
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Web Application Security,

With a Focus on ColdFusion

Version 1

In fulfillment of GSEC certification requirements

Joseph Higgins

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Web Application Security, 2

Table of Contents

Abstract 2
Introduction 3
Security Risks Inherent in ColdFusion 3

Default Installations 3
Two Step Attacks 4
Remote Development 4

Security Risks in Code 5
Casing the Store 5
Securing Code 6

Users Executing Commands 6
Nested SQL Statements 7
Cross Site Scripting 7
State Management Security 8
Protecting Templates 9
Securing the Browser Traffic 9
Inner Workings of an Application 10

Conclusion 10

Abstract

Security is often overlooked in web application development. Web applications
must be secured ‘in depth’ because they are dependent on the hardware, the OS, the web
server, the database, the scripting language, and finally the application code. Although
web application security is not product specific we will focus on the last two layers using
ColdFusion (CF) and the code. This paper covers default installation, two-step attacks,
remote development, and security holes in the code, input encryption, which are the
major issues in most web applications. Consult the latest product documentation for new
security risks.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Web Application Security, 3

Web Application Security, With a Focus on ColdFusion

Introduction

Security is needed and often overlooked in web application development. Web
application security should use a graded approach have a risk analysis as its base.
Web applications must be secured ‘in depth’ because they are dependent on the
hardware, the OS, the web server, the database, the scripting language, and finally
the application code. Although web application security is not product specific we
will focus on the last two layers using ColdFusion (CF) and the code. This paper
will not cover securing the other layers, policy, or web application risk
assessments, which would be a great topic for another GSEC paper. Also you
should consult the latest product documentation for security risks.

Security Risks Inherent in ColdFusion

There are some security risks inherent with CF that are application specific.

Any web application will have general risks associated with the scripting language
used. Apply the appropriate countermeasures available. According to Malcolm
Gin1, Macromedia’s security manager, five top security risks for CF are:

ColdFusion Administrator on Production Servers •
Unvalidated Browser Input •
Sample Applications and Documentation on Production Servers•
CFFILE, CFFTP, and CFPOP•
ColdFusion Studio and RDS with Production Servers•

Default Installations

There are a number of issues with a default installation of CF on a
production server.2 This seems to be the case with software like operating
systems and the like; you need to follow a best practice for securing them
before deployment.

CF server has a Java applet that starts and stops the service. When using
basic security features this utility is protected with the administrator
password. However, when using advanced security it is not protected at
all. A fix for this is to turn on directory security in IIS for this
administrative directory. A best practice for the ultra paranoid is to

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Web Application Security, 4

completely remove the programs from the CF admin directory on the
production environment and protect the directory with Web Server and
operating system file system security. Instructions for doing this are
available on Allaire’s3 website. This way, in case you need to temporarily
place the admin files there to change the server settings it will already be
protected with Windows authentication. CF Server only has a browser
front end for administration. There are potentially harmful tags in the
admin directory that would not be available to the hacker if they accessed
the directory. A single password to protect the admin area is not sufficient
in any production environment.

A security axiom: Hardened servers should only run the processes they
need.

In older versions of CF the default install included sample applications and
documentation whose code could be exploited. Best Practice: Remove the
sample applications and documentation directories. You should refer to
the security bulletin for this as each product has its own requirements. 4
Sample Java servlets should also be removed. The code in these sample
applications could be exploited to allow a simple DOS attack or to gain
access to your server using a two-step attack.

Two Step Attacks

Attacks of this nature involve a file or code being uploaded to the server,
then getting the server to execute the file in some way. This is not an
uncommon approach. There are a small group of CF tags that allow the
upload of files to the server, CFFILE, CFFTP, and CFPOP. If the files are
not checked to make sure they are the proper MIME type you could get
hit. Even if the user uploads CFML (Cold Fusion Markup Language
(code)) it could be executed arbitrarily.

Best Practice5: First, upload the files to a safe directory, one that is not
accessible to the web server for execution. The directory should also be
limited by the operating system to read-only. Verify that the file being
uploaded is the type of file it is supposed to be. You can use the ‘accept’
attribute to limit the mime-type. You may need to develop or use a custom
CFX tag to validate the file. The file may have a virus payload as well. Use
a command line CFEXECUTE with a virus scanner to scan the file for
viruses. You may also want to run scheduled virus scans of the directories
for added protection.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Web Application Security, 5

Remote Development

CF allows the use of Remote Development Services (RDS) with its
CFStudio application. It uses HTTP or FTP to connect developers to the
server. Best Practice: CF RDS should only be used in a secure intranet
and only on development servers. If you need to use RDS consider using a
VPN technology to secure the network traffic.

Security Risks in Code

The security officers, policies makers, and programmers are often different people
in an organization. Depending upon the organization there may be a gap between
programmers and security; programmers may not be focused on an application’s
security model or only think of security as user authentication. A web application
allows inputs from forms, URL query strings, server variables, and cookies. If a
hacker can gain access to any of these then they essentially have a small foothold
into your application. Not all web applications will have the same set of security
requirements. But you should consider answering questions like: If a user tried to
send a malformed request how would I know? If my application were broken how
would I know? How would I know if user an authentication attempt failed? What
if someone was trying a brute-force attack against a user account? How can I keep
users from getting data that they are not supposed to get?

There are some web application security risks that are not application specific like
buffer overflows. Although CF is not as susceptible to buffer overflows as other
web application scripting languages it has its own set of malformed input risks.
Web applications can expose susceptibilities of every component of your
application, from the scripting language to the web server to the OS, and must be
properly secured. CF is a powerful scripting language for building web
applications and as such gives the same power to hackers if hijacked.

Casing the Store

A security-oriented person might case a store when they walk into it
without the intent of breaking in, just because that is the type of person
they are. When you ‘walk into’ a web application (which may be an online
store) you may start casing it as well. Some questions you may ask are:
What scripting language are they using? Look at the URL string for cgi-
bin, asp, jsp, shtml, cfm, php or if they are using fake extensions to hide
which scripting language they are using. Which web server are they using?
When you create a 404 error what does the server tell you? Someone could
be stealthy about gathering data or be a script kiddie who uses a tool to test

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Web Application Security, 6

your web server’s configuration remotely. It would be difficult to
determine that someone is casing your application just from sever logs.
How are they maintaining state in the stateless html environment? Are
they using session ID’s are the session numbers random or are they
incremental? You may look to see if they stored a cookie in your cache
and try a cookie-viewing program
(http://www.karenware.com/powertools/ptcookie.html) to quickly view the
contents of the cookies. Are they storing a userid in the cookie to
authenticate a user? Or are they simply placing a userid in the URL? I
recently found a security hole in a web application that used a userid in the
URL, the easiest place to get at it. All I had to do was change the userid
until I found a super user or admin. Is the website allowing people to
upload files, or post messages? Have they programmed their application to
strip malicious code from user input in web forms and url strings? Have
they allowed people to defame a sight by posting embarrassing material?
What about legal implications of someone posting illegal files on the site?

Securing Code

Browser input validation is not an issue that is unique to CF. I thought it
would be difficult for someone to inject malformed information into a
packet stream until I found a utility called Achilles from Roberto Cardona6

that acts as a proxy server that captures and holds the information going
from a browser to a server and lets you inject or change information in the
stream. Achilles will even let you do a man in the middle for SSL because
it will negotiate two different SSL connections, one between it and the
server and one between it and the client this allowing clear text in the
middle. Remember that you cannot always trust your users and you may
not know if a user account has been hijacked. The vulnerabilities listed
here are not comprehensive. They are meant to give you an idea of the
various methods used to attack web applications. Consult the latest
security bulletins for your application software.

Users Executing Commands7

If you are using Access as a database driver then your web
application is probably only serving a small portion of people and
not budgeted for security. Many CF projects start out this way and
migrate to SQL or Oracle or mySQL as the project grows.

Some versions of the Microsoft Access ODBC driver allow for
appending VBA commands to a SQL string. The VBA commands
are appended by using the pipe character.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Web Application Security, 7

Example:
'|shell("cmd /c 1 > c:\temp\foo.txt")|'

This string could be passed to an application using a URL variable, so the page
could be called as follows:

http://myserver/page.cfm?x='|shell("cmd /c 1 > c:\temp\foo.txt")|'

This code, when executed as part of the following dynamically created query, will
cause a file to be created at the location c:\temp\foo.txt.

 SELECT *
FROM USERS
WHERE lname = '#URL.X#'

To fix this you can throw errors in your code when you encounter
a pipe and log it as a high risk. Also update your ODBC driver.
Access does not allow stored procedures but your could change
your queries to stored procedures.

Nested SQL Statements

This is another common vulnerability exposed by the scripting
language but is actually related to the database component. It is
possible to append a malicious SQL statement to a SQL statement
in the code. Take a look at this example:

SELECT * FROM usertable
WHERE userid = 1 DELETE FROM userstable

The above statement would delete every user in your database, and
if you had cascading deletes, well can you say backup? All the
malicious user would have to do is know or guess the name of a
table in your database and create a query like this:

http://servername/page.cfm?uid=23%20DELETE%20FRO
M%20userstable

Pretty easy to do. CF code is only susceptible if the query uses a
number as input in a query or uses a string that protects single
quotes using the PreserveSingleQuotes() function. To protect your
code you would use the val() function around the variable. The
val() function returns 0 if the expression is not numeric:

<CFQUERY DATASOURCE="DBName" NAME="Test">
SELECT * FROM usertable
WHERE userid = #Val(uid)#

</CFQUERY>

Cross Site Scripting8

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Web Application Security, 8

This vulnerability is also not inherent to CF. This allows the
insertion of malicious code using html tags that embed code like
<SCRIPT>, <OBJECT>, <APPLET>, and <EMBED>. The
potential impact is:

SSL-Encrypted Connections May Be Exposed•
Attacks May Be Persistent Through Poisoned Cookies•
Attacker May Access Restricted Web Sites from the Client•
Domain Based Security Policies May Be Violated•
Use of Less-Common Character Sets May Present •
Additional Risk
Attacker May Alter the Behavior of Forms•

The main thing here is that scripts should filter all input for
unwanted code. CERT has published an article on mitigating such
code,
http://www.cert.org/tech_tips/malicious_code_mitigation.html/.9
Specifically for CF is a custom tag available at
http://download.allaire.com/patches/inputfilter.zip that allows your
to dynamically select the variable scopes, the characters, and the
tags that you want filtered. The custom tag is invoked using the
following:

<cf_inputFilter
scopes = "[FORM][,COOKIE][,URL]"
chars = "list_of_chars"
tags = "ALL|list_of_tags">

State Management Security

How does your site maintain state? State is usually maintained
using a session variable. If someone accesses the session variable
they can mimic a user. So programmers use several approaches to
mitigate this.

Do not pass session id data on URL strings.•
If using url session data do not create links to other sites, •
the HTTP_REFERER http header information will contain
the session id.
Use other information like IP addresses as part of the •
session variable. CF does not allow this with the native
session architecture that is part of the server.
Keep session timeouts short.•
User education on logging out of applications on public•
terminals to prevent the use of the back and history to get
into sessions.

If you are using native CF session tracking then you will be using

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Web Application Security, 9

CFID and CFTOKEN, which are passed on each request in a
cookie. If you do not use cookies then you must append them onto
the end of every url, form request, and redirect. However these
numbers could be pulled by a sniffer off a network and used to
impersonate someone in an application. There are custom tags
available on CF developers exchange that modify the native
session management for more security. One such tag is aSession10

will prevents attempts to use someone else’s session by providing
three additional validation levels of session security: Secret Key,
client’s IP address, and referrer data. This tag is great in the fact
that it allows for the management of sessions on a server and audit
logs for session spoofing. The Borg will definitely want to
assimilate advanced session management.

Protecting Templates

CF has the ability to encrypt your source code files. The server will
then store a decrypted version in memory as it needs them. You
can use this, but only to discourage amateurs. The encryption
algorithm is simple and has been broken. Future versions of CF
promise advanced algorithms for template encryption.

Securing the Browser Traffic

You can obviously use SSL to protect your browser sessions. In
addition to SSL you can use IIS’s authentication mechanisms to
protect your applications. This means that you can use everything
from unencrypted basic authentication, to integrated windows
authentication with certificates/smartcards.

To handle the management of user passwords, that in this context
are now actually NT user accounts, you can use a C++ library and
call it as a custom tag in CF. This custom tag is available from the
CF developers exchange: http://www.allaire.com/developer.

<!--- Create a WinNT account. --->
<CFX_USERDB ACTION="USERADD"

USERNAME=””
FULLNAME=””
PASSWORD=””
PRIVS=””
GROUPS=””
COMMENT=””

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Web Application Security, 10

ACCOUNTDISABLE="0"
PASSWD_NOTREQD="0"
PASSWD_CANT_CHANGE="0"
LOCKOUT = "0"
DONT_EXPIRE_PASSWD="0"
MUST_CHANGE_PASSWD="0">

This could be dangerous if your code is hijacked. But users often
expect that their passwords can be changed in a web application. It
may be a compromise, remember that security often involves
compromise and accepting a level of risk.

Inner Workings of an Application

Ok, so you have built a hypothetical application, lets call it Acme
Sales. This application will have groups. The Sales group will only
have access to their own customer’s information. You are the
application programmer and have used all of the applicable security
features mentioned so far. Great, now you need to program your
application so that users cannot manipulate any variables that are
used for input. One way to do this in a comprehensive manner is to
encrypt URL, cookie, and form variables. Have you noticed major
web sites encrypting or disguising their URL strings so that people
cannot querystring surf? Steve Nelson of SecretAgents.com
(http://www.sercretagents.com) developed a custom tag that works
in conjunction with the Fusebox (http://www.fusebox.org) web
application methodology to encrypt all URL querystrings, form
variables, and cookies. Depending on the level of security needed
you could extent his tag to use a custom encryption algorithm
commensurate with your needs. Remember that it will be very
processor intensive. Security is a tradeoff with convenience.

An additional way to protect small pieces of code is to use a
security framework like that proposed by Hal Helms.11 He uses a
custom tag called <CF_Secure> that will accepts the users
permissions, the permission required to execute the code, a
security model (list or bit), and an action to perform if they are not
allowed in. You may want to modify it to log permission failures.
He has made this model extensible and has included ‘list’ and ‘bit’
validation models. Security is easier when your development team
follows a programming methodology.

Conclusion

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Web Application Security, 11

You corporate intranet may consist of web applications and your extranet can be
an extension of your intranet. In securing corporate networks the security focus is
first placed on perimeter defense, leaving the intranet for the next round of
budgeting. The highest risk for a system is from the inside. That is what you are
trying to do is keep the hackers from gaining access to the inside of your network.
If we remember ‘defense in depth’ we should take steps to protect our web
applications at the code level. Steps should be taken to protect your application
from insiders as well.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Web Application Security, 12

End Notes
1 Gin, Malcom. “Top Five ColdFusion Security Issues.” 2 January 2002,.
URL:http://allaire.com/Handlers/index.cfm?ID=19491&Method=Full&Cache=Off
2 (No Author). Allaire Security Bulletin (ASB99-07). “Solution Available for Denial-of-
Service Attack Using CF Admin.”
URL:http://allaire.com/handlers/index.cfm?ID=10968&Method=Full (May 19, 1999)

(No Author). Allaire Security Bulletin (ASB99-10). “Addressing Potential Security -
Issues with Undocumented CFML Tags and Functions Used in the ColdFusion
Administrator.” 2 January 2002. URL:
http://allaire.com/handlers/index.cfm?ID=11714&Method=Full (July 29, 1999)

(No Author). “Allaire Security Best Practice: Securing the ColdFusion -
Administrator“2 January 2002. URL:
http://allaire.com/Handlers/index.cfm?ID=10954&Method=Full (No Date)

(No Author). “Allaire Security Best Practice: Setting Up ColdFusion -
Administrator Security” 2 January 2002. URL:
http://allaire.com/Handlers/index.cfm?ID=8300&Method=Full (No Date)

3 (No Author). “Allaire Security Best Practice: Securing ColdFusion Pages through IIS.” 2
January 2002. URL: http://allaire.com/Handlers/index.cfm?ID=1533&Method=Full (No
date).
4 (No Author). “Security Best Practice: Removing Sample Applications and Online
Documentation from Production Servers.” 2 January 2002. URL:
http://allaire.com/Handlers/index.cfm?ID=16258&Method=Full (No date).

5 (No Author). “Security Best Practice: Evaluating the Risks of Allowing Uploading and
of Attached Files on Your Server.” 2 January 2002. URL:
http://allaire.com/Handlers/index.cfm?ID=17407&Method=Full (No Date)

6 DigiZen Security Group web site, 2 January 2002. http://www.digizen-security.com

7 (No Author). “Allaire Security Bulletin (ASB99-09).” 2 January 2002. URL:
http://allaire.com/handlers/index.cfm?id=11069&method=full. June 8, 1999.

8 “CERT® Advisory CA-2000-02 Malicious HTML Tags Embedded in Client Web
Requests.” 2 January 2002. URL: http://www.cert.org/advisories/CA-2000-02.html February 3,
2000.

9 (No Author). “Understanding Malicious Content Mitigation for Web Developers.” 2
January 2002. URL: http://www.cert.org/tech_tips/malicious_code_mitigation.html Feb 2, 2000.

10 KUZNETSKY, ALEX. “aSession Cold Fusion Custom Tag.” 2 January 2002. URL:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Web Application Security, 13
http://devex.allaire.com/developer/gallery/info.cfm?ID=AE230230-45FF-11D4-
AA9800508B94F380&method=Full January 02, 2002.

11 http://halhelms.com/writings/ProposedSecurityModel.pdf

