
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

Configuration Management with
Windows PowerShell Desired State Configuration

(DSC)

GIAC (GSEC) Gold Certification

Author: Brian E. Quick, brian@brianequick.com!
Advisor: Hamed Khiabani, Ph.D.!

Accepted: Aug 15th 2015

Abstract

Keeping!information!system!baselines!consistent!with!a!formal!configuration!
management!plan!can!be!a!very!difficult!task.!Changes!to!server!based!systems!and!
networking!must!be!monitored!in!order!to!provide!some!measure!of!compliance.!!
A!new!distributed!configuration!management!platform!by!Microsoft®!called!Desired!
State!Configuration!(DSC)!makes!this!task!easier.!!

The!objective!of!this!paper!is!to!describe!in!depth!how!PowerShell!4.0!can!help!to!
solve!this!common!problem.!DSC!uses!a!declarative!syntax!that!any!skilled!
administrator!can!utilize!to!deploy!software,!monitor!configuration!drift!and!even!
report!conformance.!DSC!is!crossJplatform!compatible!with!hundreds!of!useful!
resources!freely!available.!DSC!leverages!PowerShell!4.0!and!gives!administrators!a!
useful!way!to!automate!configuration!management.!

Configuration Management with Windows PowerShell Desired State Configuration! 2

brian@brianequick.com!!

1. Introduction

Every organization serious about information system security must be able to account

for configuration changes. Most organizations create a formal configuration management

(CM) plan but struggle to control configuration changes. Information systems are

constantly changing to make services available to customers while balancing performance

with adequate security. A recent Algosec network security survey concluded that poor

change management poses the greatest challenge in managing risk due to poor processes

and a lack of information system visibility. More than 80% of respondents experienced

network or application outages resulting from out-of-process changes (Algosec, 2014).

Organizations need more reliable automated mechanisms that help identify information

system changes, control unauthorized changes and validate a formal change management

process. Microsoft® has a relatively new feature called Desired State Configuration

(DSC) released with Windows PowerShell 4.0. Windows PowerShell is also called

Windows Management Framework because of its fundamental design. DSC can provide

the reliability and extensibility needed to plan, deploy and monitor configuration changes.

Any organization with a Microsoft® Windows network and administrators adept with

PowerShell could use DSC to make configuration management goals a reality.

2. Why Adopt Desired State Configuration (DSC)

DSC offers some measurable benefits over group policy objects (GPO). DSC is

capable of measuring if the configuration of specific nodes has drifted from an approved

baseline. Measuring and communicating GPO effectiveness is often difficult in large

enterprises. To measure GPO effectiveness, administrators frequently resort to the

gpresult command commonly used to troubleshoot GPO conflicts and analyze the

Resultant Set of Policy. Conflicts and errors in applying GPO’s are also common with

filtering, linking, blocking of inheritance or other GPO’s controlling an object due to

higher precedence. GPO’s can also be relatively easy to defeat if the end user wishes to

prevent a given GPO from being applied. GPO’s require Windows Active Directory and

Configuration Management with Windows PowerShell Desired State Configuration! 3

brian@brianequick.com!!

are cumulative in the application of configuration policy, but these are not requirements

for DSC.

An organization wishing to more effectively monitor and control the configuration

of critical nodes may have to consider acquiring a third party application to accomplish

the task. However, what if this configuration management and reporting capability could

be included in a free upgrade? This DSC capability comes with the Windows

Management Framework (WMF) 4.0. Even greater DSC enhancements will come with

WMF 5.0, which will be provided to eligible Windows desktop operating systems as a

free upgrade built into Windows 10 to be released on 29 July 2015. An organization

managing a Windows based network infrastructure could benefit tremendously from this

capability to control and fix configuration drift. !

A first step for any organization that primarily uses a Windows network is to

conduct an inventory of operating system versions and PowerShell versions that may

already be installed. DSC also requires the installation of the .NET Framework 4.5 as a

pre-requisite to installing WMF 4.0. An organization could use the following information

found in Table 1 to assess its current Windows infrastructure.!

Table 1 – Requirements per Operating System and PowerShell Version

DSC can also be integrated with System Center Operations Manager (SCOM) to

receive configuration change alerts in order to validate critical nodes against an approved

baseline. !

Configuration Management with Windows PowerShell Desired State Configuration! 4

brian@brianequick.com!!

2.1 DSC Is Built on PowerShell 4.0

 Windows PowerShell is a task based command line shell and configuration

management framework built on the Microsoft® .NET framework. DSC is essentially an

extension of the PowerShell language and provides a declarative syntax to express a

configuration for information systems. Declarative means when an administrator is writing

a script using PowerShell they do not necessarily have to know how DSC will provide a

specific feature or software installation because the declarative syntax is more like an INI

type expression specifying what should be present on the node (Jones, & Siddaway, &

Hicks, 2014). A person with basic PowerShell skills can understand the declarative syntax

used in a DSC configuration script.

 Figure 1 - Sample Code of Declarative Syntax!

Configuration Management with Windows PowerShell Desired State Configuration! 5

brian@brianequick.com!!

PowerShell 4.0 introduced a new scripting keyword named "configuration".
This keyword enables the declaration of resources with an additional new dynamic

keyword named "node". Other new commands introduced are as follows in Table 2.

Command Modules Description

Get-DscResource
Gets desired state configuration resources

present on the computer.

Start-DscConfiguration Applies a configuration to a node.

Stop-DscConfiguration
Stops a configuration currently running a

configuration job.

Get-DscConfiguration
Gets the current configuration of the

node.

Test-DscConfiguration
Tests whether an actual configuration on

a node matches the desired configuration.

Restore-DscConfiguration
Restores the previous configuration for a

node.

Update-DscConfiguration
Runs the existing configuration on the

computer.

Get-DscLocalConfigurationManager
Gets the local configuration manager

(LCM) setting for a node.

Set-DscLocalConfigurationManager Applies LCM settings to a node.

New-DscCheckSum
Creates checksum files for DSC

documents and DSC resources.

Table 2 – DSC Commands Also Called DSC Cmdlets

Configuration Management with Windows PowerShell Desired State Configuration! 6

brian@brianequick.com!!

2.1.1 DSC Has Cross-Platform Compatibility Standards

PowerShell is designed to be an object based scripting language and makes DSC

possible. DSC is built on the Common Information Model (CIM) standard developed by

the Desktop Management Task Force (DMTF) and provides cross platform compatibility

with its language used to define managed elements in the Managed Object Format (MOF).

DSC uses Windows Remote Management (WinRM) technology as a communication

mechanism. WinRM is the Microsoft® implementation of web services for management

called WS-Management (WSMan) (Chaganti, 2014). The MOF is the primary

configuration language in defining how specific nodes should be configured. MOF files

can be created by PowerShell to describe the classes and instance definitions of a

configuration in textual form. MOF files can also be created by third party tools like

Puppet or Chef, and DSC is capable of applying them. MOF files are used by the Local

Configuration Manager (LCM) to enforce a precise configuration for each unique node

whether the operating system is Windows or Linux as seen in Figure 2 (Greene, 2014).

Figure 2 – DSC Configuration Concept Diagram

The LCM is the engine or agent of DSC and is installed when PowerShell 4.0 is installed.

How this configuration data is communicated to nodes is explained next.

2.1.2 DSC Has Flexible Modes of Operation

The architecture of DSC can be described as a push or pull mode of operation.

Push mode is best described as DSC being initiated manually from a server and the

configuration data being pushed out to connected nodes. This paper will show an instance

where a MOF file is pushed to another server. In contrast, the pull mode is described as

Configuration Management with Windows PowerShell Desired State Configuration! 7

brian@brianequick.com!!

each node requesting its specific MOF configuration file from the pull server at a pre-

defined refresh frequency in minutes. Communication between nodes can be configured

using Server Message Block (SMB), as in a common file share or using WSMan. In the

interest of security it is recommended as a best practice to configure WinRM

communications using HTTPS with a Secure Socket Layer (SSL) certificate when using

DSC in a production environment. PowerShell has built-in command modules called

“cmdlets” that make it easy to check, validate and configure the necessary WinRM

listeners enabling secure communication. Figure 3 provides a conceptual depiction of

DSC components in pull mode. !

Figure 3 - Pull Mode Operation with WinRM using HTTP or HTTPS!

Each node participating in DSC registers itself with the pull server using a global

unique ID (GUID). This GUID is sensitive information that correlates to a specific MOF

file designed uniquely for a specific node. The primary advantage of implementing DSC

in pull mode is scalability. A single pull server can provide DSC configurations to many

connected nodes with the additional benefit of specifying how often the LCM on each

node should check back with the pull server enforcing a configuration. Configuration

management procedures may dictate that general servers only need to have configuration

drift checked once every 48 hours, but every 15 minutes for critical servers that host

sensitive data where system changes could result in serious losses to the organization.

Configuration Management with Windows PowerShell Desired State Configuration! 8

 !
!

brian@brianequick.com! ! !!
!

!

Once the organization has agreed upon a planned baseline system, administrators and

developers can begin creating DSC scripts with resources necessary to deploy an approved

baseline.!

2.2 DSC Resources Offer Extensibility

2.2.1 Built-in DSC Resources!

 DSC comes with built-in resources also called resource providers, which are the

building blocks required to write configuration scripts and deploy configuration

management solutions. Twelve DSC resources are immediately available upon installation

of the WMF 4.0. Some of these built-in resources are "Archive", "Environment",
"File", "Group", "Log", "Registry" and "WindowsFeature". These

familiar names provide mechanisms to manage what each title implies. For example, an

administrator can use the "WindowsFeature" resource to make certain that the IIS and

ASP 4.5 roles are installed for multiple nodes. Administrators can open a PowerShell

command prompt and type in PS C:\> Get-WindowsFeature to see the very same

roles or features available in Server Manager that can be installed using DSC. The syntax

allows administrators to specify this in a configuration script by setting the “Ensure”

property equal to the value of “Present” demonstrating this easy to use declarative

syntax in DSC. If administrators planned to install all the sub features for the

"WindowsFeature" resource, they could simply insert the line

“IncludeAllSubFeature = $true” under the “Ensure” property. This

configuration script would create a MOF file used to enforce the configuration for the node

or nodes specified after the “Node” element. A small sample configuration script is shown

in Figure 4.!

Configuration Management with Windows PowerShell Desired State Configuration! 9

 !
!

brian@brianequick.com! ! !!
!

!

!

Figure 4 – Code Snippet using the new Configuration Keyword!

DSC resources that come with WMF 4.0, when installed on a given machine can be

displayed by using the PS C:\> Get-DscResource cmdlet. The output below in

Figure 5 shows the twelve built-in resources explained with the properties available with

each named resource. !

!
Figure 5 – Example List of Get-DscResource Output!

!!!!!!!!Once administrators identify a resource they want to utilize in their configuration

script, they can further expand and analyze all the properties available. A compound

command, like PS C:\> Get-DscResource WindowsFeature, can be used to

obtain more specific property information available for each resource. Specific property

and value information is shown below in Figure 6 for the “WindowsFeature”.

 Properties for all DSC resources such as “WindowsFeature”, are available,

making it very simple to declare what features an administrator or developer may want

installed on each node with specific help information available in PowerShell.!

Configuration Management with Windows PowerShell Desired State Configuration! 10

 !
!

brian@brianequick.com! ! !!
!

!

PS C:\> Get-DscResource WindowsFeature –Syntax

!

Figure 6 – Properties for the WindowsFeature Resource

 These properties can be shown for each DSC resource aiding developers in creating

configuration scripts using the built-in resources provided by PowerShell 4.0. What if

administrators need more resources or a unique capability that is not yet available in the

built-in resources that came with PowerShell 4.0? !

2.2.2 Experimental DSC Resources

 Since the 2013 release of WMF 4.0, Microsoft® and the development community

have collaborated to create many new DSC resource providers that are being released in

waves. Wave 10 is currently available with over fifty resources for use to create DSC

scripts for configuration management and many other deployment solutions (Microsoft,

2015).

The DSC Resource Kit can be obtained and downloaded here:

https://gallery.technet.microsoft.com/scriptcenter/DSC-Resource-Kit-All-c449312d

Microsoft has released DSC resources as beta versions; and although these resources may

not be fully supported by a Microsoft standard support program, organizations, such as

Amazon Web Services (AWS) and Rackspace, are using DSC because it is a powerful

tool. Amazon uses DSC to deploy IT infrastructure services with predefined

configurations, and Rackspace uses DSC to maintain and manage applications based on

customer defined requirements (Barr, 2014). The list of DSC resources continues to grow

due to the devops community discovering the benefits of DSC and making contributions

of their time and talent to develop new useful resources. There are an estimated two-

Configuration Management with Windows PowerShell Desired State Configuration! 11

 !
!

brian@brianequick.com! ! !!
!

!

hundred DSC resources when including the WMF 5.0 preview found at

https://www.powershellgallery.com with many seen below in Figure 7. !

Figure 7 - Built-in DSC Resources with Experimental Resources Included

2.2.3 Creating New DSC Resources

 If currently released resources do not meet the needs of an organization,

Microsoft® has made it possible for any developer to create new DSC resources.

(Murawski, 2014) Developers can create resources with the three mandatory functions

named "Get-TargetResource," "Set-TargetResource" and "Test-
TargetResource" that enable custom defined properties to be applied. Explaining

how to author new custom resources is outside the scope of this paper; however, an

excellent article written by Ritesh Modi can help explain in greater detail how to author

your own DSC custom resources (Modi, 2015).

Configuration Management with Windows PowerShell Desired State Configuration! 12

 !
!

brian@brianequick.com! ! !!
!

!

3. Deploying DSC in Pull Server Mode

3.1 Setting Up a Pull Server

 A DSC pull server can be setup in the following steps:

• Setup three servers with Windows Server 2012 R2 fully updated.

• Use the MakePullServer.ps1 script in this paper to create a MOF file.

• Use the pull server MOF file to push the configuration.

• Obtain certificates for client/server authentication if using HTTPS.

 A rudimentary scenario is used in this paper to explain how to create a simple DSC

pull server with a MOF file. The purpose of the DSC pull server is to help keep a WSUS

server consistent with an approved baseline documented in a signed system security plan.

The Server 2012 R2 operating system is utilized as three domain joined servers. The IIS

role and DSC service could be installed with the Add Roles and Features wizard built into

Server 2012 R2, but DSC will install most of the configurations needed for the new pull

server. This paper demonstrates implementing a basic pull server with three PowerShell

scripts. The first script to create the MOF file for the pull server; the second script will

create a MOF file for a WSUS server, and the third will be used to configure the LCM on

the WSUS server to make it a pull client. Server 2012 R2 will need additional resources

from the Wave 10 release. The administrator should place these resources in the

modules directory at this path ”C:\Program
Files\WindowsPowerShell\Modules” on all the servers. These new resources

can be seen by typing "Get-DscResource". The "DSCServiceFeature" is a

mandatory feature declared in the script along with

"xPSDesiredStateConfiguration" and "xDSCWebService". The

administrator will need another domain-connected server with the hostname of

"server2012r2" as seen on line 5 and line 52 of Figure 9. The script should be

executed in a PowerShell console using "Run as Administrator".
PS C:\MakePullServer> .\MakePullServer.ps1

Configuration Management with Windows PowerShell Desired State Configuration! 13

 !
!

brian@brianequick.com! ! !!
!

!

The MakePullServer.ps1 (Figure 9) script creates a MOF file. The instance definitions

created by this script can be seen in the following MOF file snippet in Figure 8.

Figure 8 - Snippet of Instance Definitions From a MOF file

Configuration Management with Windows PowerShell Desired State Configuration! 14

 !
!

brian@brianequick.com! ! !!
!

!

Figure 9 - Configuration Script used by PowerShell to Create a Pull Server MOF file.

The "Start-DSCConfiguration" cmdlet can be used to invoke a CIM session and

push the MOF file to "server2012r2" as seen in Figure 10 below (Hicks, 2015).

Figure 10 - A Simple Hash Table can now be used to Apply the MOF file to the Node

Configuration Management with Windows PowerShell Desired State Configuration! 15

 !
!

brian@brianequick.com! ! !!
!

!

Figure 11 - Verbose Output as the Configuration is Applied to "server2012r2"

 Figure 11 reveals verbose information as the push operation applies the

configuration to "Server2012r2". "Server2012r2" should be renamed to "pullserver", and

the administrator should now validate that the web services are functioning properly to

operate in pull mode. Administrators first need a certificate that will provide server

authentication. The certificate must be bound to the web service on the pull server. The

administrator may wish to install and utilize "IIS Manager" using the Server certificates

feature, add it there with “complete certificate request” and, when prompted, browse to the

certificate file. When the MOF file configuration was pushed to the new pull server the

following tasks were accomplished on the "pull server":

• Created a directory at "c:\inetpub\wwwroot\PSDSCPullServer"

Configuration Management with Windows PowerShell Desired State Configuration! 16

 !
!

brian@brianequick.com! ! !!
!

!

• Copied five files from

"$pshome/Modules/PSDesiredStateConfiguration/PullServer"

Global.asax, PSDSCPullServer.mof, PSDSCPullServer.svc,

PSDSCPullServer.xml and PSDSCPullServer.config to the following path

"c:\inetpub\wwwroot\PSDSCPullServer"

• Renamed PSDSCPullServer.config to web.config.

• Created a new directory named "c:\inetpub\wwwroot\bin”.

• Copied Devices.mdb at

"$pshome\modules\psdesiredstateconfiguration\pullserver
\Devices.mdb" and place it in

"$env:programfiles\WindowsPowerShell\DscService\Devices
.mdb"

 Using the IIS web server manager, the administrator should verify that a new

application pool named "PSWS" is running under the local system account. The final step

in configuring web services is to add a database provider to the web.config configuration

file by adding keys as seen in Figure 12 to the "appsettings" section of the web.config file

at "C:\inetpub\wwwroot\PSDSCPullServer\" (2013, Murawski). !

!
Figure 12 - Database Provider Configuration

 Finally, the administrator can verify that the pull server service is running by

navigating to the "PSDSCPullServer.svc" service using a web browser on the pull

server, as seen in Figure 13.

Configuration Management with Windows PowerShell Desired State Configuration! 17

 !
!

brian@brianequick.com! ! !!
!

!

Figure 13 - Verification that the New Pull Server is Functioning

 The second configuration script is designed to generate a MOF file for the WSUS

server. The "WindowsFeature" and "xFirewall" resource providers are used in this

example scenario to install Windows Update Services and a firewall exception adhering to

a simple baseline as seen in Figure 14.

Figure 14 - Script to Create the WSUS01 MOF File

The WSUS.ps1 script is also executed using "Run as Administrator" credentials.

Configuration Management with Windows PowerShell Desired State Configuration! 18

 !
!

brian@brianequick.com! ! !!
!

!

PS C:\WSUS\> .\WSUS.ps1

The important difference in using pull mode is that the target nodes are identified by a

Global Unique ID (GUID) rather than by a name. This method ensures that each target

node gets the proper MOF file created for a specific node configuration. The "New-
CheckSum" cmdlet is also used to generate a checksum of each MOF file to help protect

the integrity of the MOF files on the pull server (Technet, 2013). A code sample is

provided in Figure 15 providing a way to create these methods.

Figure 15 - GUID Creation

3.2 Setting Up Nodes to Communicate with the Pull Server

 Since clients must be able to receive configuration data from the pull server

administrators must validate that WinRM listeners are functioning properly for each node.

This validation can be done with "Test-WSMan" and then enabling the HTTP or HTTPS

listener as needed with the "Set-WSManQuickConfig" cmdlet (Hicks, 2013). A

certificate must be added to the local machine store when using HTTPS. The LCM on

"WSUS01" must be configured for pull mode, and the LCM.ps1 script as seen in Figure

16 will generate a special "meta.mof" file used for this purpose.

Configuration Management with Windows PowerShell Desired State Configuration! 19

 !
!

brian@brianequick.com! ! !!
!

!

Figure 16 - LCM.ps1 to Create LCM Meta MOF File for WSUS01

The "Set-DscLocalConfigurationManager" cmdlet can now be used to

configure the LCM on "WSUS01" to use pull server mode and shown in Figure 17.

Figure 17 - "Set-DscLocalConfigurationManager" to Apply the Meta MOF

The default mode of operation in DSC is push mode; so after applying the LCM meta

configuration, the new mode of operation on "WSUS01" should be pull mode as seen in

Figure 18 by using "Get-DscLocalConfigurationManager". The new LCM

Meta-Configuration shows "Pull" after the "RefreshMode" setting.

Configuration Management with Windows PowerShell Desired State Configuration! 20

 !
!

brian@brianequick.com! ! !!
!

!

Figure 18 - Local Configuration Manager Status on "WSUS01"

 As the engine of DSC, the LCM will now check back with the pull server every 15

minutes as seen after the "ConfigurationModeFrequencyMins" setting. Configuration drift

for "WSUS01" will now be corrected with the "ConfigurationMode" setting being defined

as "ApplyAndAutoCorrect". How to troubleshoot LCM issues or communication

problems with DSC logs is next.

3.3 Troubleshooting DSC with Logs

 DSC records errors and events like most Windows machines in logs that can be

viewed in "Event Viewer". These DSC logs are found under "Application and Service

logs.", "Microsoft", "Windows", and then "Desired State Configuration". Writing

configuration scripts can be challenging for beginners, and having logs will make problem

solving easier if issues arise. DSC created three primary logs: Operational, Analytic, and

Debug logs. Operational logs are turned on by default, but Analytic and Debug logging

must be enabled in order to be utilized for troubleshooting. The wevtutil utility can be

used to enable these logs (Technet, 2014).

PS C:\Users> wevtutil.exe set-log “Microsoft-Windows-

Dsc/Analytic” /q:true /e:true

PS C:\Users> wevtutil.exe set-log “Microsoft-Windows-

Dsc/Debug” /q:true /e:true

Configuration Management with Windows PowerShell Desired State Configuration! 21

 !
!

brian@brianequick.com! ! !!
!

!

 DSC also has two experimental resources that will help administrators analyze

DSC logs; the "xDscDiagnostics" and "Get-xDscOperation". These

resources have functions that help identify all local events from past DSC operations or

DSC events on remote nodes and operations running on one or more nodes (Technet,

2014).

4. Measuring System Changes with Compliance Server

 A formal configuration management plan seldom works well enough that all

changes are accounted for in a timely and accurate way as to provide a measure of those

changes against the approved baseline. Although relatively new, DSC offers an additional

web service along with the pull server service "PSDSCPullServer.svc" called the

compliance server "DSCComplianceServer.svc" service. The compliance server web

service was created for the purpose of measuring the status of each node connected to a

pull server. The pull operational status, configuration and node information is all stored in

the database configured previously (Figure 12) and can be used by administrators to

periodically check the status of the nodes to see if their configurations are in sync with the

pull server or not. This node status querying capability can be enhanced with a

lightweight data-interchange format called JavaScript Object Notation (JSON) to output

the information to any website. The type query information that can be obtained from

connected nodes is listed below.

• NodeCompliant - Information on the compliance of each node or nodes.

• ServerCheckSum - The checksum of the MOF on the pull server.

• TargetCheckSum - The checksum of the MOF on the target node.

• LastComplianceTime - The last successful node configuration.

• LastHeartbeatTime - The last successful node connection (Technet,

2013).

5. Conclusion
!!!!!!!!!!!!!Configuration!management!for!IT!systems!has!always!been!a!very!challenging!

endeavor.!!Tracking!and!accounting!for!system!changes!is!a!daunting!task!but!

Configuration Management with Windows PowerShell Desired State Configuration! 22

 !
!

brian@brianequick.com! ! !!
!

!

PowerShell!driven!DSC!provides!a!new!and!promising!builtJin!resource!that!any!

organization!using!a!Windows!network!infrastructure!can!utilize!to!monitor,!control!

and!report!compliance.!Uncontrolled!changes!to!information!systems!introduces!

serious!threats!that!often!go!undiscovered!until!more!serious!consequences!occur.!!

DSC!brings!developers!and!PowerShell!savvy!administrators!a!new!capability!making!

it!even!easier!to!automate!change!control!and!reporting.!!

Configuration Management with Windows PowerShell Desired State Configuration! 23

 !
!

brian@brianequick.com! ! !!
!

!

References!

Algosec. (2013). The State of Network Security 2013. Retrieved May 25, 2015, from

http://www.algosec.com/resources/files/surveys/140406_algosec_state_of_networ

k_security_2014.pdf

 Barr, J. (2014, September 29). Windows PowerShell Desired State Configuration (DSC)

 on Amazon Web Services Website. Retrieved from https://aws.amazon.com/

 blogs/aws/ powershell-dsc-setup-quick-ref/

 Chaganti, R. (2014). Windows PowerShell Desired State Configuration Revealed. !

 New York: Apress.!

 Greene, M. (2014, May 19). PowerShell DSC for Linux, Step by Step - Building Clouds !

 Blog - Site Home - TechNet Blogs. Retrieved from

http://blogs.technet.com/b/privatecloud/archive/2014/05/19/powershell-dsc-for-

linux-step-by-step.aspx!

 Hicks, J. (2015, March 13). Pluralsight. Retrieved from

 http://www.pluralsight.com/courses/advanced-powershell-dsc

 Hicks, J. (2013). PowerShell deep dives. Shelter Island, NY: Manning.

 Jones, D., Siddaway, R., & Hicks, J. (2013). PowerShell in depth: An administrator's

 guide. Shelter Island, NY: Manning Publications.

Koch, J. (2015). Getting Started with PowerShell Desired State Configuration (DSC)

Channel 9. Retrieved May 24, 2015, from

http://channel9.msdn.com/Series/Getting-Started-with-PowerShell-Desired-State-

Configuration-DSC!

 Lowe, S. (2014, July 15). Stateful Configuration with PowerShell Desired State !

 Configuration. Retrieved May 24, 2015, from !

 http://www.windowsnetworking.com/articles-tutorials/netgeneral/stateful-!

 configuration-powershell-desired-state-configuration.html!

Microsoft. (2014, May 15). Desired State Configuration Pull Model Protocol. Retrieved

from http://download.microsoft.com/download/9/5/E/95EF66AF-9026-4BB0-

A41D-A4F81802D92C/%5BMS-DSCPM%5D.pdf!

Configuration Management with Windows PowerShell Desired State Configuration! 24

 !
!

brian@brianequick.com! ! !!
!

!

Microsoft. (2015, April 1). TechNet DSC Resource Kit (All Modules) Wave 10.

Retrieved from https://gallery.technet.Microsoft.com/DSC-Resource-Kit-All-

c449312d!

 Modi, Ritesh. Authoring Desired State Configuration Custom Resources. Msdn 30.4 !

 (2015): 62-67. Web. 24 May 2015.!

Murawski, S. (2013, October 3). Building a Desired State Configuration Pull Server »

PowerShell.org. Retrieved from http://powershell.org/wp/2013/10/03/building-a-

desired-state-configuration-pull-server/!

Murawski, S. (2014). Building Desired State Configuration Custom Resources.

Retrieved May 24, 2015, from http://powershell.org/wp/2014/03/13/building-

desired-state-configuration-custom-resources/!

Technet. (2013, June 24). Using the DSC Resource Designer tool. Retrieved June 6, 2015,

from https://technet.microsoft.com/en-us/%5Clibrary/Dn249913.aspx !

Technet. (2014, December 3). Set-WSManQuickConfig. Retrieved from

https://technet.microsoft.com/en-us/library/hh849867(v=wps.630).aspx!

 Technet DSC Resource Kit. (2015, April 1). Retrieved from

 https://gallery.technet.microsoft.com/scriptcenter/DSC-Resource-Kit-All-

 c449312d

