar.gz` | |
| 235  | `skipfile snort.conf` | `skipfile snort.conf`  
     | `skipfile emerging.conf` | `skipfile emerging.conf` |
| 244  | `# skipfile threshold.conf` | `skipfile threshold.conf` |
| 383  | `# modifysid 100 "foo" | "bar"` | `# modifysid 100 "foo" | "bar"`  
     | `modifysid * "^alert" | "reject"` | `modifysid * "msg:\"" | "msg:\""Rejected! "` |
     | `modifysid emerging-rbn.rules`  
     | `"(.+) \[(.+)\] (.+) $HOME_NET (.+)" | 
     | `"${1} $HOME_NET ${3} \[${2]\] ${4}"` | `modifysid emerging-rbn-malvertisers.rules`  
     | `"(.+) tcp (.+) any \-> $HOME_NET (.+)" | 
     | `"${1} tcp $HOME_NET any \-> ${2} ${3}"` | `modifysid emerging-rbn-malvertisers.rules`  
     | `"(.+) udp (.+) any \-> $HOME_NET (.+)" | 
     | `"${1} udp $HOME_NET any \-> ${2} ${3}"` | `# disablesid 4,5,6`  
     | `# disablesid 1390,2013504` |

Refer to ‘Appendix B – Configuration Files’, for full version of /etc/oinkmaster.conf.

```bash
sbe@vb-sbe:~$ sudo gooinkmaster
Updating Snort rule set...
Loading /etc/oinkmaster.conf
Downloading file from http://rules.emergingthreats.net/open/snort-2.9.0/emerging.rules.tar.gz... done.
Archive successfully downloaded, unpacking... done.
Setting up rules structures... done.
Processing downloaded rules... disablesid 2, enablesid 0, modifysid 29022, localsid 0, total rules 15831
Setting up rules structures... done.
Comparing new files to the old ones... done.
```

Robert Sorensen, rssoren@gmail.com
Checking flowbits dependencies... problems found:

WARNING: SID 2012816 depends on flowbit "ET.http.binary" which is set in
INACTIVE SID 2000427 (SID 2012816 is broken unless you also enable SID 2000427).
WARNING: SID 2001984 depends on flowbit "is_proto_ssh" which is set in INACTIVE
SID 2001983 (SID 2001984 is broken unless you also enable SID 2001983).

[***] Results from Oinkmaster started 20110902 10:00:58 [***]

[*] Rules modifications: [*]
   None.

[*] Non-rule line modifications: [*]
   None.

[*] Added files: [*]
   None.

Bumping Snort to reload updated rule set...
kill -HUP 1422...

The way Snort and oinkmaster starts upon reboot is slightly different due to the
fact that a plumbed interface is required before Snort can be activated. With the way
Snort is configured to be in-line, it must be running in order to pass any traffic. After
much trial and error in attempting to get Snort and oinkmaster to start at boot time, it was
discovered the best way was to incorporate the startup script in /etc/network/if-
up.d/upstart configuration file.

sbe@vb-sbe:~$ sudo vi /etc/network/if-up.d/upstart [Modify file]
sbe@vb-sbe:~$ sudo vi /usr/local/bin/goSNORT [Paste in contents script below]
sbe@vb-sbe:~$ sudo vi /usr/local/bin/gosnort [Paste in contents script below]
sbe@vb-sbe:~$ sudo chmod 755 /usr/local/bin/gosnort /usr/local/bin/goSNORT
sbe@vb-sbe:~$

#!/bin/sh
#!/etc/network/if-up.d/upstart
MARK_DEV_PREFIX="/run/network/ifup."
MARK_STATIC_NETWORK_EMITTED="/run/network/static-network-up-emitted"
set -e

# lo emission handled by /etc/init/network-interface.conf
if [ "$IFACE" != lo ]; then

Robert Sorensen, rssoren@gmail.com
Secure Browsing Environment

initctl emit -n net-device-up \
"IFACE=${IFACE}" \ 
"LOGICAL=${LOGICAL}" \ 
"ADDRFAM=${ADDRFAM}" \ 
"METHOD=${METHOD}"

/usr/local/bin/gosnort >/dev/null 2>&1

# Run oinkmaster once we know that network and Snort are running
/usr/local/bin/gooinkmaster >/dev/null 2>&1
fi

#!/bin/bash
#/usr/local/bin/goSNORT
sudo /usr/local/bin/gosnort

#!/bin/bash
#/usr/local/bin/gosnort

# Check to see if snort is started
count=`/usr/local/bin/pop snort.conf | wc -l`
if [ $count -eq 0 ]
then
  iptables -A INPUT -i lo -j ACCEPT
  iptables -A INPUT -j QUEUE
  iptables -A OUTPUT -j QUEUE
  iptables -A FORWARD -j QUEUE

  # Update current IP address for HOME_NET in /etc/snort/snort.conf
  tmpip=`ifconfig | egrep -A1 "eth|wlan" | grep "inet addr" | awk '{ print $2 }' | awk -F: '{ print $2 }'| head -1`
  if [ "$tmpip" = "" ]
    then
      echo -e "Sorry, no interfaces are up...
        Please configure interface and run 'sudo gosnort'"
    else
      echo -e "Yes!  Interface is up.  Using $tmpip..."
      sed -i -e "s/ipvar HOME_NET [0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}/ipvar HOME_NET $tmpip/" /etc/snort/snort.conf

      # Snort must be running in order to pass traffic.
      snort -D -N -c /etc/snort/snort.conf -A fast
    fi
  else
    zenity --timeout=3 --info --text="Snort is already running..."
    echo -e "Snort is already running.  Exiting..."
    exit 1
fi

Robert Sorensen, rssoren@gmail.com
Secure Browsing Environment

Breaking down the iptables entries above will provide an explanation of how iptables are configured. This pushes all traffic going in, out, and through the machine into IP queue from which Snort in-line will read its packet instead of using libpcap. Andrew Lockhart in his book, “Network Security Hacks, Second Edition”, describes this concept in excellent detail (Lockhart, 2007, p. 380).

```
iptables -A INPUT -i lo -j ACCEPT
iptables -A INPUT -j QUEUE
iptables -A OUTPUT -j QUEUE
iptables –A FORWARD –j QUEUE
```

- **A**: Append one or more rules to end of the selected chain.  
  **INPUT**: For packets coming into the box itself  
  **OUTPUT**: Packets generated by local processes, i.e. Snort.  
  **FORWARD**: Packets being routed through the box.  
- **-i lo -j ACCEPT**: Pass (ACCEPT) all traffic from local interface  
- **-j**: Jump to target. This specifies the target of the rule, what to do if the packet matches it.  
- **QUEUE**: Means to pass the packet to userspace, i.e., Snort.

Breaking down the snort command and switches.

```
snort -D -N -c /etc/snort/snort.conf -A fast
```

- **D**: Run Snort in daemon mode. Alerts are sent to /var/log/snort/alert unless otherwise specified.  
- **N**: Turn off packet logging. The program still generates alerts normally.  
- **c /etc/snort/snort.conf**  
- **A fast**: Alert mode. Fast writes alerts to the default “alert” file in a single-line, syslog style alert message.

Additional memory needs to be allocated for certain memory buffers to avoid errors like “packet recv contents failure: No buffer space available.” The following settings increase the buffer that NFQ uses for its queue (Ristic, 2008).

```
sbe@vb-sbe:~$ sudo bash
[sudo] password for sbe:
root@vb-sbe:~# echo -e "net.core.rmem_default = 4194304\nnet.core.wmem_default = 4194304\nnet.ipv4.tcp_wmem = 1048576 4194304 16777216\nnet.ipv4.tcp_rmem = 1048576 4194304 16777216" >>/etc/sysctl.conf
root@vb-sbe:~# sysctl -p /etc/sysctl.conf
```

Robert Sorensen, rssoren@gmail.com
The last piece of the Snort puzzle will be to implement Swatch, which is designed to monitor system activity. There is so much flexibility associated with configuring Swatch that we can easily monitor Snort alert logs for the predefined ‘Rejected!’ message. Swatch and wmctrl, which is a command that can be used to interact with an X Window manager, are installed as a prerequisite.

```
sbe@vb-sbe:$ sudo apt-get install swatch wmctrl
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following extra packages will be installed:
 libbit-vector-perl libcarp-clan-perl libdate-calc-perl libdate-manip-perl
 libfile-tail-perl libyaml-syck-perl
The following NEW packages will be installed:
 libbit-vector-perl libcarp-clan-perl libdate-calc-perl libdate-manip-perl
 libfile-tail-perl libyaml-syck-perl swatch wmctrl
0 upgraded, 8 newly installed, 0 to remove and 6 not upgraded.
Need to get 3,302 kB of archives.
After this operation, 17.6 MB of additional disk space will be used.
Do you want to continue [Y/n]? y
Setting up libcarp-clan-perl (6.04-1) ...
Setting up libbit-vector-perl (7.1-1build1) ...
Setting up libdate-calc-perl (6.0-2build1) ...
Setting up libyaml-syck-perl (1.17-1build1) ...
Setting up libdate-manip-perl (6.24-1) ...
Setting up libfile-tail-perl (0.99.3-4) ...
Setting up swatch (3.2.3-1) ...
Setting up wmctrl (1.07-6) ...
sbe@vb-sbe:$ sudo apt-get install roxterm
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following NEW packages will be installed:
 roxterm
0 upgraded, 1 newly installed, 0 to remove and 6 not upgraded.
Need to get 0 B/210 kB of archives.
After this operation, 975 kB of additional disk space will be used.
Setting up roxterm (1.22.2-1) ...
```

Robert Sorensen, rssoren@gmail.com
The ‘/etc/swatchrc’ configuration file contains a pattern to watch for and an action to perform when the pattern is found. Much effort went into developing the right pattern and syntax to fire off a zenity alert pop-up message.

```
#/etc/swatchrc
#Snort Alerts
watchfor /Rejected!/
echo=red
exec echo "$_ | /usr/bin/sed 's/(\(/\\(\)/ | /usr/bin/sed 's/)/\\)/'" | /usr/bin/zenity --warning --text "$_"

#ClamAV Virus Alerts
watchfor /FOUND/
echo=red
exec echo "$_ | /usr/bin/sed 's/(\(/\\(\)/ | /usr/bin/sed 's/)/\\)/'" | /usr/bin/zenity --warning --text "$_"
```

A script is set to activate the real-time alerting of Snort.

```
#!/bin/bash
#/usr/local/bin/goswatch
count=0
roxsession=0 #Default=0
#0=kill roxterm sessions (Alerts will display in current Workspace).
#1=roxterm sessions opened in Workspace 2 (Alerts always displayed in Workspace 2).

#Verify that inotifywait is started
icount=`/usr/local/bin/pop inotifywait | wc -l`
if [$icount -eq 0]
then
 /usr/local/bin/goinotify >/dev/null 2>&1
else
echo -e "inotifywait watch already running...\n"
fi
count=`/usr/local/bin/pop swatch_script | wc -l`
if [$count -eq 0]
```

Robert Sorensen, rssoren@gmail.com
Create the scripts by copy/pasting into files as shown below. Verify that the longer lines in the scripts not broken up into separate lines when performing the copy/paste function. Also, create Desktop shortcuts to launch ‘goSWATCH, and ‘GOsnort’.

```
sbe@vb-sbe:~$ sudo vi /etc/swatchrc
sbe@vb-sbe:~$ sudo vi /usr/local/bin/goswatch
sbe@vb-sbe:~$ sudo chmod 755 /usr/local/bin/goswatch
sbe@vb-sbe:~$ vi Desktop/goswatch
sbe@vb-sbe:~$ vi Desktop/gosnort
```

```
#goswatch Desktop Entry
[Desktop Entry]
Encoding=UTF-8
Name=goswatch
Exec=goswatch
Icon=/home/sbe/Pictures/images/snort_swatch.png
```

Robert Sorensen, rssoren@gmail.com
Since ‘GOsnort’ requires sudo privilege, we’ll add the following line to /etc/sudoers. This allows this script to run in privileged mode without having to enter the sudo password every time. Notice, it is limited to the two scripts associated with running Snort.

```
sbe@ubuntu:~/Desktop$ sudo visudo
%sudo ALL=NOPASSWD: /usr/local/bin/goSNORT, /usr/local/bin/gosnort
```

Robert Sorensen, rssoren@gmail.com
When the ‘goswatch’ script runs from the desktop (double-click the Snort icon), it launches two ROXTerm windows in Workspace 2 (one monitoring Clamscan virus alerts; other monitoring Snort alerts), switches back to Workspace 1, and presents the informational pop-up dialogue. It then monitors /home/sbe/clamscan/clamscan.log for any infected files and /var/log/snort/alert logs for any traffic that was rejected by Snort.
Secure Browsing Environment

Robert Sorensen, rssoren@gmail.com

Going to a known Russian Business Network IP, 184[dot]168[dot]184[dot]1, Snort instantly blocks the traffic and generates an alert. As this example demonstrated, Swatch displayed the alert in red text and generated the ‘zenity’ warning pop-up. Clicking ‘OK’, will close the warning dialogue. The script will continually monitor for alerts. To close Swatch, just hit ‘CTRL-C’ within the terminal windows.
To display the alerts within the current Workspace, edit the /usr/local/bin/goswatch script and change the variable ‘roxsession=0’ as detailed in the script comments. This is the default setting.

4.6. Browser Security

Firefox is the web browser of choice when it comes to Linux distributions. Google Chrome is gaining more and more of the market share for Linux as well as Windows. For this reason, both Firefox and Google Chrome are part of SBE VM. The current web browser market share shows Internet Explorer garnering 36.3%, with Firefox second at 28.2%, and Chrome a solid third with 18.7%. Firefox and Chrome together make up almost half of the current web browser market share (Web Browser Market Share, 2011).

One of Firefox’s main attractions is the abundance of available add-ons. Exploring the category, ‘Privacy & Security’ turned up a staggering 584 add-ons (Mozilla Security Add-Ons). One could become completely overwhelmed trying to determine what add-ons are truly beneficial for enhancing security. Knowing that the expertise of many is far superior to the expertise of one, input was solicited from the SANS Advisory Board Open.

Robert Sorensen, rssoren@gmail.com
The following add-ons were deemed to provide the best security while not requiring a technical expertise. Or as Lance Spitzner asked in the discussion, “Which addons/extensions would you recommend for the Ordinary Computer User (OCU), people with absolutely no technical skills (Spitzner, 2011)? The concept is to provide a level of protection without overwhelming a regular user. Based on the feedback from this collective group, in addition to my own research and experience, the following Firefox add-ons were included in SBE VM as outlined in Table below:

<table>
<thead>
<tr>
<th>Firefox Add-ons</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Add-on</strong></td>
</tr>
<tr>
<td>Adblock Plus</td>
</tr>
<tr>
<td>BetterPrivacy</td>
</tr>
<tr>
<td>Ghostery</td>
</tr>
<tr>
<td>HTTPS Everywhere</td>
</tr>
<tr>
<td>HTTPS Finder</td>
</tr>
<tr>
<td>Locationbar</td>
</tr>
</tbody>
</table>

Robert Sorensen, rssoren@gmail.com
Secure Browsing Environment

Robert Sorensen, rssoren@gmail.com

<table>
<thead>
<tr>
<th>Add-on</th>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ShareMeNot</td>
<td>1.11</td>
<td>Designed to prevent third-party buttons (such as the Facebook “Like” button or the Tweeter “tweet” button) embedded by sites across the Internet from tracking you until you actually interact with them (ShareMeNot)</td>
</tr>
<tr>
<td>WOT (Web of Trust)</td>
<td>20120302</td>
<td>A leading website reputation rating tool. The safe surfing tool uses an intuitive traffic-light style rating system to help determine which websites are trusted when they are searched. WOT ratings are powered by a global community of millions of trustworthy users, who have rated millions of websites based on their experiences (WOT).</td>
</tr>
<tr>
<td>Speed Dial</td>
<td>0.9.6.6</td>
<td>Direct access to your most visited websites (Speed Dial).</td>
</tr>
</tbody>
</table>

Some of the above add-ons require some additional configuration in order to get the most desired benefit. It also shows the settings incorporated in SBE VM. Detailed screenshots and configuration settings are listed in Appendix C – Browser Add-on/Extensions Guide.

Google Chrome is a web browser developed by Google and released on September 2, 2008. Google released the Chrome source code as an open source project called ‘Chromium’ (Paul, 2008). Chrome was built from the ground up with security in mind. It has built-in features to protect one from malicious websites using technology such as Safe Browsing, sandboxing, and auto-updates to protect against phishing and malware attacks (Google Chrome and Browser Security).

Again, Chrome has flourished with the many extensions available. Pruning through the list yielded the following extensions that were installed in SBE VM.

<table>
<thead>
<tr>
<th>Google Chrome Extensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add-on</td>
</tr>
<tr>
<td>Adblock Plus for Google Chrome (Beta)</td>
</tr>
</tbody>
</table>
5. Validation Testing of SBE VM

How do we know if the security concepts built into SBE VM are effective? The best method will be to test the different levels of protection that have been incorporated in the VM. The first test will be validating the effectiveness of the shared folder between the host OS and the guest VM by downloading a known infected file and seeing if clamAV will quarantine the file. A known good file will also be downloaded to show how it gets shared back to the host OS.

Another interesting test will be doing some basic web browsing to a known news website, www.msnbc.com. Will there be aspects of a typical web site that might prove to be a means of possible infections? Our test will attempt to prove this.

Finally, an active site will be visited that is known to infect a Windows system to validate the effectiveness of the Linux-based browsing environment.

Robert Sorensen, rssoren@gmail.com
5.1. Shared Folder/clamAV Test

To test downloads from the Internet from SBE VM to our host OS, the eicar test virus will be downloaded. The “EICAR Standard Anti-Virus Test File” is a legitimate DOS program used by all vendors to test their products ability to detect a known virus signature. Four different versions of the test file will be downloaded. The first, eicar.com, contains the ASCII string, “X5O!P%@AP[4\PZX54(P^)7CC)7}$EICAR-STANDARD-ANTIVIRUS-TEST-FILE!$H+H*” which makes up the test file. The second file, eicar.com.txt, is a copy of this file with a different name. The third version contains the test file inside a zip archive. A good anti-virus scanner will spot a ‘virus’ inside an archive file. The last version is a zip archive containing the third file. This file can be used to see whether the virus scanner checks archives more than only one level deep (Eicar).


The log file written out by the ‘goinotify’ script will be tailed as these four test files are downloaded. Then a legitimate download of Adobe Reader will be downloaded. Finally, two virus-laden files will be downloaded from VX Heavens website (VX Heavens).

Robert Sorensen, rssoren@gmail.com
Robert Sorensen, rssoren@gmail.com
Our test provided the exact results one would expect. Infected files were identified and moved to the quarantine folder, ‘/home/sbe/.infected’, while the clean download was moved to the shared folder, ‘/home/sbe/GuestVBShare’ that is visible by the host OS.

5.2. Snort in-line/Swatch Alert Test

Snort in-line mode using the latest Emerging Threat ruleset provides an immediate front line defense against known malware and other threat vectors. With the associated Swatch alert script in place, one will have immediate awareness of any threats that were blocked.

An excellent example proving the unseen potential threats that can and should be blocked was from the www cnbc com web site (cnbc.com). Immediately eight Swatch alerts popped up. A known Russian Business Network Malvertiser IP address was blocked in addition to insecure executable code was detected and blocked. As seen by the screenshot of the web page, no significant content was blocked except for the potentially malicious content.
One can track the effectiveness of Snort in-line by watching the Swatch alerts as web sites are accessed. Is it not comforting to know that this functionality is built into SBE VM?

5.3. wattOSR5 Linux-based OS Environment

My organization is running FireEye Malware Analysis appliance that is very effective at detecting malware callbacks that are a 100% indication that the host was infected (FireEye). FireEye provides a pre-configured sandbox or live-mode analysis for unknown code and suspicious Web objects as well as identifies outbound malware transmissions across multiple protocols.

Another case study that demonstrates the effectiveness of SBE VM at preventing infections occurred on July 19, 2011. FireEye picked up a malware callback from a Windows host that downloaded the Backdoor.Cycbot (Backdoor.Cycbot). The URL that contained the infected java code was one that did not require the user to even click on a link but just by going to the site, triggered the infection. The URL being 188[dot]65[dot]208[dot]132[dot]/cgi-bin/counter.

Robert Sorensen, rssoren@gmail.com
A malware test environment (Windows XP VM) was used to browse to the infected site, and to make it appear the website was down, the script redirected the browser to the default google.com search page. Shortly after, the system was infected and malware downloaded and ran.
The exact same URL was immediately accessed from SBE VM. Nothing other than the redirect to google.com occurred. Due to the nature of this environment being immune to Windows-based vulnerabilities, it was not infected.

5.4. Browser Security Tests

We need to next look at how the browser “add-ons” or “extensions” are helping to secure our privacy and browsing sessions. Not every one will be covered in our tests, but rest assured, they will play their role in securing our web browsing.

Locationbar in Firefox highlights the base domain of the website visited. The current version of Chrome has this capability built in the browser. It places the emphasis on the domain to reduce spoofing risk.

Robert Sorensen, rssoren@gmail.com
In the example of opening the denverpost.com page, Ghostery, supported on both Firefox and Chrome browsers, helped protect privacy by blocking 13 different trackers, beacons such as Facebook Social Plugins, Adlexus, DoubleClick, Twitter Button, etc.

![Better Privacy](image)

The Firefox “add-on” BetterPrivacy checks every time the browser is closed for LSO cookies and removes them if found. Check the ‘Don’t ask again, on exit always delete LSO cookies automatically’ box, then ‘OK’.

![WARNING](image)

The Web of Trust (WOT) “add-on/extension” for Firefox and Chrome again warned when browsing to a site that has a poor reputation based on the global community of millions of trustworthy users who have rated their browsing experience. This plugin prevented us from exposing our browser to a potentially risky website.

![WOT Rating](image)

All of the fore mentioned browser “add-ons/extensions” add another layer of security and enhances the SBE VM.

Robert Sorensen, rssoren@gmail.com
6. Conclusions

Exploring many aspects of providing a safe browsing environment, this paper provided a means whereby Windows users can leverage a virtual Linux-based operating system that has incorporated enhanced security features. A step-by-step guide provides an eager learner the ability to create and experience the benefits of this approach.

This has been an incredible learning experience and with this, the community can benefit as well from this research. Many layers of security have been built into the SBE VM to include anti-virus scanning of downloaded files, host-based intrusion prevention system build around Snort. Also, browser “add-ons/extensions” have been installed to further layer and protect from the pitfalls that lurk on the Internet.

The last piece of the puzzle, of course, is the human element. Awareness of browsing tendencies and habits, and avoiding the potentially dangerous social engineering traps, one can truly dive head first into this wonderful innovation called the “World Wide Web!”

Robert Sorensen, rssoren@gmail.com
7. References


Robert Sorensen, rssoren@gmail.com
Ghostery Chrome. (n.d.) Website retrieved August 10, 2011, from https://chrome.google.com/webstore/detail/mlomiejdfkolichcfjejclcbmpeanii

Robert Sorensen, rssoren@gmail.com
Secure Browsing Environment

Google Safe Browsing. (n.d.) Retrieved August 10, 2011, from Chrome Web Store:  
https://chrome.google.com/webstore/detail/kcghpcmaemminjmoifneclajoomafben


HTTPS Finder. (n.d.) Firefox add-on that automatically detect and enforces valid HTTPS connections. Retrieved August 2, 2011, from  
https://code.google.com/p/https-finder

Innotek GmbH. (n.d.) Retrieved July 26, 2011, from VirtualBox website:  
http://virtualbox.org/wiki/innotek

https://github.com/rvoicilas/inotify-tools/wiki/#wiki-getting

http://www.virtualbox.org/manual/ch04.html#idp8356864

KB SSL Enforcer. (n.d.) Retrieved August 10, 2011, from Chrome Web Store:  
https://chrome.google.com/webstore/detail/flcpelgeagfhfoegekianofphddckof

KB SSL Enforcer Browser Button. (n.d.) Retrieved August 10, 2011, from Chrome Web Store:  
https://chrome.google.com/webstore/detail/offhddbjgcdlkhooolpooeapdninhfp


Robert Sorensen, rssoren@gmail.com
Secure Browsing Environment

Robert Sorensen, rssoren@gmail.com

Mozilla Security Add-ons (n.d.) Retrieved August 1, 2011 from Mozilla website:
Acquisition of Sun. Retrieved July 26, 2011, from Oracle website:
to-the-socially-networked-world-now-what
source/news/2008/09/google-unveils-chrome-source-code-and-linux-port.ars
message]. Retrieved from http://www.inliniac.net/blog/2008/01/23/improving-
snort_inlines-nfq-performance.html
ShareMeNot. (n.d.) Protecting against tracking from third-party social media buttons.
NJ. Prentice Hall.
Smith, G. (2011, March 3). Thousands of home computers infiltrated after hackers infect
high-profile websites with booby-trapped ads. Retrieved from
http://www.dailymail.co.uk/sciencetech/article-1362205/Thousands-home-
computers-infiltrated-hackers-infect-high-profile-websites-booby-trapped-
ads.html
http://www.sophos.com/medialibrary/Gated Assets/white
papers/sophossecuritythreatreport2011wpna.pdf
Secure Browsing Environment

Speed Dial. (n.d.) Retrieved April 9, 2012, from http://speeddial.uworks.net/speed_dial-0.9.6.6-fx.xpi

Speed Dial Chrome. (n.d.) Retrieved April 9, 2012, from Chrome Web store: https://chrome.google.com/webstore/detail/dgdioedihjnclajcpgb0bixdppbbikmi

Spitzner, L. (2011, July 28) Security Addons/Extensions for OCU. Retrieved from advisory-board-open@lists.sans.org


VirtualBox. (n.d.) VirtualBox – A Powerful x86 and AMD64/Intel64 virtualization product for enterprise as well as home use. Website retrieved December 20, 2010, from http://Virtualbox.org


Robert Sorensen, rssoren@gmail.com
Appendix A – SBE VM Step-by-Step Guide

SBE VirtualBox VM – Create

Appendix A will detail the step-by-step installation and configuration of SBE VM. There are sections for the creation of the VM using VirtualBox, VirtualBox settings, wattOSR5 installation, wattOSR5 configuration and customization, and finally, maintenance of the wattOSR5-based SBE VM. This guide assumes VirtualBox is currently installed and ready to create new VM. Let’s get started!

• From Oracle VM VirtualBox Manager, click ‘New’

• Welcome to the New Virtual Machine Wizard! Click ‘Next’

Robert Sorensen, rssoren@gmail.com
• Create New Virtual Machine - VM Name and OS Type. Enter 'sbe' for Name, select 'Linux/Ubuntu' for Operating System/Version. Click 'Next'.

• Create New Virtual Machine – Memory. Select '512 MB' for Base Memory Size. If your host system has additional memory, recommend ‘1024 MB’. Click 'Next'.

Robert Sorensen, rssoren@gmail.com
• Create New Virtual Machine – Virtual Hard Disk. Select 'Boot Hard Disk – Create new hard disk'. Click 'Next'.

• Create New Virtual Disk – Welcome to the virtual disk creation wizard. Select 'VDI (VirtualBox Disk Image)'. Click 'Next'.

Robert Sorensen, rssoren@gmail.com
- Create New Virtual Disk – Virtual disk storage details. Select 'Dynamically allocated'. Click 'Next'.

- Create New Virtual Disk – Virtual disk file location and size. Select 'sbe' for location and '8.00 GB' for size. Click 'Next'.

Robert Sorensen, rssoren@gmail.com
Secure Browsing Environment

Robert Sorensen, rssoren@gmail.com

• Create New Virtual Disk – Summary. Review new virtual disk parameters. Click 'Create'.

• Create New Virtual Machine – Summary. Review new virtual machine parameters. Click 'Create'.
VirtualBox SBE VM - Settings

- Highlight 'sbe', click 'Settings'.

- Under 'General' tab, accept the defaults for Basic/Advanced. Add an appropriate description under 'Description' tab. Click 'System' tab on left.
• Under 'System – Motherboard' tab, uncheck 'Floppy' from Boot Order. Set Base Memory to '512 MB' as a minimum. Note: If your system has at least 4 GB of memory, change this to 1024 MB. Click 'System - Processor' tab.

• Under 'System – Processor' tab, select number of processor(s). Again, if your system supports it, select an appropriate number of processors. Click 'Display' tab on left.

Robert Sorensen, rssoren@gmail.com
Secure Browsing Environment

Robert Sorensen, rssoren@gmail.com

- Under 'Display – Video' tab, select '64 MB' for Video Memory. Check 'Enable 3D Acceleration' under Extended Features. Click 'Storage' tab on left.
Secure Browsing Environment

Robert Sorensen, rssoren@gmail.com

- Under 'Storage', click drop-down CD icon next to CD/DVD Drive, and choose 'Choose a Virtual CD/DVD Disk file' and select 'wattOSR5.iso' that has been downloaded and saved (http://www.planetwatt.com/wattiso/wattOSR5.iso). This will complete the configuration of the VM at this stage. Click 'OK'.

© 2012 The SANS Institute  Author retains full rights.
wattOSR5 - Install

- Select 'sbe' VM, then click 'Start'.

Highlight 'live – boot the Live System', then hit 'Enter'.

Robert Sorensen, rssoren@gmail.com
Double-click 'Install wattOSR5'

- Install – Welcome. Select 'English'. Click 'Forward'.

Robert Sorensen, rssoren@gmail.com
• Check 'Download updates while installing' and 'Install this third-party software'. Click 'Continue'.

• Install – Allocate drive space. Select 'Erase disk and install wattOS5'. Click 'Continue'.

Robert Sorensen, rssoren@gmail.com
• Install – Erase disk and Install wattOS5. Select 'SCSI3 (0,0,0) (sda) – 8.6 ATA VBOX HARD DRIVE'. Click 'Install Now'.

• Install – Where are you? Select 'Denver' or appropriate time zone. Click 'Continue'.

Robert Sorensen, rssoren@gmail.com
• Install – Keyboard layout. Select 'English (US)/English(US)' or appropriate keyboard layout. Click 'Continue'.

Robert Sorensen, rssoren@gmail.com
• Install – Who are you?
  
  o Enter Your name: 'Secure Browsing Environment User'
  o Your computer's name: 'vb-sbe'
  o Pick a username: 'sbe'
  o Choose a password: 'enter passwd'; Confirm your password: 'reenter passwd'.
  o Check 'Log in automatically'. Click 'Continue'.

• Installation Complete. Click 'Restart Now'.

• Release 'wattOSR5.iso' from CD/DVD Devices by selecting 'Remove disk from virtual drive'. Hit 'Enter' to continue reboot.
wattOS5 - Configure

Now that wattOS is installed, we now need to begin the real work of configuring the VM to provide a secure browsing environment. This will include installing the Guest Additions from Virtualbox, installing other key applications, and configuration of existing apps.

VirtualBox Guest Additions

- Select 'Devices → Install Guest Additions' from VirtualBox pull down menu.

Robert Sorensen, rssoren@gmail.com
• Click 'Cancel' on Removable medium is inserted window. We will be installing this from a terminal window.

We must first install a compiler in order to build the kernel modules that are part of the Guest Additions. Below are the commands that were run in osorder to install Guest Additions. Open a LXterminal window and follow the steps below:

```bash
sbe@vb-sbe:~$ df -h
Filesystem Size Used Avail Use% Mounted on
/dev/sda1 6.9G 2.2G 4.4G 33% /
udev 491M 4.0K 491M 1% /dev
tmpfs 201M 764K 200M 1% /run
none 5.0M 5.0M 0% /run/lock
none 502M 4.0K 501M 1% /run/shm
/dev/sr0 49M 49M 0% /media/VBOXADDITIONS_4.1.10_76795
sbe@vb-sbe:~$ cd /media/VBOXADDITIONS_4.1.10_76795/
sbe@vb-sbe:/media/VBOXADDITIONS_4.1.10_76795$ sudo apt-get install build-essential
[sudo] password for sbe:
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following extra packages will be installed:
 binutils dpkg-dev fakeroot g++ g++-4.5 gcc gcc-4.5 libalgorithm-diff-perl libalgorithm-diff-xs-perl
 libalgorithm-merge-perl libc-dev-bin libc6-dev libdpkg-perl libstdc++-4.5-dev linux-libc-dev make patch
Suggested packages:
 binutils-doc debian-keyring g++-multilib g++-4.5-multilib gcc-4.5-doc libstdc++-6-4.5-dev dbg gcc-multilib autoconf
 automake1.9 libtool flex bison gdb gcc-4.5-multilib libmudflap0-4.5-dev gcc-4.5-locales libgcc1-db libgomp1-db
 libmudflap0-db glibc-doc libstdc++-6-4.5-doc make-doc diffutils-doc
The following NEW packages will be installed:
 binutils build-essential dpkg-dev fakeroot g++ g++-4.5 gcc gcc-4.5 libalgorithm-diff-perl libalgorithm-diff-xs-perl
 libalgorithm-merge-perl libc-dev-bin libc6-dev libdpkg-perl libstdc++-6-4.5-dev linux-libc-dev make patch
0 upgraded, 18 newly installed, 0 to remove and 1 not upgraded.
Need to get 22.9 MB of archives.
After this operation, 72.7 MB of additional disk space will be used.
Do you want to continue [Y/n]? y
Setting up build-essential (11.5ubuntu1) ...
Processing triggers for libc-bin ...
ldconfig deferred processing now taking place
```

Robert Sorensen, rssoren@gmail.com
Secure Browsing Environment

Robert Sorensen, rssoren@gmail.com

sbe@vb-sbe:

sbe@vb-sbe:$ sudo ./VBoxLinuxAdditions.run
Verifying archive integrity... All good.
Uncompressing VirtualBox 4.1.10 Guest Additions for Linux....
VirtualBox Guest Additions installer
Removing existing VirtualBox DKMS kernel modules ...done.
Removing existing VirtualBox non-DKMS kernel modules ...done.
Building the VirtualBox Guest Additions kernel modules
The headers for the current running kernel were not found. If the following
module compilation fails then this could be the reason.

Building the main Guest Additions module ...done.
Building the shared folder support module ...done.
Building the OpenGL support module ...done.
Doing non-kernel setup of the Guest Additions ...done.
Starting the VirtualBox Guest Additions ...done.
Installing the Window System drivers
Installing X.Org Server 1.10 modules ...done.
Setting up the Window System to use the Guest Additions ...done.
You may need to restart the hal service and the Window System (or just restart
the guest system) to enable the Guest Additions.

Installing graphics libraries and desktop services components ...done.
sbe@vb-sbe:$ sudo reboot

Package Updates

By default wattOSR5 is installed with the Midori browser. SBE is configured and
designed to support Firefox and Google Chrome browsers, and as such, Midori will be
removed along with the default email program that wattOS installed. Also, java browser
plugin support will be installed as added features.

sbe@vb-sbe:~$ sudo apt-get install firefox
The following NEW packages will be installed:
apturl apturl-common firefox firefox-globalmenu ubufox xul-ext-ubufox
0 upgraded, 6 newly installed, 0 to remove and 43 not upgraded.
Need to get 19.1 MB of archives.
After this operation, 40.1 MB of additional disk space will be used.
you want to continue [Y/n]? y

Setting up firefox (11.0+build1-0ubuntu0.11.10.1) ...
sbe@vb-sbe:~$ sudo apt-get install icedtea-6-jre-cacao icedtea6-plugin
[sudo] password for sbe:
Reading package lists... Done
Building dependency tree

Robert Sorensen, rssoren@gmail.com
Secure Browsing Environment

Robert Sorensen, rssoren@gmail.com
Secure Browsing Environment

Close Firefox and associated download/install windows.

Add Firefox shortcut to desktop by right-clicking on ‘Internet -> Firefox Web Browser’ then click ‘Add to desktop’.

We will now install Google-Chrome.

Robert Sorensen, rssoren@gmail.com
Secure Browsing Environment

Robert Sorensen, rssoren@gmail.com


2. Select ’32 bit .deb (For Debian/Ubuntu)’. Click ‘Accept and Install’.
Secure Browsing Environment

Robert Sorensen, rssoren@gmail.com

• Click ‘Save File’, then ‘OK’.

• Open up LXTerminal window proceed to install google-chrome.

```bash
sbe@vb-sbe:~$ cd Downloads/
sbe@vb-sbe:~/Downloads$ sudo dpkg -i google-chrome-stable_current_i386.deb
[sudo] password for sbe:
Selecting previously deselected package google-chrome-stable.
(Reading database ... 130495 files and directories currently installed.)
Unpacking google-chrome-stable (from google-chrome-stable_current_i386.deb) ...
Setting up google-chrome-stable (18.0.1025.142-r129054) ...
update-alternatives: using /usr/bin/google-chrome to provide /usr/bin/x-www-browser (x-www-browser) in auto mode.
update-alternatives: using /usr/bin/google-chrome to provide /usr/bin/gnome-www-browser (gnome-www-browser) in auto mode.
Processing triggers for man-db ...
sbe@vb-sbe:~/Downloads$
```
Secure Browsing Environment

Robert Sorensen, rssoren@gmail.com

- Add Google Chrome shortcut to desktop by right-clicking on ‘Internet -> Google Chrome’ then click ‘Add to desktop’.

- Add LXTerminal shortcut to desktop by right-clicking on ‘Accessories -> LXTerminal’ then click ‘Add to desktop’.

Next, clean up unused icons from Desktop.
• Highlight ‘Audacious/Midori’ Icons on Desktop, right-click and select ‘Delete’.

• Click ‘Yes’ to confirm moving selected Icons to trash can.

Align icons on desktop by highlighting all icons, **Right-click - Snap to Grid**

Robert Sorensen, rssoren@gmail.com
Secure Browsing Environment

Robert Sorensen, rssoren@gmail.com

We will add shortcuts to the panel bar for quickly launching browsers and other applications.

Secure Browsing Environment

Robert Sorensen, rssoren@gmail.com


• Shortcuts for key apps are now added to LXPanel for quick access.

Date/Time Configuration

An update to the date and time display in the lower right side of the LXPanel will be modified. This will allow for the display of the date as well as the current time.
Secure Browsing Environment

Robert Sorensen, rssoren@gmail.com

- Right-click on time in lower right hand corner of LXPanel. Select “Digital Clock” Settings.

- Update Clock Format with ‘%a %b %d, %I:%M %p’. Click ‘Bold font’ check box, then click ‘Close’.

- The result is a nicely formatted date and time display.
LXTerminal Configuration

A few tweaks are made to LXTerminal to fit into the new SBE theme. Open LXTerminal and select 'Edit → Preferences'.

- LXTerminal – Style. Change Terminal Font to 'Monospace – 13'. Click 'Display'.

- LXTerminal – Background 'Pick a Color'. Change the Color name: to '#498F6A'. Click 'Ok'. Next Select 'Foreground'.

Robert Sorensen, rssoren@gmail.com
Secure Browsing Environment

LXTerminal – Foreground 'Pick a Color'. Change the Color name: to 
'\#21202F'. Click 'OK' to close color selection, then 'OK' to exit preferences.

Network Configuration

Configure an IPv4 static network address and OpenDNS servers via the ‘nm-
applet’ that is shown in the LXPanel near far right next to the time applet.

Click on ‘nm-applet’ icon in LXPanel, then select ‘Edit Connections’.

Robert Sorensen, rssoren@gmail.com
Secure Browsing Environment

Robert Sorensen, rssoren@gmail.com

- Under ‘Wired’ Network Connections, Click ‘Add’, Enter Connection Name: ‘Wired-SBE’.

- Select ‘IPv4 Settings’ tab. For Method type, Select ‘Automatic (DHCP) addresses only’. Enter DNS Servers: 208.67.220.220, 208.67.222.222. Check ‘Available to all users’ box, then click ‘Save’.
Secure Browsing Environment

Robert Sorensen, rssoren@gmail.com

- Enter `sudo` Password, click `Authenticate`, then ‘Close’. Finally, click on network icon and select ‘Wired-SBE’. You might need to disconnect in order to activate new setting.

Panel Configuration

A few adjustments to the panel configuration will now be made. Increase workspaces from default of two to four under the Desktop “Pager” Settings. In order to adjust the settings, need to run, ‘obconf,’ which is a configuration utility for Openbox.
Secure Browsing Environment

- Select ‘Desktops’ tab on left. Change number of desktops to ‘4’. Update Desktop names to ‘Workspace 1, Workspace 2, etc.’. Click ‘Close’.

- Right-click on panel, select ‘Panel Preferences’. Click on ‘Panel Applets’, highlight ‘Desktop Pager’ and move down to right before ‘Volume Control’. This will place it to the right side of the panel.

Customization

Customized background, login/logout banner will now be applied to SBE VM. One must first download the customized images from picasaweb.google.com. Download and save images to the ‘/home/sbe/Pictures/images’ directory.

Robert Sorensen, rssoren@gmail.com
Secure Browsing Environment

- **greenbackground_SBE.png:**
  [https://picasaweb.google.com/rssoren/SBEVMCustomizedImages#5726621486876619442](https://picasaweb.google.com/rssoren/SBEVMCustomizedImages#5726621486876619442)

- **greenlogin_SBE.png:**
  [https://picasaweb.google.com/rssoren/SBEVMCustomizedImages#5726615865482355106](https://picasaweb.google.com/rssoren/SBEVMCustomizedImages#5726615865482355106)

- **logout-banner_sbe.png:**
  [https://picasaweb.google.com/rssoren/SBEVMCustomizedImages#5641147408434187506](https://picasaweb.google.com/rssoren/SBEVMCustomizedImages#5641147408434187506)

- **SBEbuttonGo.png:**
  [https://picasaweb.google.com/rssoren/SBEVMCustomizedImages#5641147425337741218](https://picasaweb.google.com/rssoren/SBEVMCustomizedImages#5641147425337741218)

- **snort_swatch.png:**
  [https://picasaweb.google.com/rssoren/SBEVMCustomizedImages#5652430566324630370](https://picasaweb.google.com/rssoren/SBEVMCustomizedImages#5652430566324630370)

- **gosnort.png:**
  [https://picasaweb.google.com/rssoren/SBEVMCustomizedImages#5737407492664935218](https://picasaweb.google.com/rssoren/SBEVMCustomizedImages#5737407492664935218)

Robert Sorensen, rssoren@gmail.com
• Update the Start menu button by right-clicking the wattOS button, select ‘Menu’ Settings. Click ‘Browse’ and select `/home/sbe/Pictures/images/SBEbuttonGo.png`. Click ‘Close’. The result will be the SBE customization button.

• Update the background image by right-clicking anywhere on the desktop, select ‘Desktop Preferences’. Click on ‘Appearance’ tab and select ‘Wallpaper’ browse link. Browse to ‘/home/sbe/Pictures/images/greenbackground_SBE.png’ and click ‘Open’. Click ‘Close’ to exit the Desktop Preferences window.

Robert Sorensen, rssoren@gmail.com
Secure Browsing Environment

Robert Sorensen, rssoren@gmail.com

• Update the login background image by modifying `/etc/lxdm/lxdm.conf` file.

sbe@vb-sbe:~$ sudo vi /etc/lxdm/lxdm.conf

Change the bg= line as shown below

```
[display]
gtk_theme=Clearlooks
From:
 bg=/usr/share/backgrounds/default.png
To:
 bg=/home/sbe/Pictures/images/greenlogin_SBE.png
```
• Update logout banner by backing up and replacing the `/usr/share/lxde/images/logout-banner.png` file.

```bash
sbe@vb-sbe:~$ cd Pictures/images/
sbe@vb-sbe:~Pictures/images$ sudo mv /usr/share/lxde/images/logout-banner.png /usr/share/lxde/images/logout-banner_wattos.png
[sudo] password for sbe:
sbe@vb-sbe:~Pictures/images$ sudo cp logout-banner_sbe.png /usr/share/lxde/images/logout-banner.png
```

As a final clean up step, a shell script, gozero, was developed to clean up old install files and to zero out the dead space so the VirtualBox .vdi file will allow to be compressed.

```bash
#!/bin/bash
#/usr/local/bin/gozero script – Clean up and zero out empty space.

if ["$UID" -ne "0"]
then
echo -e "Usage: sudo $0 [must run as root!]\n"
```

Robert Sorensen, rssoren@gmail.com
exit 0
else
  echo -e "Cleaning up and zeroing out empty space...\n"

  apt-get autoclean
  apt-get clean
  dd if=/dev/zero of=/0bit bs=20971520
  if [ -f /0bit ]
    then
      echo -e "0bit file created. `ls -l /0bit`...\n"
      echo -e "Removing file...\c"
      rm -f /0bit
      echo -e " Done\n"
    else
      echo -e "0bit file not created...\n"
    fi
  echo -e "Make sure you compress the .vdi file outside of this VM!\n"
fi

Running the program performs an apt-get autoclean, which clears out the local repository of retrieved package files. Then all empty space is written with the “\0 character” which makes for very efficient compression.

sbe@vb-sbe:~$ sudo leafpad /usr/local/bin/gozero
[sudo] password for sbe:
[Paste in ‘gozero’ script.]
sbe@vb-sbe:~$ sudo chmod 755 /usr/local/bin/gozero
sbe@vb-sbe:~$ sudo gozero
Cleaning up and zeroing out empty space...

Reading package lists... Done
Building dependency tree
Reading state information... Done
dd: writing `/0bit': No space left on device
183+0 records in
182+0 records out
3828588544 bytes (3.8 GB) copied, 13.9324 s, 275 MB/s
0bit file created. -rw-r--r-- 1 root root 3828588544 2012-03-29 20:55 /0bit...
Removing file... Done

Make sure you compress the .vdi file outside of this VM!

Robert Sorensen, rssoren@gmail.com
wattOSR5 – Maintenance

As with any other Linux distribution, packages are constantly being updated with either security updates or enhancements. For this reason, it is prudent to periodically run an ‘apt-get update; apt-get upgrade’. An example session is shown below:

```bash
sbe@vb-sbe:~$ sudo apt-get update
Ign http://ppa.launchpad.net oneiric InRelease
Ign http://ppa.launchpad.net oneiric InRelease
Ign http://ppa.launchpad.net oneiric InRelease
Ign http://dl.google.com stable InRelease
....
Hit http://us.archive.ubuntu.com oneiric-backports/restricted Translation-en
Hit http://us.archive.ubuntu.com oneiric-backports/universe Translation-en
Ign http://ppa.launchpad.net oneiric/main Translation-en
Ign http://ppa.launchpad.net oneiric/main Translation-en
Ign http://ppa.launchpad.net oneiric/main Translation-en
Ign http://ppa.launchpad.net oneiric/main Translation-en
Ign http://www.remastersys.com oneiric/main Translation-en
Ign http://ppa.launchpad.net oneiric/main Translation-en
Ign http://ppa.launchpad.net oneiric/main Translation-en
Get:2 http://dl.google.com stable Release [1,347 B]
Get:3 http://dl.google.com stable/main i386 Packages [1,237 B]
Ign http://dl.google.com stable/main TranslationIndex
Fetched 2,782 B in 1min 2s (44 B/s)
Reading package lists... Done
sbe@vb-sbe:~$ sudo apt-get upgrade
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following packages have been kept back:
 jupiter linux-generic linux-headers-generic linux-image-generic smplayer
The following packages will be upgraded:
 apt apt-transport-https apt-utils flashplugin-installer
 girl1.2-javascriptcoregtk-3.0 girl1.2-webkit-3.0 gstreamer0.10-plugins-good
```

Robert Sorensen, rssoren@gmail.com
This completes the base installation, configuration and maintenance of wattOSR5 in our VirtualBox SBE VM.

Robert Sorensen, rssoren@gmail.com
Appendix B – Configuration Files

/etc/snort/snort.conf

#--------------------------------------------------
# VRT Rule Packages Snort.conf
# For more information visit us at:
# http://www.snort.org                  Snort Website
# http://vrt-sourcefire.blogspot.com/    Sourcefire VRT Blog
# Mailing list Contact:      snort-sigs@lists.sourceforge.net
# False Positive reports:    fp@sourcefire.com
# Snort bugs:                Bugs@snort.org
# Compatible with Snort Versions:
# VERSIONS : 2.9.2.2
# Snort build options:
# OPTIONS : --enable-ipv6 --enable-gre --enable-mpls --enable-targetbased --enable-
# decoder-preprocessor-rules --enable-ppm --enable-perfprofiling --enable-zlib --
# enable-active-response --enable-normalizer --enable-reload --enable-react --enable-
# flexresp3
# Additional information:
# This configuration file enables active response, to run snort in
# test mode -T you are required to supply an interface -i <interface>
# or test mode will fail to fully validate the configuration and
# exit with a FATAL error
#--------------------------------------------------

###################################################
# This file contains a sample snort configuration.
# You should take the following steps to create your own custom configuration:
#  1) Set the network variables.
#  2) Configure the decoder
#  3) Configure the base detection engine
#  4) Configure dynamic loaded libraries
#  5) Configure preprocessors
#  6) Configure output plugins
#  7) Customize your rule set
#  8) Customize preprocessor and decoder rule set
#  9) Customize shared object rule set
###################################################

#--------------------------------------------------
# Step #1: Set the network variables.  For more information, see README.variables
#--------------------------------------------------

# Setup the network addresses you are protecting
ipvar HOME_NET 10.0.2.15/32
# Set up the external network addresses. Leave as "any" in most situations
ipvar EXTERNAL_NET !$HOME_NET
# List of DNS servers on your network
ipvar DNS_SERVERS $HOME_NET
# List of SMTP servers on your network
ipvar SMTP_SERVERS $HOME_NET
# List of web servers on your network
ipvar HTTP_SERVERS $HOME_NET
# List of sql servers on your network
ipvar SQL_SERVERS $HOME_NET
# List of telnet servers on your network
Secure Browsing Environment

Robert Sorensen, rssoren@gmail.com

ipvar TELNET_SERVERS $HOME_NET

# List of ssh servers on your network
ipvar SSH_SERVERS $HOME_NET

# List of ftp servers on your network
ipvar FTP_SERVERS $HOME_NET

# List of sip servers on your network
ipvar SIP_SERVERS $HOME_NET

# List of ports you run web servers on
portvar HTTP_PORTS
[80,81,311,591,901,1220,1414,1830,2301,2809,3128,3702,4343,5250,7001,7145,7510,7777,7779,8000,8008,8014,8028,8080,8088,8118,8123,8180,8181,8243,8280,8500,8888,8899,9080,9090,9091,9445,9999,11371,55555]

# List of ports you want to look for SHELLCODE on.
portvar SHELLCODE_PORTS 180

# List of ports you might see oracle attacks on
portvar ORACLE_PORTS 1024:

# List of ports you want to look for SSH connections on:
portvar SSH_PORTS 22

# List of ports you run ftp servers on
portvar FTP_PORTS [21,2100,3535]

# List of ports you run SIP servers on
portvar SIP_PORTS [5060,5061,5600]

# List of file data ports for file inspection
portvar FILE_DATA_PORTS [$HTTP_PORTS,110,143]

# List of GTP ports for GTP preprocessor
portvar GTP_PORTS [2123,2152,3386]

# other variables, these should not be modified
ipvar AIM_SERVERS
[64.12.24.0/23,64.12.28.0/23,64.12.161.0/24,64.12.163.0/24,64.12.200.0/24,205.188.3.0/24,205.188.5.0/24,205.188.7.0/24,205.188.9.0/24,205.188.153.0/24,205.188.179.0/24,205.188.248.0/24]

# Path to your rules files (this can be a relative path)
# Note for Windows users: You are advised to make this an absolute path,
# such as: c:\snort\rules
var RULE_PATH rules
var SO_RULE_PATH ../so_rules
var PREPROC_RULE_PATH ../preproc_rules

# If you are using reputation preprocessor set these
# Currently there is a bug with relative paths, they are relative to where snort is
# not relative to snort.conf like the above variables
# This is completely inconsistent with how other vars work, BUG 89986
# Set the absolute path appropriately
var WHITE_LIST_PATH ../rules
var BLACK_LIST_PATH ../rules

#########################################################################
# Step #2: Configure the decoder. For more information, see README.decode
#########################################################################

# Stop generic decode events:
config disable_decode_alerts

# Stop Alerts on experimental TCP options
config disable_tcpopt_experimental_alerts

# Stop Alerts on obsolete TCP options
config disable_tcpoptObsolete_alerts
Secure Browsing Environment

Robert Sorensen, rssoren@gmail.com
Secure Browsing Environment

Robert Sorensen, rssoren@gmail.com

# Configure PCRE match limitations
config pcre_match_limit: 3500
config pcre_match_limit_recursion: 1500

# Configure the detection engine  See the Snort Manual, Configuring Snort - Includes -
Config
detection: search-method ac-split search-optimize max-pattern-len 20

# Configure the event queue.  For more information, see README.event_queue
config event_queue: max_queue 8 log 3 order_events content_length

# Configure GTP if it is to be used.
# For more information, see README.GTP

# config enable_gtp

# Per packet and rule latency enforcement
# For more information see README.ppm
#
# Per Packet latency configuration
#config ppm: max-pkt-time 250, \n#  fastpath-expensive-packets, \n#  pkt-log
#
# Per Rule latency configuration
#config ppm: max-rule-time 200, \n#  threshold 3, \n#  suspend-expensive-rules, \n#  suspend-timeout 20, \n#  rule-log alert

# Configure Perf Profiling for debugging
# For more information see README.PerfProfiling
#
#config profile_rules: print all, sort avg_ticks
#config profile_preprocs: print all, sort avg_ticks

# Configure protocol aware flushing
# For more information see README.stream5
#
config paf_max: 16000

# Step #4: Configure dynamic loaded libraries.
# For more information, see Snort Manual, Configuring Snort - Dynamic Modules
#
# path to dynamic preprocessor libraries
dynamicpreprocessor directory /usr/local/lib/snort_dynamicpreprocessor/
#
# path to base preprocessor engine
dynamicengine /usr/local/lib/snort_dynamicengine/libsf_engine.so
#
# path to dynamic rules libraries
dynamicdetection directory /usr/local/lib/snort_dynamicrules/

# Step #5: Configure preprocessors
# For more information, see the Snort Manual, Configuring Snort - Preprocessors
#
# GTP Control Channle Preprocessor. For more information, see README.GTP
Secure Browsing Environment

Robert Sorensen, rssoren@gmail.com

# preprocessor gtp: ports { 2123 3386 2152 }

# Inline packet normalization. For more information, see README.normalize
# Does nothing in IDS mode
#preprocessor normalize_ip4
#preprocessor normalize_tcp: ips ecn stream
#preprocessor normalize_icmp4
#preprocessor normalize_ip6
#preprocessor normalize_icmp6

# Target-based IP defragmentation. For more information, see README.frag3
preprocessor frag3_global: max_fragments 65536
preprocessor frag3_engine: policy linux detect_anomalies overlap_limit 10
  min_fragment_length 100 timeout 180

# Target-Based stateful inspection/stream reassembly. For more information, see README.stream5
preprocessor stream5_global: track_tcp yes, \  
  track_udp yes, \  
  track_icmp no, \  
  max_tcp 262144, \  
  max_udp 131072, \  
  max_active_responses 1, \  
  min_response_seconds 1

preprocessor stream5_tcp: policy linux, detect_anomalies, require_3whs 180, \  
  overlap_limit 10, small_segments 3 bytes 150, timeout 180, \  
  ports client 21 22 23 25 42 53 79 109 110 111 113 119 135 136 137 139 143 \  
   161 445 513 514 587 593 691 1433 2100 3306 6070 6665 6666 6667 6668 6669 \  
   7000 8181 32770 32771 32772 32774 32775 32776 32777 32778 32779, \  
  ports both 80 81 311 443 465 563 591 593 636 901 989 992 993 994 995 1220 1414 1830 \  
   2301 2381 2809 3128 3702 4343 5250 7907 7001 7145 7510 7802 7777 7779 \  
   7801 7900 7901 7902 7903 7904 7905 7906 7908 7909 7910 7911 7912 7913 7914 7915 \  
   7916 \  
   7917 7918 7919 7920 8000 8008 8014 8028 8080 8088 8118 8123 8180 8243 8280 8800 \  
   8888 8899 9080 9090 9091 9443 9999 11371 55555

preprocessor stream5_udp: timeout 180

# performance statistics. For more information, see the Snort Manual, Configuring Snort  
- Preprocessors - Performance Monitor
# preprocessor perfmonitor: time 300 file /var/snort/snort.stats pktcnt 10000

# HTTP normalization and anomaly detection. For more information, see README.http_inspect
preprocessor http_inspect: global iis_unicode_map ./rules/unicode.map 1252 compress_depth 65535 decompress_depth 65535

preprocessor http_inspect_server: server default
  http_methods { GET POST PUT SEARCH MKCOL COPY MOVE LOCK UNLOCK NOTIFY POLL BCOPY 
  DELETE BMOVE LINK UNLINK OPTIONS HEAD DELETE TRACE TRACK CONNECT SOURCE SUBSCRIBE 
  UNSUBSCRIBE PROPPROPFIND PROPPATCH RPC_CONNECT RPC_ECHO_DATA } \  
  chunk_length 500000 \  
  server_flow_depth 0 \  
  client_flow_depth 0 \  
  post_depth 65495 \  
  oversize_dir_length 500 \  
  max_header_length 750 \  
  max_headers 100 \  
  max_spaces 0 \  
  small_chunk_length { 10 5 } \  
  ports { 80 81 311 591 593 901 1220 1414 1830 2301 2381 2809 3128 3702 4343 5250 7001 \  
    7145 7510 7777 7779 8000 8008 8014 8028 8080 8088 8118 8123 8180 8181 8243 8280 8800 \  
    8888 8899 9080 9090 9091 9443 9999 11371 55555 } \  
  non_rfc_char { 0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07 } \  
  enable_cookie \  
  extended_response_inspection \  
  inspect_gzip \  
  normalize_utf \  
  unlimited_decompress \  
  normalize_javascript \  
  apache_whitespace no \  
  ascii no \  

Robert Sorensen, rssoren@gmail.com
Secure Browsing Environment

# ONC-RPC normalization and anomaly detection. For more information, see the Snort Manual, Configuring Snort - Preprocessors - RPC Decode
preprocessor rpc_decode: 111 32770 32771 32772 32773 32774 32775 32776 32777 32778 32779 no_alert_multiple_requests no_alert_large_fragments no_alert_incomplete

# Back Orifice detection.
preprocessor bo

# FTP / Telnet normalization and anomaly detection. For more information, see README.ftptelnet
preprocessor ftp_telnet: global inspection_type stateful encrypted_traffic no
preprocessor ftp_telnet_protocol: telnet no_alert_multiple_requests no_alert_large_fragments no_alert_incomplete
detect_anomalies

preprocessor ftp_telnet_protocol: ftp server default
    def_max_param_len 100
    ports { 21 2100 3535 }
    telnet_cmds yes
    ignore_telnet_erase_cmds yes
    ftp_cmds { ABOR ACCT ADAT ALLO APPE AUTH CCC CDUP }
    ftp_cmds { CEL CLNT CMD CONF CWD DELE ENC EPRT }
    ftp_cmds { EPSV ESTA ESTP FEAT HELP LANG LIST LPRT }
    ftp_cmds { LPSV MACB MAIL MDTM MIC MKD MLSD MLST }
    ftp_cmds { MODE NLST NOOP OPTS PASS PASV PBSZ PORT }
    ftp_cmds { PROT PWD QUIT REST RETR RMD RNFR }
    ftp_cmds { RNTO SDUP SITE SIZE SMNT STAT STOR STOU }
    ftp_cmds { STRU SYST TEST TYPE USER XCP XCWD XCP XDUP }
    ftp_cmds { XMAS XMDS XMKD XFWD XRCP XRM D XRSQ XSEM }
    ftp_cmds { XEN XSHA1 XSHA256 }
    alt_max_param_len 0 { ABOR CCC CDUP ESTA FEAT LPSV NOOP PASV PWD QUIT REIN STOU SYST XCP XDUP }
    alt_max_param_len 200 { ALLO APPE CMD HELP NLST RETR RNFR STOR STOU XMKD }
    alt_max_param_len 256 { CMD RNTO }
    alt_max_param_len 400 { PORT }
    alt_max_param_len 512 { SIZE }
    alt_max_param_len 600 { ACCT ADAT ALLO APPE AUTH CCC CDUP }
    alt_max_param_len 700 { CEL CLNT CMD CONF CWD DELE ENC EPRT EPSV ESTA ESTP FEAT HELP }
    alt_max_param_len 800 { LANG LIST LPRT MACB MAIL MDTM MIC MKD MLSD MLST MODE NLST NOOP OPTS PASS PASV PBSZ PORT }
    alt_max_param_len 900 { PROT PWD QUIT REST RETR RMD RNFR RNTO SDUP SITE STRU SYST TEST TYPE USER XCP XCWD XCP XDUP XMAS XMDS XMKD XFWD XRCP XRM D XRSQ XSEM XEN XSHA1 XSHA256 }
    cmd_validity ALLO < int [ char R int ] >
    cmd_validity EPSV < [ char 12 | char A char L char L ] >
    cmd_validity MACB < string >
    cmd_validity MDTM < [ date nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Robert Sorensen, rssoren@gmail.com
Secure Browsing Environment

Robert Sorensen, rssoren@gmail.com
Secure Browsing Environment

Robert Sorensen, rssoren@gmail.com

# SDF sensitive data preprocessor. For more information see README.sensitive_data
preprocessor sensitive_data: alert_threshold 25

# SIP Session Initiation Protocol preprocessor. For more information see README.sip
preprocessor sip: max_sessions 40000, 
  ports { 5060 5061 5600 }, 
  methods { invite \cancel \ack \bye \register \options \refer \subscribe \update \join \info \message \notify \bnotify \do \gauth \sprack \publish \service \unsubscribe \prack }, 
  max_uri_len 512, 
  max_call_id_len 80, 
  max_requestName_len 20, 
  max_from_len 256, 
  max_to_len 256, 
  max_via_len 1024, 
  max_contact_len 512, 
  max_content_len 2048

# IMAP preprocessor. For more information see README.imap
preprocessor imap: 
  ports { 143 }, 
  b64_decode_depth 0, 
  qp_decode_depth 0, 
  bitenc_decode_depth 0, 
  uu_decode_depth 0

# POP preprocessor. For more information see README.pop
preprocessor pop: 
  ports { 110 }, 
  b64_decode_depth 0, 
  qp_decode_depth 0, 
  bitenc_decode_depth 0, 
  uu_decode_depth 0

# Modbus preprocessor. For more information see README.modbus
preprocessor modbus: ports { 502 }

# DNP3 preprocessor. For more information see README.dnp3
preprocessor dnp3: ports { 20000 } 
  memcap 262144 
  check_crc

# Reputation preprocessor. For more information see README.reputation
#preprocessor reputation: 
  # memcap 500, 
  # priority whitelist, 
  # nested_ip inner, 
  # whitelist $WHITE_LIST_PATH/white_list.rules, 
  # blacklist $BLACK_LIST_PATH/black_list.rules
Secure Browsing Environment

Robert Sorensen, rssoren@gmail.com

---

```
Step #6: Configure output plugins
For more information, see Snort Manual, Configuring Snort - Output Modules

unified2
Recommended for most installs
output unified2: filename merged.log, limit 128, nostamp, mpls_event_types,
vlan_event_types

Additional configuration for specific types of installs
output alert_unified2: filename snort.alert, limit 128, nostamp
output log_unified2: filename snort.log, limit 128, nostamp

syslog
output alert_syslog: LOG_AUTH LOG_ALERT

pcap
output log_tcpdump: tcpdump.log

database
output alert_syslog: LOG_AUTH LOG_ALERT
output database: alert, <db_type>, user=<username> password=<password> test
dbname=name host=hostname
output database: log, <db_type>, user=<username> password=<password> test dbname=name
host=hostname

prelude
output alert_prelude

metadata reference data. do not modify these lines
include rules/classification.config
include rules/reference.config

Step #7: Customize your rule set
For more information, see Snort Manual, Writing Snort Rules
#
NOTE: All categories are enabled in this conf file

site specific rules
include $RULE_PATH/local.rules
include emerging.conf

#include $RULE_PATH/attack-responses.rules
#include $RULE_PATH/backdoor.rules
#include $RULE_PATH/bad-traffic.rules
#include $RULE_PATH/blacklist.rules
#include $RULE_PATH/botnet-cnc.rules
#include $RULE_PATH/chat.rules
#include $RULE_PATH/content-replace.rules
#include $RULE_PATH/ddos.rules
#include $RULE_PATH/dos.rules
#include $RULE_PATH/exploit.rules
#include $RULE_PATH/file-identify.rules
#include $RULE_PATH/finger.rules
#include $RULE_PATH/ftp.rules
#include $RULE_PATH/ic和平.png
#include $RULE_PATH/icmp-info.rules
#include $RULE_PATH/imap.rules
#include $RULE_PATH/info.rules
#include $RULE_PATH/misc.rules
#include $RULE_PATH/multimedia.rules
#include $RULE_PATH/mysql.rules
#include $RULE_PATH/netbios.rules
#include $RULE_PATH/nntp.rules
#include $RULE_PATH/oracle.rules
#include $RULE_PATH/other-ids.rules
#include $RULE_PATH/p2p.rules
```
#include $RULE_PATH/phishing-spam.rules
#include $RULE_PATH/policy.rules
#include $RULE_PATH/pop2.rules
#include $RULE_PATH/pop3.rules
#include $RULE_PATH/rpc.rules
#include $RULE_PATH/rservices.rules
#include $RULE_PATH/scada.rules
#include $RULE_PATH/scan.rules
#include $RULE_PATH/shellcode.rules
#include $RULE_PATH/specific-threats.rules
#include $RULE_PATH/spyware-put.rules
#include $RULE_PATH/sql.rules
#include $RULE_PATH/telnet.rules
#include $RULE_PATH/tftp.rules
#include $RULE_PATH/virus.rules
#include $RULE_PATH/vl.sp rules
#include $RULE_PATH/web-activex.rules
#include $RULE_PATH/web-attacks.rules
#include $RULE_PATH/web-cgi.rules
#include $RULE_PATH/web-client.rules
#include $RULE_PATH/web-coldfusion.rules
#include $RULE_PATH/web-frontpage.rules
#include $RULE_PATH/web-iis.rules
#include $RULE_PATH/web-misc.rules
#include $RULE_PATH/web-php.rules
#include $RULE_PATH/web-iis.rules
#include $RULE_PATH/x11.rules

# Event thresholding or suppression commands. See threshold.conf
include threshold.conf

Robert Sorensen, rssoren@gmail.com
Secure Browsing Environment

Robert Sorensen, rssoren@gmail.com

/etc/oinkmaster.conf

# $Id: oinkmaster.conf,v 1.134 2008/02/18 19:33:45 andreas_o Exp $ #

# This file is pretty big by default, but don't worry.
# Everything in here is completely optional and the defaults
# should work for most people. The download URL of the rules
# archive must be set either in here or on the command line.

# Remember not to let untrusted users edit Oinkmaster configuration
# files, as things like the PATH to use during execution is defined
# in here.

# Use "url = <url>" to specify the location of the rules archive to
download. The url must begin with http://, https://, ftp://, file://
or scp:// and end with .tar.gz or .tgz, and the file must be a
gzipped tarball what contains a directory named "rules".
# You can also point to a local directory with dir://<directory>.
# Multiple "url = <url>" lines can be specified to grab multiple rules
# archives from different locations.
# Note: if URL is specified on the command line, it overrides all
# possible URLs specified in the configuration file(s).

# The location of the official Snort rules you should use depends
# on which Snort version you run. Basically, you should go to
# http://www.snort.org/rules/ and follow the instructions
# there to pick the right URL for your version of Snort
# (and remember to update the URL when upgrading Snort in the
# future!). You can of course also specify locations to third party
# rules. You may specify multiple URLs.
# As of March 2005, you must register on the Snort site to get access
to the official Snort rules. This will get you an "oinkcode".
# You then specify the URL as
# http://www.snort.org/pub-bin/oinkmaster.cgi/<oinkcode>/<filename>
# For example, if your code is 5a081649c06a277e1022e1284b and
# you use Snort 2.7, the url to use would be:
# http://www.snort.org/pub-
# bin/oinkmaster.cgi/5a081649c06a277e1022e1284bdc8fabda70e2a4/snortrules-snapshot-
# 2.7.tar.gz
# See the Oinkmaster FAQ Q1 and http://www.snort.org/rules/ for
# more information.
# URL examples follows. Replace <oinkcode> with the code you get on the
# Snort site in your registered user profile.
# url = http://rules.emergingthreats.net/open/snort-2.9.0/emerging.rules.tar.gz

# VRT certified rules for registered users, Snort 2.7.
# url = http://www.snort.org/pub-bin/oinkmaster.cgi/<oinkcode>/snortrules-snapshot-
# 2.7.tar.gz

# VRT certified rules for registered users, Snort 2.8.
# url = http://www.snort.org/pub-bin/oinkmaster.cgi/<oinkcode>/snortrules-snapshot-
# 2.8.tar.gz

# VRT certified rules for registered users, Snort-CURRENT
# "CURRENT" here means experimental snapshots!!.
# url = http://www.snort.org/pub-bin/oinkmaster.cgi/<oinkcode>/snortrules-snapshot-
# CURRENT.tar.gz

# Community rules and Snort 2.4.
# url = http://www.snort.org/pub-bin/downloads.cgi/Download/comm_rules/Community-Rules-
# 2.4.tar.gz

# Community rules for snort-CURRENT
# url = http://www.snort.org/pub-bin/downloads.cgi/Download/comm_rules/Community-Rules-
# CURRENT.tar.gz
Secure Browsing Environment

Robert Sorensen, rssoren@gmail.com
Secure Browsing Environment

Robert Sorensen, rssoren@gmail.com
Secure Browsing Environment

Robert Sorensen, rssoren@gmail.com
# perform the substitution, so you don't have to care about the trailing #
# backslashes and newlines.
#
# If you use backreference variables in the substitution expression,
# it's strongly recommended to specify them as $1 instead of $1 and so #
on, to avoid parsing confusion with unexpected results in some #
situations. Note that modifysid statements will process both active #
and inactive (disabled) rules.
#
# You may want to check out README.templates and template-examples.conf #
to find how you can simplify the modifysid usage by using templates.

##########################################################################
# Example to enable a rule (in this case SID 1325) that is disabled by
# default, by simply replacing leading "#alert" with "alert".
# (You should really use 'enablesid' for this though.)
# Oinkmaster removes whitespaces next to the leading "#" so you don't
# have to worry about that, but be careful about possible whitespace in
# other places when writing the regexps.
# modifysid 1325 "^#alert" | "alert"

# You could also do this to enable it no matter what type of rule it is
# (alert, log, pass, etc)...
# modifysid 1325 "^\#" | ""

# Example to enable ALL rules in ALL files (usually not a good idea).
# modifysid * "^\#" | ""

# Example to add "tag" stuff to SID 1325.
# modifysid 1325 "sid:1325;" | "sid:1325; tag: host, src, 300, seconds;"

# Example to make SID 1378 a 'drop' rule (valid if you're running
# Snort_inline).
# modifysid 1378 "^alert" | "drop"

# Example to replace first occurrence of $EXTERNAL_NET with $HOME_NET
# in SID 302.
# modifysid 302 "\$EXTERNAL_NET" | "\$HOME_NET"

# You can also specify that a substitution should apply on multiple SIDs.
# modifysid 302,429,1821 "\$EXTERNAL_NET" | "\$HOME_NET"

# You can take advantage of the fact that it's regular expressions and
# do more complex stuff. This example (for Snort_inline) adds a 'replace'
# statement to SID 1324 that replaces "/bin/sh" with "/foo/sh".
# modifysid 1324 "(content[^s*:]*s*"/bin/sh"[^s*:]*s*)" | 
# "${1} replace:"/foo/sh";"

# If you for some reason would like to add a comment inside the actual
# rules file, like the reason why you disabled this rule, you can do
# like this (you would normally add such comments in oinkmaster.conf
# though).
# modifysid 1324 "(.+)" | "# 20020101: disabled this rule just for fun:
# ${1}"

# Example to switch ping directions.
# modifysid 483 "(.+) $EXTERNAL_NET (.+) $HOME_NET (.+)" | 
# "${1} $HOME_NET ${2} $EXTERNAL_NET ${3}"

# The wildcard (modifysid * ...) can be used to do all kinds of
# interesting things. The substitution expression will be applied on all
# matching rules. First, a silly example to replace "foo" with "bar" in

Robert Sorensen, rssoren@gmail.com
Secure Browsing Environment

Robert Sorensen, rssoren@gmail.com
Secure Browsing Environment

Robert Sorensen, rssoren@gmail.com

/etc/snort/emerging.conf

Emerging Threats Configuration Include

This file is intended to be added to your snort.conf as an include.
The intention is to make sure that any specific variables and the
like are included in your instance of snort.

Add a line like this to your snort.conf, or just use this file to
decide which variables to add to your own snort.conf:

include $RULE_PATH/emerging.conf

This file is valid for both Emerging Threats open and ET Pro rulesets

More information available at www.emergingthreats.net or
www.emergingthreatspro.com

This var is required for several sigs in the POLICY ruleset. It is plural because you
can do a range of ports
#var SSH_PORTS 22

# These vars are required if you're using the Digitalbond Scada signatures in the
scada.rules category
#var DNP3_SERVER $HOME_NET
#var DNP3_CLIENT $HOME_NET
#var DNP3_PORTS 20000
#var MODBUS_CLIENT $HOME_NET
#var MODBUS_SERVER $HOME_NET
Secure Browsing Environment

Robert Sorensen, rssoren@gmail.com

```bash
#var ENIP_CLIENT $HOME_NET
#var ENIP_SERVER $HOME_NET

#include $RULE_PATH/classification.config
#include $RULE_PATH/reference.config

#include $RULE_PATH/emerging-ftp.rules
include $RULE_PATH/emerging-policy.rules
include $RULE_PATH/emerging-trojan.rules
include $RULE_PATH/emerging-games.rules
#include $RULE_PATH/emerging-pop3.rules
include $RULE_PATH/emerging-user_agents.rules
#include $RULE_PATH/emerging-activex.rules
#include $RULE_PATH/emerging-rpc.rules
include $RULE_PATH/emerging-virus.rules
include $RULE_PATH/emerging-attack_response.rules
include $RULE_PATH/emerging-icmp.rules
#include $RULE_PATH/emerging-scan.rules
#include $RULE_PATH/emerging-scada.rules
#include $RULE_PATH/emerging-voip.rules
#include $RULE_PATH/emerging-chat.rules
include $RULE_PATH/emerging-icmp_info.rules
include $RULE_PATH/emerging-shellcode.rules
include $RULE_PATH/emerging-web_client.rules
#include $RULE_PATH/emerging-imap.rules
#include $RULE_PATH/emerging-web_server.rules
include $RULE_PATH/emerging-current_events.rules
include $RULE_PATH/emerging-inappropriate.rules
#include $RULE_PATH/emerging-pop3.rules
#include $RULE_PATH/emerging-user_agents.rules
#include $RULE_PATH/emerging-activex.rules
#include $RULE_PATH/emerging-rpc.rules
include $RULE_PATH/emerging-virus.rules
include $RULE_PATH/emerging-attack_response.rules
include $RULE_PATH/emerging-icmp.rules
#include $RULE_PATH/emerging-scan.rules
#include $RULE_PATH/emerging-scada.rules
#include $RULE_PATH/emerging-voip.rules
#include $RULE_PATH/emerging-chat.rules
include $RULE_PATH/emerging-icmp_info.rules
include $RULE_PATH/emerging-shellcode.rules
include $RULE_PATH/emerging-web_client.rules
#include $RULE_PATH/emerging-imap.rules
#include $RULE_PATH/emerging-web_server.rules
include $RULE_PATH/emerging-current_events.rules
include $RULE_PATH/emerging-inappropriate.rules
#include $RULE_PATH/emerging-pop3.rules
include $RULE_PATH/emerging-user_agents.rules
include $RULE_PATH/emerging-activex.rules
#include $RULE_PATH/emerging-rpc.rules
include $RULE_PATH/emerging-virus.rules
include $RULE_PATH/emerging-attack_response.rules
include $RULE_PATH/emerging-icmp.rules
#include $RULE_PATH/emerging-scan.rules
#include $RULE_PATH/emerging-scada.rules
#include $RULE_PATH/emerging-voip.rules
#include $RULE_PATH/emerging-chat.rules
include $RULE_PATH/emerging-icmp_info.rules
include $RULE_PATH/emerging-shellcode.rules
include $RULE_PATH/emerging-web_client.rules
include $RULE_PATH/emerging-deleted.rules
include $RULE_PATH/emerging-malware.rules
#include $RULE_PATH/emerging-snmp.rules
include $RULE_PATH/emerging-worm.rules
include $RULE_PATH/emerging-dns.rules
include $RULE_PATH/emerging-misc.rules
#include $RULE_PATH/emerging-sql.rules
include $RULE_PATH/emerging-dos.rules
#include $RULE_PATH/emerging-netbios.rules
include $RULE_PATH/emerging-telnet.rules
include $RULE_PATH/emerging-exploit.rules
include $RULE_PATH/emerging-p2p.rules
include $RULE_PATH/emerging-tftp.rules
include $RULE_PATH/emerging-mobile_malware.rules
include $RULE_PATH/emerging-botcc.rules
#include $RULE_PATH/emerging-botcc-BLOCK.rules
include $RULE_PATH/emerging-compromised.rules
#include $RULE_PATH/emerging-compromised-BLOCK.rules
include $RULE_PATH/emerging-drop.rules
#include $RULE_PATH/emerging-drop-BLOCK.rules
include $RULE_PATH/emerging-dshield.rules
#include $RULE_PATH/emerging-dshield-BLOCK.rules
include $RULE_PATH/emerging-rbn.rules
include $RULE_PATH/emerging-rbn-malvertisers.rules
#include $RULE_PATH/emerging-rbn-BLOCK.rules
#include $RULE_PATH/emerging-rbn-malvertisers-BLOCK.rules
include $RULE_PATH/emerging-tor.rules
#include $RULE_PATH/emerging-tor-BLOCK.rules
#include $RULE_PATH/emerging-ciarmy.rules
```
Appendix C – Browser Add-on/Extensions Guide

Firefox Add-ons Configuration

AdBlock Plus

- Accept the default 'Filter subscription: EasyList (English)', Check 'Enabled' box.
An example of ‘AdBlock Plus’ in action of Youtube video being played. Notice the items blocked on this page.

Better Privacy

BetterPrivacy settings to remove all LSO’s/SuperCookies. Highlight the LSOs, then click ‘Remove All LSO’s.’

Robert Sorensen, rssoren@gmail.com
Ghostery

Best way to configure Ghostery is through the Configuration Wizard.

- Go to Firefox Add-ons -> Ghostery Preference -> Ghostery Configuration Wizard. Click ‘Get Started’.

- Your preference to support GhostRank or not. Accept default settings of not enabling GhostRank by not selecting ‘Click here to enable GhostRank’. Click ‘Next’
• Notification – Check ‘Click here to enable Alert Bubble’. Click ‘Next’.

• Bug List Updates – Check ‘Click here to enable library Auto-Update’. Click ‘Next’.
• Blocking – Check ‘Bugs and Cookies’. Click ‘Next’.

• Ghoster is ready to use.

Robert Sorensen, rssoren@gmail.com
# Upcoming Training

<table>
<thead>
<tr>
<th>Event</th>
<th>Location</th>
<th>Dates</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>SANS Network Security 2020</td>
<td>Las Vegas, NV</td>
<td>Sep 20, 2020 - Sep 25, 2020</td>
<td>CyberCon</td>
</tr>
<tr>
<td>SANS Australia Spring 2020 - Live Online</td>
<td>, Australia</td>
<td>Sep 21, 2020 - Oct 03, 2020</td>
<td>CyberCon</td>
</tr>
<tr>
<td>SANS Australia Spring 2020</td>
<td>, Australia</td>
<td>Sep 21, 2020 - Oct 03, 2020</td>
<td>Live Event</td>
</tr>
<tr>
<td>SANS Northern VA - Reston Fall 2020</td>
<td>Reston, VA</td>
<td>Sep 28, 2020 - Oct 03, 2020</td>
<td>CyberCon</td>
</tr>
<tr>
<td>SANS Amsterdam October 2020</td>
<td>, Netherlands</td>
<td>Oct 05, 2020 - Oct 10, 2020</td>
<td>CyberCon</td>
</tr>
<tr>
<td>SANS Orlando 2020</td>
<td>Orlando, FL</td>
<td>Oct 12, 2020 - Oct 17, 2020</td>
<td>CyberCon</td>
</tr>
<tr>
<td>SANS October Singapore 2020 - Live Online</td>
<td>Singapore, Singapore</td>
<td>Oct 12, 2020 - Oct 24, 2020</td>
<td>CyberCon</td>
</tr>
<tr>
<td>SANS Dallas Fall 2020</td>
<td>Dallas, TX</td>
<td>Oct 19, 2020 - Oct 24, 2020</td>
<td>CyberCon</td>
</tr>
<tr>
<td>SANS San Francisco Fall 2020</td>
<td>San Francisco, CA</td>
<td>Oct 26, 2020 - Oct 31, 2020</td>
<td>CyberCon</td>
</tr>
<tr>
<td>SANS Rocky Mountain Fall 2020</td>
<td>Denver, CO</td>
<td>Nov 02, 2020 - Nov 07, 2020</td>
<td>CyberCon</td>
</tr>
<tr>
<td>SANS London November 2020</td>
<td>, United Kingdom</td>
<td>Nov 02, 2020 - Nov 07, 2020</td>
<td>CyberCon</td>
</tr>
<tr>
<td>SANS Sydney 2020</td>
<td>Sydney, Australia</td>
<td>Nov 02, 2020 - Nov 14, 2020</td>
<td>Live Event</td>
</tr>
<tr>
<td>South by Southeast Asia Nov 2020</td>
<td>, Singapore</td>
<td>Nov 02, 2020 - Nov 14, 2020</td>
<td>CyberCon</td>
</tr>
<tr>
<td>SANS Sydney 2020 - Live Online</td>
<td>Sydney, Australia</td>
<td>Nov 02, 2020 - Nov 14, 2020</td>
<td>CyberCon</td>
</tr>
<tr>
<td>SANS Gulf Region 2020</td>
<td>Dubai, United Arab Emirates</td>
<td>Nov 07, 2020 - Nov 26, 2020</td>
<td>CyberCon</td>
</tr>
<tr>
<td>Tokyo November Live Online 2020</td>
<td>, Japan</td>
<td>Nov 09, 2020 - Nov 14, 2020</td>
<td>CyberCon</td>
</tr>
<tr>
<td>SANS Atlanta Fall 2020</td>
<td>Atlanta, GA</td>
<td>Nov 16, 2020 - Nov 21, 2020</td>
<td>CyberCon</td>
</tr>
<tr>
<td>SANS SEC401 (In Spanish) Online 2020</td>
<td>, United Arab Emirates</td>
<td>Nov 16, 2020 - Nov 27, 2020</td>
<td>vLive</td>
</tr>
<tr>
<td>SANS San Diego Fall 2020</td>
<td>San Diego, CA</td>
<td>Nov 16, 2020 - Nov 21, 2020</td>
<td>CyberCon</td>
</tr>
<tr>
<td>SANS Munich November 2020</td>
<td>, Germany</td>
<td>Nov 16, 2020 - Nov 21, 2020</td>
<td>CyberCon</td>
</tr>
<tr>
<td>SANS Frankfurt November 2020</td>
<td>, Germany</td>
<td>Nov 30, 2020 - Dec 05, 2020</td>
<td>CyberCon</td>
</tr>
<tr>
<td>SANS Austin Fall 2020</td>
<td>Austin, TX</td>
<td>Nov 30, 2020 - Dec 05, 2020</td>
<td>CyberCon</td>
</tr>
<tr>
<td>SANS Nashville 2020</td>
<td>Nashville, TN</td>
<td>Dec 07, 2020 - Dec 12, 2020</td>
<td>CyberCon</td>
</tr>
<tr>
<td>SANS London December 2020</td>
<td>, United Kingdom</td>
<td>Dec 07, 2020 - Dec 12, 2020</td>
<td>CyberCon</td>
</tr>
<tr>
<td>SANS Cyber Defense Initiative 2020</td>
<td>Washington, DC</td>
<td>Dec 14, 2020 - Dec 19, 2020</td>
<td>CyberCon</td>
</tr>
<tr>
<td>SANS OnDemand</td>
<td>Online</td>
<td>Anytime</td>
<td>Self Paced</td>
</tr>
<tr>
<td>SANS SelfStudy</td>
<td>Books &amp; MP3s Only</td>
<td>Anytime</td>
<td>Self Paced</td>
</tr>
</tbody>
</table>