GIAC

CERTIFICATIONS

Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?

Check out the list of upcoming events offering

"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

Check Point firewalls - rulebase cleanup and performance tuning

Check Point firewalls - rulebase cleanup and performance

tuning

GSEC Gold Certification
Author: Barry Anderson, shori@bigpond.net.au

Adviser: John Bambenek

Accepted:

Barry Anderson 1

© SANS Institute 2008, Author retains full rights.

Check Point firewalls - rulebase cleanup and performance tuning

Outline
1. ADSIIAC. ... 3
2. INtrodUCHION. ... 4
3. ProCeAUre. 6
The APPIrOaCK. ... e 6
Cleanup vs Performance TUNING.........ccouiiiiie i 6
I =0 (=T 01 7
4. CONCIUSION. 12
5. REfEIENCES.o 13
6. Appendix A: database schema—logstable..................ccooiiiiii i, 14
7. Appendix B: Source Code — create_table.sql...................cooiiiiiiiii, 16
8. Appendix C: Source Code — export.pl...........coiiiiiiiii e 18
9. Appendix D: Source Code —load.pl...........coovriiiiii e, 19
10. Appendix E: Source Code —sample sql queries................cccoviiiiiiiiiiininn, 21
Barry Anderson 2

© SANS Institute 2008, Author retains full rights.

Check Point firewalls - rulebase cleanup and performance tuning

1. Abstract

Firewall rulebases tend naturally toward disorder over time, and as the size of the
ruleset grows, the performance of the firewall starts to suffer. In this paper, a simple
procedure for culling unused rules and ordering the rulebase for performance will be
presented. The procedure uses open-source software and purpose-built tools (which will be
provided) and has been used to cleanup the rulebase of large firewalls at a major financial
institution. Anyone interested in improving the performance of their Check Point firewall

and/or improving their position come the next audit should read this paper.

Barry Anderson 3

© SANS Institute 2008, Author retains full rights.

Check Point firewalls - rulebase cleanup and performance tuning

2. Introduction

Administrators may come and administrators may go, but firewall rules go on forever
(with apologies to Tennyson). Firewall rulebases tend naturally toward disorder over time and,
for Check Point firewalls in particular, as the size of the ruleset grows, the performance of the

firewall suffers.

To some extent, the assertion that firewall rulebases tend towards disorder is perhaps
an inevitable result of the inherent complexity of managing a complex web of interconnections
(or the Second Law of Thermodynamics at work), however there are relatively simple steps
that we as firewall administrators can take to improve the situation, and in this paper, a
procedure for culling unused rules and ordering the rulebase for performance will be
presented. The procedure uses a provided framework of database queries and supporting
perl scripts (see the appendices) and has been used effectively with free/open source
database software on large projects such as cleaning up the rulebase of large firewalls at
major financial institutions, as well as to audit a large (complex) rulebase to ensure that a

firewall replacement and decommissioning project was not going to go horribly wrong.

The other major benefit of periodically cleaning up the firewall rulebase lies in the

administrator’s increased ability to respond (truthfully!) to auditors’ inevitable questions about

Barry Anderson 4

© SANS Institute 2008, Author retains full rights.

Check Point firewalls - rulebase cleanup and performance tuning

firewall ruleset review.

While there are commercial products with similar functionality — Check Point’s Eventia
Reporter and Tufin’s SecureTrack are two such products - the advantages of a framework
and procedure over a product are twofold: firstly, increased flexibility and secondly, decreased

cost.

In the interests of full disclosure it must be admitted that there is also a disadvantage to
the procedure and associated framework compared to using a commercial product — that’s
that the increased flexibility comes at the price of some extra work — if you have a great idea
for a report you can do on the data you have, the answer is “Sounds fabulous, you should do

that”, versus “Would you like to submit a Request For Enhancement to Engineering?”

Barry Anderson 5

© SANS Institute 2008, Author retains full rights.

Check Point firewalls - rulebase cleanup and performance tuning

3. Procedure

The Approach

The procedure for performance tuning a Check Point firewall rulebase is fairly simple:

1. move the most used rules to the top of the rulebase — with two important caveats

that we’ll discuss;

2. where it works to turn off logging, do so;

Cleanup vs Performance Tuning

Before beginning to discuss the above procedure in detail, it is necessary to briefly

touch on rulebase cleanup, of which there are two distinct types:

(i) where rules that contain “Any” in the SOURCE, DESTINATION or SERVICE fields
are replaced by more explicit rules (in practice, usually performed in haste in the

lead-up to an audit, but a useful function to perform periodically regardless);

(ii) where rules are removed from the rulebase (or better yet, disabled):

1) on the basis that they are never used (essentially this is simply the limit case of

Barry Anderson 6

© SANS Institute 2008, Author retains full rights.

Check Point firewalls - rulebase cleanup and performance tuning

the performance tuning approach above); or

2) for other reasons such as the decommissioning of a host or service or the expiry
of the period of a defined business need to access said host or service —
obviously in the case of expiry, you follow your organization’s procedures for

determining whether or not access is still required before simply revoking it.

The 7 Steps

1) Obtain management signoff — in writing. Seriously. This isn’t simply an exercise
in CYA, this is your opportunity to be in full communication about what you’re
planning and perhaps receive useful historical background about the rulebase at

the same time.

2) Obtain some database storage — the more, the better. “Which database should |
use?” That depends. If your DBA team is willing to give you a few terabytes of
SAN-connected database storage on one of your company’s databases for use
in a rulebase performance tuning/cleanup exercise — great! Otherwise simply
use what you do have, and if you don’t have anything try either MySQL or
PostgreSQL (both freely available Open Source Databases and both well suited

to the task at hand) and as much storage as you can lay hands on. The reason

Barry Anderson 7

© SANS Institute 2008, Author retains full rights.

Check Point firewalls - rulebase cleanup and performance tuning

for the storage recommendation is that not only will you probably want to end up
keeping more and more data, you’ll definitely want to speed up your queries by
indexing the data you do have. One caveat here: while useful results can be
produced with relatively small amounts of data on even a laptop, as the amount
of data involved grows server-class storage becomes an important
consideration. You do not want to be querying a 2 billion row database with

even a USB2.0 connection to your hard-drive. Trust me.

3) Create log tables — see Appendix B for the simplest example of an appropriate

table creation script.

4) Load the Check Point log files into the database — see Appendix C for export.pl,
the script that uses the Check Point fum logexport command to convert gzipped
firewall logs into a form suitable for loading into the database (and bzips them),
and Appendix D for load.pl, the script that takes the bzipped text logs,
uncompresses them, loads them into the database and recompresses them. At
this point building some indexes is highly recommended if you don’t want to
measure the next step in geological time! Space permitting, build indexes on

Src, Dst and Service at a minimum.

Barry Anderson 8

© SANS Institute 2008, Author retains full rights.

Check Point firewalls - rulebase cleanup and performance tuning

5) Query the database to build up an idea of which rules are your most commonly
used and which rules are used not at all. You can also use these queries to
build up rulesets to replace “Any” rules. See Appendix E for some sample

queries, including some queries that are more audit-related in nature.

6) Based on the results of Step 5, reorder the rulebase so that the most commonly
used rules are at the top. There are two caveats here; one is based on

functionality, the other on performance. The caveats are:

a. Drop rules — your intent here is not to change the functionality of the firewall
rulebase. “My drop rule is my most frequently hit rule — what should | do?”
Obviously though you can’t simply move your drop rule to the top of your
rulebase, in the situation where you have specific traffic that accounts for most
(or even a large percentage) of your dropped traffic, consider explicit drop rules,

which can be placed higher up the rulebase.

b. SecureXL - this is Firewall-1’s acceleration product and (assuming you haven’t
had to disable it due to certain features)...certain types of rule disable it and
(here’s the kicker) it doesn’t get disabled on a per-rule basis — once disabled, it’s

disabled for all rules from that point forward in the rulebase, so move your rules

Barry Anderson 9

© SANS Institute 2008, Author retains full rights.

Check Point firewalls - rulebase cleanup and performance tuning

that disable SecureXL towards the bottom of your rulebase. Check Point’s

fwaccel stat command gives you what you need here.

7) (Optional) Disable unused rules. Here Be Dragons. The performance win is
over, this step is really about rulebase maintenance and you should not try this
at home unless you are really comfortable about your ability to find new

employment, should the need arise!

a) Obtain signoff in writing from the Business Owner of the rule you are
about to disable. “But | already got Management Signoff in Step 1.”
That was from your boss. This is from the person who will come
screaming for both of your blood if something goes wrong at this
point. “How do | determine the Business Owner of a rule?” The

Business Owner should be in the comments field of your rules® (or

1 Experience shows that in large firewall teams what works to have in the Comments field is: (a) the
name, initials or username of the administrator making the change, (b) the date, (c) the reference in your
organization’s change control system, (d) the reference in your work request system if this is distinct from your

organization’s change control system, and (e) the expiry date (if any) of the rule. Your auditor will love you.

Barry Anderson 10

© SANS Institute 2008, Author retains full rights.

Check Point firewalls - rulebase cleanup and performance tuning

the information’s location referenced there) - if the information isn’t
there ask yourself “Who owns the business data or business process

that this rule controls access to?”

b) Disable the rule and move it after the drop rule. Why not to simply
remove the rule is so that if after having done your due diligence you
still manage to disable the wrong rule you can quickly re-enable it
(remembering to move it back above the drop rule). Examples of how
this undesirable state of affairs can nonetheless occur are: an ad-hoc
business process that hasn’t been triggered during the period for
which you have logs or a log-lived connection e.g. BGP that hasn't

been established during the period for which you have logs.

C) Monitor carefully and perhaps even set up a side-channel with your
helpdesk so that you get notified for any issues which even mightbe

related (in addition to rather than instead of the usual support teams).

Barry Anderson 11

© SANS Institute 2008, Author retains full rights.

Check Point firewalls - rulebase cleanup and performance tuning

4. Conclusion

These procedures have been used at multiple financial institutions, including both
banks and insurance companies, in the course of performing incident handling, performance
tuning, audits, rule review and cleanup. A procedure very similar to the procedure described
here was used on a High Availability firewall cluster where the active node’s CPU was running
at 35%: after the four most utilized rules were identified and moved to the top of the rulebase

and logging turned off on those rules, CPU utilization dropped to 4%.

Barry Anderson 12

© SANS Institute 2008, Author retains full rights.

Check Point firewalls - rulebase cleanup and performance tuning

5. References

[1] Tennyson, Lord Alfred 7he Brook “Men may come and men may go, but | go on for ever.”

[2] Eventia Reporter http://www.checkpoint.com/products/er/

[3] SecureTrack http://www.tufin.com/products_overview.php

[4] MySQL http://www.mysql.com/

[5] PostgreSQL http://www.postgresql.org/

Barry Anderson 13

© SANS Institute 2008, Author retains full rights.

Check Point firewalls - rulebase cleanup and performance tuning

6. Appendix A: database schema - logs table

Default Extra
Num text YES NULL
Date text YES NULL
Time text YES NULL
Orig text YES NULL
Type text YES NULL
Action text YES NULL
Alert text YES NULL
i_T name text YES NULL
i_f dir text YES NULL
Product text YES NULL
Src text YES NULL
Dst text YES NULL
Proto text YES NULL
Rule text YES NULL
Service text YES NULL
S_port text YES NULL
Agent text YES NULL
orig_from text YES NULL
orig_to text YES NULL
From text YES NULL
To text YES NULL
Reason text YES NULL
cat_server text YES NULL
Category text YES NULL
Xlatesrc text YES NULL
Xlatedst text YES NULL
NAT_rullenum text YES NULL
NAT _addtnl_rulenum text YES NULL
Xlatedport text YES NULL
Xlatesport text YES NULL
Icmp_type text YES NULL
Icmp_code text YES NULL
th_flags text YES NULL
message_info text YES NULL
Message text YES NULL
DCE_RPC_Interface UID text YES NULL
ip_id text YES NULL
ip_len text YES NULL
ip_offset text YES NULL
fragments_dropped text YES NULL
During_sec text YES NULL
log_sys message text YES NULL
rpc_prog text YES NULL
User text YES NULL
TCP_packet out of state text YES NULL
Barry Anderson 14

© SANS Institute 2008, Author retains full rights.

Check Point firewalls - rulebase cleanup and performance tuning

Note that this is an extremely simple schema — everything is represented as a string.

Barry Anderson 15

© SANS Institute 2008, Author retains full rights.

Check Point firewalls - rulebase cleanup and performance tuning

7. Appendix B: Source Code — create_table.sql

CREATE TABLE logs

¢
num text,
date text,

time text,

orig text,

type text,
action text,
alert text,

i_T _name,

i_f dir text,
product text,
src text,

dst text,

proto text,

rule text,
service text,
s_port text,
agent text,
orig_from text,

orig_to text,
from text,

to text,

reason text,
cat_server text,
category text,
xlatesrc text,

xlatedst text,

NAT _rulenum text,
NAT_addtnl_rulenum text,
xlatedport text,
xlatesport text,

icmp_type text,

icmp_code text,

th_flags text,
message_info text,
message text,
DCE_RPC_Interface UID text,
ip_id text YES,

ip_len text YES,
ip_offset text,
fragments_dropped text,
during_sec text,

log_sys message text,
rpc_prog text,

user text,
TCP_packet _out_of state text,

Barry Anderson 16

© SANS Institute 2008, Author retains full rights.

Check Point firewalls - rulebase cleanup and performance tuning

tcp_flags text,
res_action text,
resource text,

ICMP text,

ICMP_Type text,
ICMP_Code text,
Attack_Info text,
attack text,
session_id text,
dns_query text,
dns_type text,
reject _category text,
Packet_info text,

Total _logs text,
Suppressed_logs text,
Application_Info text,
reject_id text,
sys_message text,
srcname text,
Internal_CA text,
serial_num text,

dn text,

cp_message text,
cluster_info text,
URL_Filter_pattern_detected text,
CP_Condition text,
StormAgentName text,
StormAgentAction text,
System_Alert_message text,
Object text,
Event text,

Parameter text,
Current_value text,
auth_method text,
sync_info text

)

Barry Anderson 17

© SANS Institute 2008, Author retains full rights.

Check Point firewalls - rulebase cleanup and performance tuning

8. Appendix C: Source Code — export.pl

#!/usr/bin/perl

Invoke as ./export.pl <node> in the same directory as the gzipped logfiles
script expects gzipped logfiles to be named:

<node>__<year>-<month>-<day>_<hour>*.log

$node=shift;
$year=shift;
$month=shift;

foreach $file (glob("${node} ${year}-${month}-*.log.gz")) {
$logfile = $file;
$logfile =~ s/.log.gz/.log/;
$datafile = $logfile;
$datafile =~ s/.log/.txt/;
$logfiles = $file;
$logfiles =~ s/.log/.log*/;
$uncomp_logfiles = $logfiles;
$uncomp_logfiles =~ s/.gz//;
“time gunzip $logfiles”;
“time fwm logexport -n -i ./${logfile} -o ./${datafile} ;
“time gzip $uncomp_logfiles”;
“time bzip2 $datafile’;

Barry Anderson 18

© SANS Institute 2008, Author retains full rights.

Check Point firewalls - rulebase cleanup and performance tuning

9. Appendix D: Source Code - load.pl

#!/usr/bin/perl

Invoke as ./load.pl {mysql|postgresql} <node>

start in the same directory as the bzipped exported logfiles

load.pl supports both MySQL and PostgreSQL and most importantly

handles the fact that fields in Check Point FireWall-1 logs appear in
non-deterministic order;

$database = shift;

if ($database ne "mysql" and $database ne "postgresql") {
die("Script only supports MySQL and PostgreSQL. Giving up");
}

$node=shift;

foreach $file (glob("${node}*.txt.bz2")) {
$datafile = $file;
print $datafile, "\n";
“time bunzip2 $datafile”;
$datafile =~ s/.bz2%//;
open(CPLOG, $datafile);
$header = <CPLOG>;
chomp($header);
$header =~ s/ /_/g;
$header =~ s/\-/_/g;
$header =~ s/\//_/g;
$header =~ s/\://g;
$header =~ s/Condition/CP_Condition/g;
open(SQL, ">sql.${datafile}");

if ($database eq “mysql”) {
print SQL "LOAD DATA INFILE '",cwd(),"/${datafile}' INTO TABLE logs FIELDS
TERMINATED BY ';' IGNORE 1 LINES (",join(',',split (/;/, $header)), ");";

}
elsif ($database eq “postgresql”) {
print SQL 'COPY logs("', join('","',split (/;/, $header)), '") FROM ', "', ¢$file,
“rv " DELIMITER ';' CSV HEADER\n";
}

else {
die “Unsupported database engine”;

}

close SQL;

if ($database eq “mysql”) {
“time mysql audit < sql.${datafile} ;

Barry Anderson 19

© SANS Institute 2008, Author retains full rights.

Check Point firewalls - rulebase cleanup and performance tuning

elsif ($database eq “postgresql”) {
“time psql audit < sql.${datafile} ;

}
else {
print “Unsupported database engine.\n”;
}
“time bzip2 $datafile”;
}
Barry Anderson 20

© SANS Institute 2008, Author retains full rights.

Check Point firewalls - rulebase cleanup and performance tuning

Appendix E: Source Code - sample sql queries

Here’s an example script that creates new database tables for further analysis. We're
putting the ftp, https and telnet traffic from each day in July into a separate table. We’re not
interested in traffic to isc.sans.org. Notice that strictly speaking we’ve cheated, looking up
isc.sans.org in advance, however this isn’t necessary as we can build either build database

user-defined functions to do this work for us, or, more sensibly, do this work in our script.

#!/usr/bin/perl

$database = shift;

if ($database ne "mysql" and $database ne "postgresql") {
die("Script only supports MySQL and PostgreSQL. Giving up");
}

open(SQL, ">sql");
foreach $protocol iterator ("ftp", "https"”, "telnet") {
foreach $date_iterator (1..31) {
$datestring = sprintf("200807%02d", $date_iterator);
print SQL "select * into ${protocol_iterator}_logs_${datestring} from logs where
date like '${date_iterator}Jul2008' and service like '", $protocol_iterator, "%' and
action like 'accept' and dst not in ('65.173.218.96°, €65.173.218.95');\n"
}
}
close SQL;

if ($database eq “mysql”) {
“mysql audit < sql”;
}
elsif ($database eq “postgresql”) {
“psql audit < sql’;
}
else {
print “Unsupported database engine.\n”;

}

Barry Anderson 21

© SANS Institute 2008, Author retains full rights.

Check Point firewalls - rulebase cleanup and performance tuning

Here’s an example query that counts SMTP connections over the period for which we
have logs. All of them. Unless you know what you’re doing (and own the machine you're
doing it on, which doesn’t run any busy production-like databases) this is almost certainly a

horrible mistake!

#!/usr/bin/perl

$database = shift;

if ($database ne "mysql" and $database ne "postgresql") {

die("Script only supports MySQL and PostgreSQL. Giving up");

}

open(SQL, ">sql");

print SQL "select count(*) from logs where service like 'smtp%' and action like 'accept’;

close SQL;

if ($database eq “mysql”) {
“mysql audit < sql”;
}

elsif ($database eq “postgresql”) {
“psql audit < sql’;
}

else {
print “Unsupported database engine.\n”;

}

Barry Anderson 22

© SANS Institute 2008, Author retains full rights.

