
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Protocol Anomaly Detection for Network-based Intrusion Detection

Kumar Das
GSEC Practical Assignment Version 1.2f (amended August, 13, 2001)

Introduction

Intrusion detection has become an essential component of computer security in recent years.
Security administrators are complementing existing security measures with intrusion detection
systems (IDSs) to achieve defense in depth [1]. To be useful, an IDS must be selected and
configured with its environment in mind, and it must be monitored by knowledgeable personnel.
An effective IDS provides accurate and timely information about ongoing intrusions which is
necessary to protect today’s networks.

The role of an IDS is to warn administrators of suspicious and potentially malicious computer
activity. Most IDSs are passive warning devices that must be monitored by trained professionals.
Some IDSs, however, feature active response mechanisms to automate the intrusion recovery
process. Of the active response IDSs, some target the attacker and launch countermeasures to
inhibit the attacker system. The difficulty with launching countermeasures is ensuring the
authenticity of the attacker. Hackers often spoof IP addresses or use intermediary hosts during a
break-in. Disabling an alleged attacking system in such a scenario disrupts an innocent machine
and leaves the real attacker system unaffected. Another approach to active response is to target
the victim system. Typical victim responses attempt to repair the system, stop the current attack,
or prevent the machine from being exploited in the future. Unfortunately, measures taken against
the victim system are not always effective because it is difficult to determine the success of an
attack and the resulting damage. Incorrect responses may have ill effects on the victim system.
Regardless, repair takes a machine offline which is costly for production systems. The biggest
problem with active response mechanisms, however, is the current state of intrusion detection
technology.

Measuring IDSs

Current IDSs generate too many inaccurate alarms. Acting automatically on such alarms is very
dangerous. Simply stated, IDSs aren’t good enough yet. Worse yet, the concept of “good” isn’t
well defined for the intrusion detection problem. There are many factors to consider when
evaluating IDSs such as speed, cost, effectiveness, ease-of-use, scalability, and interoperability.
Without taking specific environment details into consideration, effectiveness and ease-of-use can
be used as general metrics to compare IDSs. Both factors measure general aptitude because they
are determined by the detection algorithm of the IDS.

Intrusion detection systems use sensors to collect data which is processed into events. Sensors
can process information from a variety of sources including network taps, syslog records, and
audit records. Sensor-generated events are then processed by a detection algorithm that
determines whether an event corresponds to an attack. In some IDSs, the algorithm does not

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

perform a binary classification into the categories “attack” or “not attack,” but assigns a n-valued
variable to describe event severity. For such IDSs, extra operator labor is required to determine if
an event is malicious based on the type of the event and the severity.

The detection algorithm maps incoming events to attacks and normal activity. The resulting
classification can be used to determine the effectiveness of an IDS. Effectiveness, as defined in
[2], is the ability of an IDS to maximize the detection rate while minimizing the false alarm rate
(false positive rate). In other words, a good IDS reports intrusions when they occur, and does not
report intrusions when they do not occur. Stefan Axelsson analyzed the intrusion detection
problem with Bayesian statistics and determined that the base-rate fallacy governs the
effectiveness of IDSs. The basic rate of incidence of an event, or the base-rate, is often
overlooked when calculating conditional probabilities. Simply stated in terms of intrusion
detection, the probability that an intrusion is actually occurring, given that an IDS reports an
intrusion, is dominated by the false alarm rate of the IDS. The important measure of an IDS is
not how frequently it detects attacks, but how infrequently it produces false alarms. He also
concluded that high false alarm rates found in modern IDSs show that none the products he
surveyed lived up to real-world expectations of effectiveness.

Given that intrusion detection is still a relatively new field, it is acceptable that none of the
products available today are extremely effective. Systems that are somewhat effective at
determining attacks are still useful, especially because of the computing power required to do
intrusion detection that makes it impossible to perform manually. Another important factor for
measuring IDSs is its ease-of-use. Because active response is not yet an acceptable technology,
human intervention is necessary to use IDSs. It is therefore necessary for IDSs to be intuitive
and easy to manage. Alarms from an IDS must be investigated by a security officer to separate
the real threats from the false alarms. The less false alarms an IDS generates, the easier it is for an
operator to find the real intrusions in his network. In terms of false alarms, ease-of-use and
effectiveness are closely related. However, ease-of-use also includes the user interface,
interoperability with other products, reporting capabilities, and investigation capabilities.

IDS Classification

A taxonomy was developed in [3] to define the space of intrusion detection technology and
classify IDSs. The taxonomy categorizes IDSs by their detection principle and their operational
aspects. The two main categories of detection principles are signature detection and anomaly
detection. The remainder of this paper will compare the two categories of detection principles
and describe a new type of anomaly detection based on protocol standards. While the taxonomy
applies to both host-based and network-based IDSs, this paper will focus on network-based IDSs
because protocol anomaly detection is unique to analyzing network traffic.

Signature detection, also known as misuse detection, attempts to identify events that misuse a
system. Signature detection is achieved by creating models of intrusions. Incoming events are
compared against intrusion models to make a detection decision. When creating signatures, the
model must detect an attack without any knowledge of normal traffic in the system. Attacks and
only attacks should match the model, otherwise false alarms will be generated. The simplest

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

form of misuse detection uses simple pattern matching to compare network packets against
binary signatures of known attacks. A binary signature may be defined for a specific portion of
the packet, such as the TCP flags. For instance, an attack signature for the land attack [4] would
match packets that had the SYN flag set and had the same source and destination IP. The
remaining content of the packet is irrelevant.

The signature detection method is good at detecting known attacks. A well crafted signature will
always detect the attack it represents. However, other packets may match the signature and
generate false alarms. Signature systems are typically easily customizable and knowledgeable
users can create their own signatures. Poorly formed signatures, however, are dangerous because
they cause false alarms. Another problem with signature detection is the large number of
signatures required to effectively detect misuse. Additional signatures detect more attacks but
also raise the probability that normal traffic will be incorrectly matched to a signature, thereby
reducing the system’s effectiveness. In practice, increasing the signature database reduces the
bandwidth of a signature-based IDS. Each packet must be compared against many signatures
and each comparison uses computational resources. At some point, when a signature database
grows too large, not all packets can be processed and some will be dropped, which also reduces
the detection rate and the overall effectiveness. With a constraint on bandwidth, operators are
forced to select only those signatures which are most important for their network. In addition,
new signatures are being developed more rapidly than new attacks are discovered. Recent
polymorphic attacks, such as ADMmutate [5] create the need for multiple signatures for a single
attack. Multi-functional attacks such as Nimda [6] also require multiple signatures. Changing a
single bit in some attack strings can invalidate a signature and create the need for an entirely new
signature. It is difficult for operators to incorporate such a multitude of new signatures into their
performance-limited signature databases. Despite such problems with signature-based intrusion
detection, they are very popular and work well in practice when configured correctly and
monitored frequently.

Anomaly detection, or not-use detection, differs from signature detection in the subject of the
model. Instead of modeling intrusions, anomaly detectors create a model of normal “use” and
look for activity that does not conform. Deviations are labeled as attacks because they do not fit
the “use” model, thus the name, not-use detection. The difficulty in creating an anomaly detector
is creating the model of normal “use.” The traditional method, called statistical or behavioral
anomaly detection, selects key statistics about network traffic as features for a model trained to
recognize normal activity. Unfortunately, live networks have very little invariants and are
anything but normal. Vern Paxson did a study of internet traffic in [7] and concluded that
statistics such as packet arrival times, connection arrival times, and website hits have much
variation. Too much statistical variation makes models inaccurate and events classified as
anomalies may not always be malicious. For example, a company’s employees might return to
their desks and check e-mail immediately following a company-wide meeting. The resulting
spike in SMTP activity is not normal for that time of the day or week but is not necessarily a
denial of service attempt against the mail server either, as a statistical anomaly detector might
label it. Another problem with this approach is the inability to train a model on a completely
“normal” network. Anomaly detection models must be trained on the specific network to be
monitored. It is naive to assume that a network with a connection to the Internet is clean when

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

the anomaly detector is being trained. If a burglar breaks into a house and leaves everything as he
found it, how will the owners know he was there? An administrator cannot be sure his network
is clean simply because it appears “normal.” Traditionally, anomaly detection systems aren’t as
popular as signature detection systems because of high false alarm rates created by inaccurate
models of normal “use.”

Protocol Anomaly Detection

A new variant of anomaly detection has been incorporated into IDSs in recent years. Instead of
training models on normal behavior, protocol anomaly detectors build models of TCP/IP
protocols using their specifications [8,9]. Statistical anomaly detection is plagued by the inability
to create a normal model of network traffic statistics. Protocol anomaly detection is much easier,
however, because protocols are well defined and a normal “use” model can be created with
greater accuracy. Protocols are created with specifications, known as RFCs, to dictate proper use
and communication. All connection oriented protocols have state. Certain events must take
place at certain times. As a result, many protocol anomaly detectors are built as state machines.
Each state corresponds to a part of the connection, such as a server waiting for a response from a
client. The transitions between the states describe the legal and expected changes between states.
For example, legal transitions from the “server waiting” state are the “client sends data” state,
“client cuts connection” state, or the “server timeout” state.

While the specifications in RFCs are not always complete, they give a good starting point for
building a model. One common addition while building a “use” model is to allow for accepted
deviations from the RFCs [8,9]. For instance, not all software applications are created with the
rules of a protocol in mind. Microsoft may not follow all of the SMTP standards when creating a
mail server. However, if the mail server works, and non-malicious traffic for the mail server is
frequently seen on the network, it is acceptable to program the model to recognize such traffic as
normal.

Most of the benefits of protocol anomaly detection come from the simplicity and elegance of the
“use” method of detection. It is much simpler to model the correct use of a protocol than to
model the misuse of a protocol. New attack methods and exploits are constantly being
discovered, many of which violate protocol standards. The space of malicious attack signatures
is growing at an incredible rate. As such, attack signature databases must be updated frequently
to effectively detect attacks. In comparison, new protocols and extensions to existing protocols
are being developed at a much slower rate. The space of network protocols is well-defined and
changing slowly. Protocol anomaly detectors are able to detect most new attacks without being
updated because the new attacks deviate from the protocol specifications.

The elegance of the “use” model of detection has other benefits as well. Protocol anomaly
detection systems are easier to use because they require no signature updates. Occasionally, new
protocols will be developed or new protocol extensions will become popular and it is necessary
to update or add new protocol state machines to an IDS. However, the frequency of such
updates is much less than the frequency of current attack signature updates. Protocol anomaly
detectors also differ from traditional IDSs in how they present alarms. Because attacks are

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

detected by deviations from the “use” model, the best way to present such information is to
describe what part of the state machine was violated. To interpret this type of information
requires in-depth knowledge of protocol design which is unrealistic of typical IDS operators. It is
therefore necessary for such IDSs to provide documentation to help operators interpret alarms. It
is also helpful for the IDS to map well-known attacks to their protocol violations. Despite the
difficulty of use, protocol anomaly detection systems are essential for understanding new attacks.
Without names and prior documentation, new attacks can only be defended against by
understanding their intrusion methods and their effects. Protocol violation information is crucial
to determining the intrusion method. Another benefit of protocol anomaly detection is increased
efficiency. Well designed anomaly detectors use less rules to describe acceptable behavior than
signature detectors use to describe the numerous malicious behaviors. Fewer rules to check each
event against increases the bandwidth of an IDS which increases its detection rate and
effectiveness.

Protocol Anomaly Detection Example: Nimda

Analyzing a portion the Nimda attack will help illustrate the principle of protocol anomaly
detection. On September 18th the Internet was infected with Nimda, a virus and a worm that
proliferated networks and denied service to many sites. Nimda, as described in [6] exploited
holes in multiple Microsoft products including IIS and IE. Once a machine became infected,
Nimda attempted to spread itself by probing other computers with multiple attack mechanisms.
Some of the attempts targeted IIS web servers with the Extended Unicode Directory Traversal
Vulnerability [10]. Two of the sixteen Nimda web probes are shown below:

GET /scripts/..%c0%af../winnt/system32/cmd.exe?/c+dir
GET /scripts/..%c1%9c../winnt/system32/cmd.exe?/c+dir

Both of the probes exploit the Directory Traversal Vulnerability using overlong UTF-8 characters.
IIS incorrectly interprets the Uniform Resource Identifiers (URIs) above and translates the
highlighted UTF-8 encoded characters to “/” and “\” respectively. Once decoded, the URIs allow
remote access to cmd.exe on the local machine. The URI specification [11] allows the use of
escaped characters when interpreting URIs. However, as noted in the Unicode Standard [12],
applications should only interpret “shortest from” unicode strings. Neither of the strings above
are the shortest forms of the characters they represent.

A well built anomaly detection engine would include a model for HTTP connections. The HTTP
protocol design has been supported by numerous RFCs. Part of the protocol specification allows
for encoded URIs, however, unicode encoded URIs are governed by the Unicode Standard. In
the HTTP model, when the connection is in the “client request” state, the detection engine would
validate the transition to the “server send” state. During validation, the rules built from the
Unicode and URI standards would indicate that the requests deviated from the model because of
imbedded overlong UTF-8 characters. At the outbreak of Nimda, when it proliferated the
quickest, signature detection systems were unable to detect the attack because the signature did
not exist. Some protocol anomaly detection systems, however, were able to detect the attack and

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

provide operators early warning and information about the attack required for further
investigation. Such educated operators were able to defend their networks against Nimda before
other operators even knew Nimda existed.

Conclusion

Protocol anomaly detection is a new variant on the existing IDS technology of anomaly
detection. Protocol anomaly detection improves on signature detection by modeling the smaller,
more well-defined space of “use” instead of “misuse.” It also eliminates the need for frequent
signature updates and provides enhanced performance. Traditional anomaly detectors have been
mostly ineffective because of the inability to create an accurate “use” model. Protocol anomaly
detection solves this problem by placing restrictions on what is being modeled. Statistical
anomaly detection systems attempt to model erratic network statistics, whereas protocol anomaly
detection systems model well-defined protocol standards.

Protocol anomaly detection is not a perfect generalized solution to the intrusion detection
problem, however. In restricting the nature of the model, many attacks are detected because of
intrinsic protocol violations. However, some attacks, such as some viruses, conform to protocol
standards and are undetectable by protocol anomaly detectors. In addition, attacks will remain
undetected that are encrypted over the network or visible only to host-based IDSs. To increase
the quantity of attacks detected, security administrators must exercise defense in depth with their
IDSs. Multiple intrusion detection principles must be employed together. Not until multiple
intrusion detection technologies can be correlated and analyzed together will security
administrators have an accurate view of their network using intrusion detection.

References

J. Allen, A. Christie, W. Fithen, et al., “State of the Practice of Intrusion Detection [1]
Technologies,” CMU/SEI-99-TR-028,
http://www.sei.cmu.edu/publications/documents/99.reports/99tr028/99tr028abstract.html.

S. Axelsson, “The Base-Rate Fallacy and its Implications for the Difficulty of Intrusion [2]
Detection,” in Proceedings of the 6th ACM Conference on Computer and Communications
Security, pp. 1-7, November 1-4, 1999, Kent Ridge Digital Labs, Singapore, Copyright ACM
1999, http://www.ce.chalmers.se/staff/sax/difficulty.pdf.

S. Axelsson, “Intrusion Detection Systems: A Taxonomy and Survey,” Technical Report No [3]
99-15, Dept. of Computer Engineering, Chalmers University of Technology, Sweden, March
2000, http://www.ce.chalmers.se/staff/sax/taxonomy.ps.

CERT Advisory CA-1997-28 IP Denial-of-Service Attacks, [4]
http://www.cert.org/advisories/CA-1997-28.html.

ADMmutate 0.8.4 by K2, http://www.ktwo.ca/readme.html. [5]

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

NIMDA Worm/Virus Report – Final, http://www.incidents.org/react/nimda.pdf. [6]

V. Paxson, “Why Understanding Anything About The Internet Is Painfully Hard,” UCB [7]
Berkeley MIG Seminar, April 1999, http://www.icir.org/vern/talks/vp-painfully-hard.UCB-
mig.99.ps.gz.

E. Lemonnier, “Protocol Anomaly Detection in Network-based IDSs,” June 2001, [8]
http://erwan.lemonnier.free.fr/exjobb/report/protocol_anomaly_detection.pdf.

Beetle, Sasha, “A Strict Anomoly Detection Model for IDS,” Phrack, vol. 10, issue 56, May [9]
2000, http://www.opennet.ru/base/sec/p56-0x0b.txt.html.

Nimda Worm Analysis, http://aris.securityfocus.com/alerts/nimda/010919-Analysis-[10]
Nimda.pdf.

T. Berners-Lee, R. Fielding, L. Masinter, “Uniform Resource Identifiers (URI): Generic [11]
Syntax,” RFC 2396, August 1998, http://www.ietf.org/rfc/rfc2396.txt.

Corrigendum to Unicode 3.0.1, http://www.unicode.org/unicode/uni2errata/UTF-[12]
8_Corrigendum.html.

