Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permitted without express written permission.

Interested in learning more?
Check out the list of upcoming events offering "Security Essentials Bootcamp Style (Security 401)" at http://www.giac.org/registration/gsec
Check Point firewalls - rulebase cleanup and performance tuning

GSEC Gold Certification

Author: Barry Anderson, shori@bigpond.net.au
Adviser: John Bambenek

Accepted:
Check Point firewalls - rulebase cleanup and performance tuning

Outline

1. Abstract .. 3
2. Introduction .. 4
3. Procedure .. 6
 The Approach .. 6
 Cleanup vs Performance Tuning ... 6
 The 7 Steps .. 7
4. Conclusion ... 12
5. References .. 13
6. Appendix A: database schema – logs table ... 14
7. Appendix B: Source Code – create_table.sql ... 16
8. Appendix C: Source Code – export.pl ... 18
10. Appendix E: Source Code – sample sql queries ... 21

Barry Anderson
Check Point firewalls - rulebase cleanup and performance tuning

1. Abstract

Firewall rulebases tend naturally toward disorder over time, and as the size of the ruleset grows, the performance of the firewall starts to suffer. In this paper, a simple procedure for culling unused rules and ordering the rulebase for performance will be presented. The procedure uses open-source software and purpose-built tools (which will be provided) and has been used to cleanup the rulebase of large firewalls at a major financial institution. Anyone interested in improving the performance of their Check Point firewall and/or improving their position come the next audit should read this paper.

Barry Anderson
2. **Introduction**

Administrators may come and administrators may go, but firewall rules go on forever (with apologies to Tennyson). Firewall rulebases tend naturally toward disorder over time and, for Check Point firewalls in particular, as the size of the ruleset grows, the performance of the firewall suffers.

To some extent, the assertion that firewall rulebases tend towards disorder is perhaps an inevitable result of the inherent complexity of managing a complex web of interconnections (or the Second Law of Thermodynamics at work), however there are relatively simple steps that we as firewall administrators can take to improve the situation, and in this paper, a procedure for culling unused rules and ordering the rulebase for performance will be presented. The procedure uses a provided framework of database queries and supporting perl scripts (see the appendices) and has been used effectively with free/open source database software on large projects such as cleaning up the rulebase of large firewalls at major financial institutions, as well as to audit a large (complex) rulebase to ensure that a firewall replacement and decommissioning project was not going to go horribly wrong.

The other major benefit of periodically cleaning up the firewall rulebase lies in the administrator's increased ability to respond (truthfully!) to auditors' inevitable questions about
Check Point firewalls - rulebase cleanup and performance tuning

firewall ruleset review.

While there are commercial products with similar functionality – Check Point’s Eventia Reporter and Tufin's SecureTrack are two such products - the advantages of a framework and procedure over a product are twofold: firstly, increased flexibility and secondly, decreased cost.

In the interests of full disclosure it must be admitted that there is also a disadvantage to the procedure and associated framework compared to using a commercial product – that’s that the increased flexibility comes at the price of some extra work – if you have a great idea for a report you can do on the data you have, the answer is “Sounds fabulous, you should do that”, versus “Would you like to submit a Request For Enhancement to Engineering?”
3. Procedure

The Approach

The procedure for performance tuning a Check Point firewall rulebase is fairly simple:

1. move the most used rules to the top of the rulebase – with two important caveats that we’ll discuss;

2. where it works to turn off logging, do so;

Cleanup vs Performance Tuning

Before beginning to discuss the above procedure in detail, it is necessary to briefly touch on rulebase cleanup, of which there are two distinct types:

(i) where rules that contain “Any” in the SOURCE, DESTINATION or SERVICE fields are replaced by more explicit rules (in practice, usually performed in haste in the lead-up to an audit, but a useful function to perform periodically regardless);

(ii) where rules are removed from the rulebase (or better yet, disabled):

1) on the basis that they are never used (essentially this is simply the limit case of
Check Point firewalls - rulebase cleanup and performance tuning

the performance tuning approach above); or

2) for other reasons such as the decommissioning of a host or service or the expiry
of the period of a defined business need to access said host or service –
obviously in the case of expiry, you follow your organization’s procedures for
determining whether or not access is still required before simply revoking it.

The 7 Steps

1) Obtain management signoff – in writing. Seriously. This isn’t simply an exercise
in CYA, this is your opportunity to be in full communication about what you’re
planning and perhaps receive useful historical background about the rulebase at
the same time.

2) Obtain some database storage – the more, the better. “Which database should I
use?” That depends. If your DBA team is willing to give you a few terabytes of
SAN-connected database storage on one of your company’s databases for use
in a rulebase performance tuning/cleanup exercise – great! Otherwise simply
use what you do have, and if you don’t have anything try either MySQL or
PostgreSQL (both freely available Open Source Databases and both well suited
to the task at hand) and as much storage as you can lay hands on. The reason

Barry Anderson
Check Point firewalls - rulebase cleanup and performance tuning

for the storage recommendation is that not only will you probably want to end up keeping more and more data, you'll definitely want to speed up your queries by indexing the data you do have. One caveat here: while useful results can be produced with relatively small amounts of data on even a laptop, as the amount of data involved grows server-class storage becomes an important consideration. You do not want to be querying a 2 billion row database with even a USB2.0 connection to your hard-drive. Trust me.

3) Create log tables – see Appendix B for the simplest example of an appropriate table creation script.

4) Load the Check Point log files into the database – see Appendix C for export.pl, the script that uses the Check Point fwm logexport command to convert gzipped firewall logs into a form suitable for loading into the database (and bzip them), and Appendix D for load.pl, the script that takes the bziped text logs, uncompresses them, loads them into the database and recompresses them. At this point building some indexes is highly recommended if you don't want to measure the next step in geological time! Space permitting, build indexes on Src, Dst and Service at a minimum.
Check Point firewalls - rulebase cleanup and performance tuning

5) Query the database to build up an idea of which rules are your most commonly used and which rules are used not at all. You can also use these queries to build up rule sets to replace “Any” rules. See Appendix E for some sample queries, including some queries that are more audit-related in nature.

6) Based on the results of Step 5, reorder the rulebase so that the most commonly used rules are at the top. There are two caveats here; one is based on functionality, the other on performance. The caveats are:

a. Drop rules – your intent here is not to change the functionality of the firewall rulebase. “My drop rule is my most frequently hit rule – what should I do?” Obviously though you can’t simply move your drop rule to the top of your rulebase, in the situation where you have specific traffic that accounts for most (or even a large percentage) of your dropped traffic, consider explicit drop rules, which can be placed higher up the rulebase.

b. SecureXL – this is Firewall-1’s acceleration product and (assuming you haven’t had to disable it due to certain features)…certain types of rule disable it and (here’s the kicker) it doesn’t get disabled on a per-rule basis – once disabled, it’s disabled for all rules from that point forward in the rulebase, so move your rules...

Barry Anderson
Check Point firewalls - rulebase cleanup and performance tuning

that disable SecureXL towards the bottom of your rulebase. Check Point’s
fwaccel stat command gives you what you need here.

7) (Optional) Disable unused rules. Here Be Dragons. The performance win is
over, this step is really about rulebase maintenance and you should not try this
at home unless you are really comfortable about your ability to find new
employment, should the need arise!

 a) Obtain signoff in writing from the Business Owner of the rule you are
 about to disable. “But I already got Management Signoff in Step 1.”

 That was from your boss. This is from the person who will come
 screaming for both of your blood if something goes wrong at this
 point. “How do I determine the Business Owner of a rule?” The
 Business Owner should be in the comments field of your rules¹ (or

¹ Experience shows that in large firewall teams what works to have in the Comments field is: (a) the
name, initials or username of the administrator making the change, (b) the date, (c) the reference in your
organization’s change control system, (d) the reference in your work request system if this is distinct from your
organization’s change control system, and (e) the expiry date (if any) of the rule. Your auditor will love you.

Barry Anderson
Check Point firewalls - rulebase cleanup and performance tuning

the information’s location referenced there) – if the information isn’t there ask yourself “Who owns the business data or business process that this rule controls access to?”

b) Disable the rule and move it after the drop rule. Why not to simply remove the rule is so that if after having done your due diligence you still manage to disable the wrong rule you can quickly re-enable it (remembering to move it back above the drop rule). Examples of how this undesirable state of affairs can nonetheless occur are: an ad-hoc business process that hasn’t been triggered during the period for which you have logs or a log-lived connection e.g. BGP that hasn’t been established during the period for which you have logs.

c) Monitor carefully and perhaps even set up a side-channel with your helpdesk so that you get notified for any issues which even might be related (in addition to rather than instead of the usual support teams).
4. **Conclusion**

These procedures have been used at multiple financial institutions, including both banks and insurance companies, in the course of performing incident handling, performance tuning, audits, rule review and cleanup. A procedure very similar to the procedure described here was used on a High Availability firewall cluster where the active node’s CPU was running at 35%: after the four most utilized rules were identified and moved to the top of the rulebase and logging turned off on those rules, CPU utilization dropped to 4%.

Barry Anderson
5. References

[1] Tennyson, Lord Alfred *The Brook* “Men may come and men may go, but I go on for ever.”

6. **Appendix A: database schema – logs table**

<table>
<thead>
<tr>
<th>Field</th>
<th>Type</th>
<th>Null</th>
<th>Key</th>
<th>Default</th>
<th>Extra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Num</td>
<td>text</td>
<td>YES</td>
<td></td>
<td>NULL</td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>text</td>
<td>YES</td>
<td></td>
<td>NULL</td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>text</td>
<td>YES</td>
<td></td>
<td>NULL</td>
<td></td>
</tr>
<tr>
<td>Orig</td>
<td>text</td>
<td>YES</td>
<td></td>
<td>NULL</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>text</td>
<td>YES</td>
<td></td>
<td>NULL</td>
<td></td>
</tr>
<tr>
<td>Action</td>
<td>text</td>
<td>YES</td>
<td></td>
<td>NULL</td>
<td></td>
</tr>
<tr>
<td>Alert</td>
<td>text</td>
<td>YES</td>
<td></td>
<td>NULL</td>
<td></td>
</tr>
<tr>
<td>i_f_name</td>
<td>text</td>
<td>YES</td>
<td></td>
<td>NULL</td>
<td></td>
</tr>
<tr>
<td>i_f_dir</td>
<td>text</td>
<td>YES</td>
<td></td>
<td>NULL</td>
<td></td>
</tr>
<tr>
<td>Product</td>
<td>text</td>
<td>YES</td>
<td></td>
<td>NULL</td>
<td></td>
</tr>
<tr>
<td>Src</td>
<td>text</td>
<td>YES</td>
<td></td>
<td>NULL</td>
<td></td>
</tr>
<tr>
<td>Dst</td>
<td>text</td>
<td>YES</td>
<td></td>
<td>NULL</td>
<td></td>
</tr>
<tr>
<td>Proto</td>
<td>text</td>
<td>YES</td>
<td></td>
<td>NULL</td>
<td></td>
</tr>
<tr>
<td>Rule</td>
<td>text</td>
<td>YES</td>
<td></td>
<td>NULL</td>
<td></td>
</tr>
<tr>
<td>Service</td>
<td>text</td>
<td>YES</td>
<td></td>
<td>NULL</td>
<td></td>
</tr>
<tr>
<td>s_port</td>
<td>text</td>
<td>YES</td>
<td></td>
<td>NULL</td>
<td></td>
</tr>
<tr>
<td>Agent</td>
<td>text</td>
<td>YES</td>
<td></td>
<td>NULL</td>
<td></td>
</tr>
<tr>
<td>orig_from</td>
<td>text</td>
<td>YES</td>
<td></td>
<td>NULL</td>
<td></td>
</tr>
<tr>
<td>orig_to</td>
<td>text</td>
<td>YES</td>
<td></td>
<td>NULL</td>
<td></td>
</tr>
<tr>
<td>From</td>
<td>text</td>
<td>YES</td>
<td></td>
<td>NULL</td>
<td></td>
</tr>
<tr>
<td>To</td>
<td>text</td>
<td>YES</td>
<td></td>
<td>NULL</td>
<td></td>
</tr>
<tr>
<td>Reason</td>
<td>text</td>
<td>YES</td>
<td></td>
<td>NULL</td>
<td></td>
</tr>
<tr>
<td>cat_server</td>
<td>text</td>
<td>YES</td>
<td></td>
<td>NULL</td>
<td></td>
</tr>
<tr>
<td>Category</td>
<td>text</td>
<td>YES</td>
<td></td>
<td>NULL</td>
<td></td>
</tr>
<tr>
<td>Xlatesrc</td>
<td>text</td>
<td>YES</td>
<td></td>
<td>NULL</td>
<td></td>
</tr>
<tr>
<td>Xlatedst</td>
<td>text</td>
<td>YES</td>
<td></td>
<td>NULL</td>
<td></td>
</tr>
<tr>
<td>NAT_rulenum</td>
<td>text</td>
<td>YES</td>
<td></td>
<td>NULL</td>
<td></td>
</tr>
<tr>
<td>NAT_addtnl_rulenum</td>
<td>text</td>
<td>YES</td>
<td></td>
<td>NULL</td>
<td></td>
</tr>
<tr>
<td>Xlatedrport</td>
<td>text</td>
<td>YES</td>
<td></td>
<td>NULL</td>
<td></td>
</tr>
<tr>
<td>Xlatesport</td>
<td>text</td>
<td>YES</td>
<td></td>
<td>NULL</td>
<td></td>
</tr>
<tr>
<td>Icmp_type</td>
<td>text</td>
<td>YES</td>
<td></td>
<td>NULL</td>
<td></td>
</tr>
<tr>
<td>Icmp_code</td>
<td>text</td>
<td>YES</td>
<td></td>
<td>NULL</td>
<td></td>
</tr>
<tr>
<td>th_flags</td>
<td>text</td>
<td>YES</td>
<td></td>
<td>NULL</td>
<td></td>
</tr>
<tr>
<td>message_info</td>
<td>text</td>
<td>YES</td>
<td></td>
<td>NULL</td>
<td></td>
</tr>
<tr>
<td>Message</td>
<td>text</td>
<td>YES</td>
<td></td>
<td>NULL</td>
<td></td>
</tr>
<tr>
<td>DCE_RPC_Interface_UID</td>
<td>text</td>
<td>YES</td>
<td></td>
<td>NULL</td>
<td></td>
</tr>
<tr>
<td>ip_id</td>
<td>text</td>
<td>YES</td>
<td></td>
<td>NULL</td>
<td></td>
</tr>
<tr>
<td>ip_len</td>
<td>text</td>
<td>YES</td>
<td></td>
<td>NULL</td>
<td></td>
</tr>
<tr>
<td>ip_offset</td>
<td>text</td>
<td>YES</td>
<td></td>
<td>NULL</td>
<td></td>
</tr>
<tr>
<td>fragments_dropped</td>
<td>text</td>
<td>YES</td>
<td></td>
<td>NULL</td>
<td></td>
</tr>
<tr>
<td>During_sec</td>
<td>text</td>
<td>YES</td>
<td></td>
<td>NULL</td>
<td></td>
</tr>
<tr>
<td>log_sys_message</td>
<td>text</td>
<td>YES</td>
<td></td>
<td>NULL</td>
<td></td>
</tr>
<tr>
<td>rpc_prog</td>
<td>text</td>
<td>YES</td>
<td></td>
<td>NULL</td>
<td></td>
</tr>
<tr>
<td>User</td>
<td>text</td>
<td>YES</td>
<td></td>
<td>NULL</td>
<td></td>
</tr>
<tr>
<td>TCP_packet_out_of_state</td>
<td>text</td>
<td>YES</td>
<td></td>
<td>NULL</td>
<td></td>
</tr>
</tbody>
</table>
Check Point firewalls - rulebase cleanup and performance tuning

<table>
<thead>
<tr>
<th>Field</th>
<th>Type</th>
<th>Yes/No</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>tcp_flags</td>
<td>text</td>
<td>YES</td>
<td>NULL</td>
</tr>
<tr>
<td>res_action</td>
<td>text</td>
<td>YES</td>
<td>NULL</td>
</tr>
<tr>
<td>Resource</td>
<td>text</td>
<td>YES</td>
<td>NULL</td>
</tr>
<tr>
<td>ICMP</td>
<td>text</td>
<td>YES</td>
<td>NULL</td>
</tr>
<tr>
<td>ICMP_Type</td>
<td>text</td>
<td>YES</td>
<td>NULL</td>
</tr>
<tr>
<td>ICMP_Code</td>
<td>text</td>
<td>YES</td>
<td>NULL</td>
</tr>
<tr>
<td>Attack_Info</td>
<td>text</td>
<td>YES</td>
<td>NULL</td>
</tr>
<tr>
<td>Attack</td>
<td>text</td>
<td>YES</td>
<td>NULL</td>
</tr>
<tr>
<td>session_id</td>
<td>text</td>
<td>YES</td>
<td>NULL</td>
</tr>
<tr>
<td>dns_query</td>
<td>text</td>
<td>YES</td>
<td>NULL</td>
</tr>
<tr>
<td>dns_type</td>
<td>text</td>
<td>YES</td>
<td>NULL</td>
</tr>
<tr>
<td>Reject_category</td>
<td>text</td>
<td>YES</td>
<td>NULL</td>
</tr>
<tr>
<td>Packet_info</td>
<td>text</td>
<td>YES</td>
<td>NULL</td>
</tr>
<tr>
<td>Total_logs</td>
<td>text</td>
<td>YES</td>
<td>NULL</td>
</tr>
<tr>
<td>Suppressed_logs</td>
<td>text</td>
<td>YES</td>
<td>NULL</td>
</tr>
<tr>
<td>Application_Info</td>
<td>text</td>
<td>YES</td>
<td>NULL</td>
</tr>
<tr>
<td>Reject_id</td>
<td>text</td>
<td>YES</td>
<td>NULL</td>
</tr>
<tr>
<td>sys_message</td>
<td>text</td>
<td>YES</td>
<td>NULL</td>
</tr>
<tr>
<td>srcname</td>
<td>text</td>
<td>YES</td>
<td>NULL</td>
</tr>
<tr>
<td>Internal_CA</td>
<td>text</td>
<td>YES</td>
<td>NULL</td>
</tr>
<tr>
<td>Serial_num</td>
<td>text</td>
<td>YES</td>
<td>NULL</td>
</tr>
<tr>
<td>Dn</td>
<td>text</td>
<td>YES</td>
<td>NULL</td>
</tr>
<tr>
<td>cp_message</td>
<td>text</td>
<td>YES</td>
<td>NULL</td>
</tr>
<tr>
<td>cluster_info</td>
<td>text</td>
<td>YES</td>
<td>NULL</td>
</tr>
<tr>
<td>URL_filter_pattern_detected</td>
<td>text</td>
<td>YES</td>
<td>NULL</td>
</tr>
<tr>
<td>CP_Condition</td>
<td>text</td>
<td>YES</td>
<td>NULL</td>
</tr>
<tr>
<td>StormAgentName</td>
<td>text</td>
<td>YES</td>
<td>NULL</td>
</tr>
<tr>
<td>StormAgentAction</td>
<td>text</td>
<td>YES</td>
<td>NULL</td>
</tr>
<tr>
<td>System_Alert_message</td>
<td>text</td>
<td>YES</td>
<td>NULL</td>
</tr>
<tr>
<td>Object</td>
<td>text</td>
<td>YES</td>
<td>NULL</td>
</tr>
<tr>
<td>Event</td>
<td>text</td>
<td>YES</td>
<td>NULL</td>
</tr>
<tr>
<td>Parameter</td>
<td>text</td>
<td>YES</td>
<td>NULL</td>
</tr>
<tr>
<td>Current_value</td>
<td>text</td>
<td>YES</td>
<td>NULL</td>
</tr>
<tr>
<td>Auth_method</td>
<td>text</td>
<td>YES</td>
<td>NULL</td>
</tr>
<tr>
<td>Sync_info</td>
<td>text</td>
<td>YES</td>
<td>NULL</td>
</tr>
</tbody>
</table>

Note that this is an extremely simple schema – everything is represented as a string.
7. **Appendix B: Source Code – create_table.sql**

```sql
CREATE TABLE logs (
    num text,
    date text,
    time text,
    orig text,
    type text,
    action text,
    alert text,
    i_f_name,
    f_dir text,
    product text,
    src text,
    dst text,
    proto text,
    rule text,
    service text,
    s_port text,
    agent text,
    orig_from text,
    orig_to text,
    from text,
    to text,
    reason text,
    cat_server text,
    category text,
    xlatesrc text,
    xlatedst text,
    NAT_rulenum text,
    NAT_addtnl_rulenum text,
    xlatedport text,
    xlatedsport text,
    icmp_type text,
    icmp_code text,
    th_flags text,
    message_info text,
    message text,
    DCE_RPC_Interface_UID text,
    ip_id text YES,
    ip_len text YES,
    ip_offset text,
    fragments_dropped text,
    during_sec text,
    log_sys_message text,
    rpc_prog text,
    user text,
    TCP_packet_out_of_state text,
)
```

Barry Anderson
Check Point firewalls - rulebase cleanup and performance tuning

tcp_flags text,
res_action text,
resource text,
ICMP text,
ICMP_Type text,
ICMP_Code text,
Attack_Info text,
attack text,
session_id text,
dns_query text,
dns_type text,
reject_category text,
Packet_info text,
Total_logs text,
Suppressed_logs text,
Application_Info text,
reject_id text,
sys_message text,
srname text,
Internal_CA text,
serial_num text,
dn text,
cp_message text,
cluster_info text,
URL_filter_pattern_detected text,
CP_Condition text,
StormAgentName text,
StormAgentAction text,
System_Alert_message text,
Object text,
Event text,
Parameter text,
Current_value text,
auth_method text,
sync_info text
)

Barry Anderson
8. **Appendix C: Source Code – export.pl**

```
#!/usr/bin/perl

# Invoke as ./export.pl <node> in the same directory as the gzipped logfiles
# script expects gzipped logfiles to be named:
# <node>__<year>–<month>–<day>_<hour>*.log

$node=shift;
$year=shift;
$month=shift;

foreach $file (glob("$node__$year-$month-*.$log.gz")) {
    $logfile = $file;
    $logfile =~ s/.log.gz/.log/;
    $datafile = $logfile;
    $datafile =~ s/.log/.txt/;
    $logfiles = $file;
    $logfiles =~ s/.log/.log*/;
    $uncomp_logfiles = $logfiles;
    $uncomp_logfiles =~ s/.gz//;
    `time gunzip $logfiles`;
    `time fwm logexport -n -i ./$logfile -o ./$datafile`;
    `time gzip $uncomp_logfiles`;
    `time bzip2 $datafile`;
}
```
Check Point firewalls - rulebase cleanup and performance tuning

9. **Appendix D: Source Code – load.pl**

```perl
#!/usr/bin/perl
# Invoke as ./load.pl {mysql|postgresql} <node>
# start in the same directory as the bzipped exported logfiles
# load.pl supports both MySQL and PostgreSQL and most importantly
# handles the fact that fields in Check Point FireWall-1 logs appear in
# non-deterministic order;

$database = shift;
if ($database ne "mysql" and $database ne "postgresql") {
    die("Script only supports MySQL and PostgreSQL. Giving up");
}

$node=shift;
foreach$file (glob("${node}*.txt.bz2")) {
    $datafile = $file;
    print $datafile, "\n";
    `time bunzip2 $datafile`;
    $datafile =~ s/.bz2$//;
    open( CPLOG, $datafile );
    $header = <CPLOG>;
    chomp($header);
    $header =~ s/\-_/_/g;
    $header =~ s/\\//g;
    $header =~ s/Condition/CP_Condition/g;
    open( SQL, ">sql.${datafile}" );

    if ( $database eq "mysql" ) {
        print SQL "LOAD DATA INFILE ",cwd(),"$/datafile' INTO TABLE logs FIELDS TERMINATED BY ',' IGNORE 1 LINES ("join(',',split (/;/, $header)), ");"
    } elsif ( $database eq "postgresql" ) {
        print SQL 'COPY logs("", join("","",split (/;/, $header)), '') FROM ",", "$file, "", " DELIMITER ";' CSV HEADER
    } else {
        die "Unsupported database engine";
    }

    close SQL;

    if ( $database eq "mysql" ) {
        `time mysql audit < sql.${datafile}`;
    }
```

Barry Anderson 19
Check Point firewalls - rulebase cleanup and performance tuning

```bash
} elsif ( $database eq "postgresql" ) {
    `time psql audit < sql.$(datafile)`;
} else {
    print "Unsupported database engine.\n";
} `time bzip2 $(datafile)`;
```
Check Point firewalls - rulebase cleanup and performance tuning

Appendix E: Source Code - sample sql queries

Here’s an example script that creates new database tables for further analysis. We’re putting the ftp, https and telnet traffic from each day in July into a separate table. We’re not interested in traffic to isc.sans.org. Notice that strictly speaking we’ve cheated, looking up isc.sans.org in advance, however this isn’t necessary as we can build either build database user-defined functions to do this work for us, or, more sensibly, do this work in our script.

#!/usr/bin/perl

$database = $database ? $database : shift;
if ($database ne "mysql" and $database ne "postgresql") {
 die("Script only supports MySQL and PostgreSQL. Giving up");
}

open(SQL, ">sql");
foreach $protocol_iterator ("ftp", "https", "telnet") {
 foreach $date_iterator (1..31) {
 $datestring = sprintf("200807%02d", $date_iterator);
 print SQL "select * into ${protocol_iterator}_logs_${datestring} from logs where date like '${date_iterator}Jul2008' and service like ", $protocol_iterator, '% and action like 'accept' and dst not in ('65.173.218.96', '65.173.218.95');
 }
}

close SQL;

if ($database eq "mysql") {
 `mysql audit < sql`;
} elseif ($database eq "postgresql") {
 `psql audit < sql`;
} else {
 print "Unsupported database engine.
";
}

Barry Anderson
Check Point firewalls - rulebase cleanup and performance tuning

Here’s an example query that counts SMTP connections over the period for which we have logs. All of them. Unless you know what you’re doing (and own the machine you’re doing it on, which doesn’t run any busy production-like databases) this is almost certainly a horrible mistake!

```perl
#!/usr/bin/perl

$database = shift;
if ($database ne "mysql" and $database ne "postgresql") {
    die("Script only supports MySQL and PostgreSQL. Giving up");
}

open( SQL, ">sql" );
print SQL "select count(*) from logs where service like 'smtp%' and action like 'accept';"
close SQL;

if ( $database eq "mysql" ) {
    `mysql audit < sql`;
} elsif ( $database eq "postgresql" ) {
    `psql audit < sql`;
} else {
    print "Unsupported database engine.\n";
}
```

Barry Anderson
Upcoming Training

<table>
<thead>
<tr>
<th>Event</th>
<th>Location</th>
<th>Dates</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>SANS Network Security 2020</td>
<td>Las Vegas, NV</td>
<td>Sep 20, 2020 - Sep 25, 2020</td>
<td>CyberCon</td>
</tr>
<tr>
<td>SANS Australia Spring 2020</td>
<td>, Australia</td>
<td>Sep 21, 2020 - Oct 03, 2020</td>
<td>Live Event</td>
</tr>
<tr>
<td>SANS Australia Spring 2020 - Live Online</td>
<td>, Australia</td>
<td>Sep 21, 2020 - Oct 03, 2020</td>
<td>CyberCon</td>
</tr>
<tr>
<td>SANS Northern VA - Reston Fall 2020</td>
<td>Reston, VA</td>
<td>Sep 28, 2020 - Oct 03, 2020</td>
<td>CyberCon</td>
</tr>
<tr>
<td>SANS Amsterdam October 2020</td>
<td>, Netherlands</td>
<td>Oct 05, 2020 - Oct 10, 2020</td>
<td>CyberCon</td>
</tr>
<tr>
<td>SANS Orlando 2020</td>
<td>Orlando, FL</td>
<td>Oct 12, 2020 - Oct 17, 2020</td>
<td>CyberCon</td>
</tr>
<tr>
<td>SANS October Singapore 2020 - Live Online</td>
<td>Singapore, Singapore</td>
<td>Oct 12, 2020 - Oct 24, 2020</td>
<td>CyberCon</td>
</tr>
<tr>
<td>SANS Dallas Fall 2020</td>
<td>Dallas, TX</td>
<td>Oct 19, 2020 - Oct 24, 2020</td>
<td>CyberCon</td>
</tr>
<tr>
<td>SANS San Francisco Fall 2020</td>
<td>San Francisco, CA</td>
<td>Oct 26, 2020 - Oct 31, 2020</td>
<td>CyberCon</td>
</tr>
<tr>
<td>South by Southeast Asia Nov 2020</td>
<td>, Singapore</td>
<td>Nov 02, 2020 - Nov 14, 2020</td>
<td>CyberCon</td>
</tr>
<tr>
<td>SANS Sydney 2020 - Live Online</td>
<td>Sydney, Australia</td>
<td>Nov 02, 2020 - Nov 14, 2020</td>
<td>CyberCon</td>
</tr>
<tr>
<td>SANS Rocky Mountain Fall 2020</td>
<td>Denver, CO</td>
<td>Nov 02, 2020 - Nov 07, 2020</td>
<td>CyberCon</td>
</tr>
<tr>
<td>SANS London November 2020</td>
<td>, United Kingdom</td>
<td>Nov 02, 2020 - Nov 07, 2020</td>
<td>CyberCon</td>
</tr>
<tr>
<td>SANS Sydney 2020</td>
<td>Sydney, Australia</td>
<td>Nov 02, 2020 - Nov 14, 2020</td>
<td>Live Event</td>
</tr>
<tr>
<td>SANS Gulf Region 2020</td>
<td>Dubai, United Arab Emirates</td>
<td>Nov 07, 2020 - Nov 26, 2020</td>
<td>CyberCon</td>
</tr>
<tr>
<td>Tokyo November Live Online 2020</td>
<td>, Japan</td>
<td>Nov 09, 2020 - Nov 14, 2020</td>
<td>CyberCon</td>
</tr>
<tr>
<td>SANS San Diego Fall 2020</td>
<td>San Diego, CA</td>
<td>Nov 16, 2020 - Nov 21, 2020</td>
<td>CyberCon</td>
</tr>
<tr>
<td>SANS Munich November 2020</td>
<td>, Germany</td>
<td>Nov 16, 2020 - Nov 21, 2020</td>
<td>CyberCon</td>
</tr>
<tr>
<td>SANS Atlanta Fall 2020</td>
<td>Atlanta, GA</td>
<td>Nov 16, 2020 - Nov 21, 2020</td>
<td>CyberCon</td>
</tr>
<tr>
<td>SANS SEC401 (In Spanish) Online 2020</td>
<td>, United Arab Emirates</td>
<td>Nov 16, 2020 - Nov 27, 2020</td>
<td>vLive</td>
</tr>
<tr>
<td>SANS Austin Fall 2020</td>
<td>Austin, TX</td>
<td>Nov 30, 2020 - Dec 05, 2020</td>
<td>CyberCon</td>
</tr>
<tr>
<td>SANS Frankfurt November 2020</td>
<td>, Germany</td>
<td>Nov 30, 2020 - Dec 05, 2020</td>
<td>CyberCon</td>
</tr>
<tr>
<td>SANS London December 2020</td>
<td>, United Kingdom</td>
<td>Dec 07, 2020 - Dec 12, 2020</td>
<td>CyberCon</td>
</tr>
<tr>
<td>SANS Nashville 2020</td>
<td>Nashville, TN</td>
<td>Dec 07, 2020 - Dec 12, 2020</td>
<td>CyberCon</td>
</tr>
<tr>
<td>SANS Cyber Defense Initiative 2020</td>
<td>Washington, DC</td>
<td>Dec 14, 2020 - Dec 19, 2020</td>
<td>CyberCon</td>
</tr>
<tr>
<td>SANS OnDemand</td>
<td>Online</td>
<td>Anytime</td>
<td>Self Paced</td>
</tr>
<tr>
<td>SANS SelfStudy</td>
<td>Books & MP3s Only</td>
<td>Anytime</td>
<td>Self Paced</td>
</tr>
</tbody>
</table>