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Distributed Object Technology: Security Perspective 

 
Subbu Cherukuwada 

GIAC Security Essentials Certification (Version 1.3) 
 
 
ABSTRACT 
 
Distributed object technology makes object oriented programming even more powerful and 
efficient by making use of the objects that are available on different systems connected on a 
heterogeneous network, in addition to the locally defined objects. Wide range of hardware 
platforms and variety of operating systems can be inter-connected at the software level and 
deliver a more robust and comprehensive solution for today’s Internet driven businesses. 
Internet itself plays an important role as a backbone for this technology. As the scope of the 
application code is not restricted to single source, platform or language, maximum attention 
must be paid to the security of the applications. The objective of this paper is to give a brief 
introduction to distributed object technology and an overview of security features available in 
Microsoft.NET and CORBA. The paper explains the architecture of .NET and covers some of its 
key security concepts like Security Policy, Code Access Security, Role Based Security, 
Verification and Stackwalk. It also explains CORBA and its security concepts like CORBA 
Security Services, Security Specifications, Security Policy, Domain Access Policy and 
Delegation. The paper concludes by explaining the way in which some key security concerns are 
addressed in .NET and CORBA. 
 
 
1.0 INTRODUCTION 
 
Distributed computing brings together the power of different hardware platforms and operating 
systems to deliver high performance applications. Object oriented programming modularizes the 
software development and improves the optimum usage of system resources. Distributed object 
technology is the combination of these two technologies that complements each other’s features 
and provides the scalable platform to develop efficient and faster applications. Following are 
some of the most important objectives of this technology: 
 
• Providing framework of standard services and libraries 

Most important methods that can be used in various kinds of development environments 
must be readily available for usage. A set of guidelines should be provided which describe 
the interfaces to these kinds of services and libraries. More importantly this kind framework 
should be easily extendable i.e. adding more services and libraries should be possible. 

 
• Platform independence 

An application should be able to use the objects developed and available on different kinds of 
platforms. Code developed using this technology should work on all kinds of platforms. 
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• Hardware independence 
Application should work on different kinds of hardware platforms. Integration of objects 
available on different kinds of hardware platforms should be possible. 

 
• Language interoperability / independence 

Developers should be able to use a programming language of their choice, selection based on 
the ability of the language to perform different tasks. Methods developed in one 
programming language should be exportable to other programming languages.  

 
Thus, distributed object technology seamlessly integrates different modules of software 
developed in more than one programming language and residing on systems of various platforms 
and architecture. 
  
Security Perspective 
 
Security is an essential requirement at different stages of an application developed using this 
technology, because: 
• Application is depending on the code from the systems connected over the network (could be 

Internet also). Authenticity and integrity of the code must be verified before allowing access 
to protected resources. Network transfer should not compromise the data sensitivity. 

 
• Application is developed in different programming languages, so exposures like buffer 

overflows must be considered very carefully. 
  
• Each module of the application may require varying degree of access to system resources and 

hence resource access should be granted in a very controlled manner. 
 
Following are the examples of the distributed object technology platforms available today: 
• Microsoft.NET  
• CORBA 
• Java RMI 
 
2.0 Microsoft.NET 
.NET is developed by Microsoft. .NET framework provides a platform to develop web services, 
distributed web based applications and windows applications using distributed object 
technology. Following concepts helps in understanding .NET architecture: 
 
Managed code 
Managed code [2] is the code developed in a programming language that is targeted for CLR 
(Common Language Runtime, which is explained in Section 2.1.1) at the compilation time i.e. it 
is made to run on CLR. Any other code is unmanaged code. At present, not all the programming 
languages are capable of producing managed code.  Examples of the languages that can produce 
managed code: C++ with managed extensions, C#, Visual basic and Jscript. Many other 
compilers are being developed to produce managed code e.g. APL, CAML, Perl, OZ etc. 
Managed code can exploit complete functionality of the CLR i.e. it can efficiently manage the 
resources required for execution or make use of the latest CPU instruction set. More importantly, 
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while executing a managed code, CLR enforces the security policy. Executing an unmanaged 
code on CLR bypasses the entire security policy. Managed code is not targeted to specific 
hardware platform or operating system i.e. the executable will not be in x86 native language or 
any x-bit operating system native language.  It is in Microsoft Intermediate Language (MSIL). 
MSIL plays an important role in security of .NET framework by making type safety verification 
easy. 
 
Metadata  
Metadata [5] is the data generated by the compiler and placed inside the managed code, that 
describes various methods implemented, object instances and types declared. CLR performs 
metadata validation before executing any code as part of its verification. Verification is a 
security management feature of CLR. 
 
Assembly  
Assembly [4] is a group of one or more files that can be executed (as managed code) together to 
perform certain task or execute an application itself. Assembly is the fundamental building block 
at which security is enforced i.e. permissions are requested and granted. Each assembly comes 
with a manifest that describes the contents of the assembly, controls what types and resources are 
exposed outside the assembly and what are the other assemblies that are required to execute this. 
 
2.1 Microsoft.NET architecture 
.NET is comprised of two main components. 
• Common Language Runtime (CLR) 
• NET framework class library 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
        

 

   

 
  OS CLR 

Class Library 

Managed Applications 

  Figure 1: Microsoft.NET Architecture 
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2.1.1 Common Language Runtime 
 CLR [9] can be considered as the heart of .NET framework. This is the agent software running 
on the operating system.  CLR isolates the managed code from the native operating system. 
While executing the code, CLR translates the managed code into native machine language. CLR 
is capable of executing both managed code and unmanaged code. However, CLR can not offer 
its complete functionality to unmanaged code. Besides executing the code that is targeted for 
CLR, it also offers different services like: 
• Memory Management 
• Thread execution 
• Code safety verification 
• Security Management 
• Just In Time (JIT) Compilation 
 
2.1.2 .NET framework class library  
Class library [3] offers the most commonly used services to be readily used into the code built by 
developers. This library is object oriented and contains various types, classes and methods. Some 
of the example methods are file access, database operations and string manipulations.  Security 
can be built into the code using the classes provided by this library. Classes that provide similar 
functionality are grouped into namespaces. Some of the namespaces related to security are  
• System.Security 
• System.Security.Permissions 
• System.Security.Principal 
• System.Security.Policy 
• System.Security.Cryptography 
 
2.2 Code execution 
The fundamental building block of an application is assembly. An application may consist of 
many assemblies. An assembly will be loaded into an application domain before running an 
application. Each assembly is loaded into a separate application domain. CLR provides complete 
isolation among the application domains. Multiple application domains can safely run under the 
same process. 
 
2.3 Security in Microsoft.NET 
.NET security is governed by a security policy, which may be defined as a set of rules that can be 
configured. This policy decides whether a particular code or user can access a protected resource 
or not. Some of the resources that can be protected are files, environment variables, clipboard, 
user interface and registry settings. Access to resources is controlled based on the origin of the 
code, the user executing the code or both. 
 
The security manager in the CLR maps the evidence to the security policy that is configured on 
the system. After successful mapping, the security manager determines the allowed permissions 
to that assembly. A class in the Class Library called Systems.Security.SecurityManager provides 
this mapping functionality. 
 
Security policy is comprised of three elements: 
• Code groups 
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• Named permission sets 
• Policy assemblies 
 
 
2.3.1 Code group 
Code group [12] is the combination of a matching condition and set of permissions. If the code 
matches a condition, then the code is granted with the associated permission set. Security policy 
can be visualized as a tree of code groups. In other words, the matching condition is sub-divided 
into multiple layers. This granulates the matching condition and allows security administrators to 
set different permission sets at each level of the tree. The tree of code groups starts with a 
condition called All code with permission set Nothing. Security Manager (integral component of 
CLR that is responsible for security checks) starts checking from this root condition and 
traverses down. If a condition is not matched at any level, Security Manager will stop traversing 
down and moves to the next vertical branch. Figure 2 depicts a sample policy, where the root 
code group is divided into three branches, based on the zone. Based on the origin of the code, it 
may get FullTrust, Internet or Intranet permission sets. Following two examples explain the way 
in which this sample policy is enforced. 
 
Example1: Assume that a user is executing an assembly that is located on the local system. So, 
the zone is My Computer. Security Manager checks the first level that matches all the code, 
grants the Nothing permission set and goes to the next level. At this level, the code matches with 
the condition of the first branch (zones are matched). So the permission set FullTrust is granted. 
As there are no levels down this code group, security manager returns to the last code group that 
matched and repeats the same process with the next subordinate group. In this case, it moves to 
the second condition i.e. Zone: Intranet. This condition is not matched. So the security manager 
will not traverse down and moves to the next code group. The matching condition for the next 
code group is Internet, which is also not matched. As it completed all the code groups, security 
manager calculates the union of all the permission sets that matched the condition, which are: 
Nothing (from the condition All Code) 
FullTrust(from the condition Zone:My Computer) 
 
Example2: Assume that a user is trying to access an Intranet URL w3.research.com/proj1. Security 
Manager starts with root node and obtains the permission set Nothing. First code group in the 
next level has the condition Zone: My Computer, which is not matched, hence skipped. The next 
code group in this level is Zone:Intranet, which is matched, and it obtains the permission set 
Intranet and traverses down. In this level, the first code group has a matching condition of Site: 
w3.payroll.com which is not matched and it moves to the next code group in the same level that 
has the condition Site: w3.research.com which is matched. Security Manager obtains the 
permission set Research and traverses down to the next level. At this level, there are two code 
groups with matching conditions of different URLs. As the matching condition of the first code 
group is satisfied, security manager obtains Project1 permission set. As there are no subordinate 
code groups, the Security Manager moves to the second code group, which is not matched. 
Security Manager traverses up all the level up to the code group of matching condition 
Zone:Intranet and moves to the next code group in that level. This code group has a condition of 
Zone: Internet, which is not matched. That completes the security policy. 
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Finally, security manager makes the union of the following permission sets: 
Nothing (from Zone: All Code) 
Intranet(from Zone: Intranet) 
Research (from Site: w3.research.com) 
Project1 (from URL: w3.research.com/proj1) 
 
Code groups can also control the traversal of the policy. This can be done by setting an Exclusive  
[15] attribute on a code group. If a code group condition is matched and it has Exclusive attribute 
set on it, then the Security Manager will grant only the permission set associated with that code 
group without traversing the entire policy tree. 

Matching condition: All code 
 
Permission Set: Nothing 

Matching condition:  
Zone: My Computer 
 
Permission Set: FullTrust 

Matching Condition: 
Zone: Intranet 
 
Permission Set: Intranet 

Matching Condition: 
Site: w3.payroll.com 
 
Permission Set: Payroll 

Matching Condition: 
Site: w3.research.com 
 
Permission Set: Research 

Matching Condition: 
URL: w3.research.com/proj1 
 
Permission Set: Project1 

Matching Condition: 
URL: w3.research.com/proj2 
 
Permission Set: Project2 

Matching Condition: 
Zone: Inernet 
 
Permission Set: Internet 

Figure 2: Code Access Policy 
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2.3.2 Named Permission Sets 
As the name implies, it is the set of permissions that are granted to an assembly. Code groups 
refer to different permission set by a name, hence the name Named Permission Sets [2]. In the 
above sample policy, Intranet is a named permission set that can have the following permissions: 
SecurityPermission: Execute 
FileIOPermission: Read, append, write files or directories 
EnvironmentPermission: Read the environment variable PATH. 
 
Following are some of the default named permission sets provided with CLR: 
• Nothing: No permissions at all 
• Execution: Execute only. No access to the resources. 
• Internet: Recommended policy for code from internet 
• LocalIntranet: Default permission set within an organization 
• Everything: All permissions except skip verification 
• FullTrust: Full access to all resources. 
 
Permissions are objects that are part of the Class Assembly. There are various methods 
associated with these permissions like Demand, Assert, Deny, PermitOnly, Intersect and Union. 
Permissions [13] are divided into three types: 
• Code access permissions 
• Identity permissions 
• Role based security permissions 
 
Code access permissions protect broad range of resources like files, directories, environment 
variables, DNS access, user interface, registry, sockets, database access and services. Each 
resource type is associated with a set of code access permissions. Identity permissions are 
granted based on the evidence of the assembly. Role based security permissions can be used to 
determine whether a user has specified role to do a task. These roles can be completely specific 
to the application or Windows based. 
 
2.3.3 Policy Assemblies 
In addition to the permissions provided by the Class Library, custom permissions can be defined 
by the developers. While evaluating security policy, assemblies containing these custom 
permissions must be loaded. If any of these assemblies make use of the permissions defined in 
their own assembly, then that assembly can never be loaded as it goes into a loop of continuous 
check. In order to avoid these situations, these assemblies are defined as Policy Assemblies [2]. 
These assemblies will not be checked before loading. 
 
2.4 Security Policy Levels 
Security policy is organized into four levels [14]: 
• Enterprise Policy 
• Machine Policy 
• User Policy 
• Application domain Policy 
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Each of these policies have the same architecture as discussed above i.e. tree of code groups, 
permission sets and policy assemblies. 
 
2.4.1 Enterprise Policy  
This is the policy defined at enterprise level i.e. all the system in an organization or group of 
systems connected on a network. Changes made to the policy affect all the systems. This can be 
deployed using the tools provided by .NET SDK or SMS. Alternatively, caspol.exe command 
can be used to define the policy on each system. 
 
2.4.2 Machine Policy 
This is the policy defined on a specific system. Changes made to the policy affect only that 
system. This can be implemented using caspol.exe command, which is part SDK. By default, 
.NET is shipped with machine policy. Some of the highlights of this policy are: 
• Unrestricted access to al resources if the code is originated from My Computer Zone or it has 

Microsoft strong name or ECMA strong name. 
• No access for DNS, environment variables or event log and read access to files if the code is 

from internet. 
 
2.4.3 User Policy 
This is the policy defined for the user who is running the code. Changes made to the policy affect 
that particular user only. This can also be implemented using caspol.exe. 
 
2.4.4 Application domain Policy 
This is the policy defined at application domain level i.e. permissions to be granted to the 
assemblies loaded into the application domain. This can also be implemented using caspol.exe. 
 
Microsoft Management Console snap-in [2] is available which provides a GUI to all the above 
policies. Each of the above levels can be configured, at any time. It is the responsibility of 
security manager in the CLR to enforce the security policy while executing any code. Security 
manager checks the policy in a hierarchical manner from top to bottom. Each policy level can 
only increase the security offered by the top level i.e. bottom level policies can not override the 
security policy set by the top level. At the end of the checking, security manager takes the union 
of all the permissions and makes the decision whether to grant access or not. End users can 
increase the security by reducing the permissions that are granted at the Enterprise Policy level. 
Similarly, machine administrators can make their system more secure by altering the Machine 
policy. This may make the application fail as it does not have enough permissions to run. 
In order to avoid this, Enterprise Policy can be enforced to be the final policy by setting the 
LevelFinal attribute [15] in the desired code group in the Enterprise Policy. After setting the 
LevelFinal attribute, Machine Policy and User Policy will not be considered in the security 
permission evaluation.  
 
 
2.5 Security Mechanisms in Microsoft.NET 
Security in .NET is offered through various mechanisms. Some of the key mechanisms are, 
• Verification 
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• Code Access Security 
• Role based Security 
• Stackwalk. 
 
2.5.1 Verification 
When an assembly is executed, CLR validates MSIL and verifies metadata that is part of the 
code. Verification [5] is the first security check performed by CLR. Before running the code, 
CLR checks that MSIL is type safe. A code is considered to be type safe only when it accesses 
its types in well defined and allowable ways according to MSIL grammar. In other words, 
interaction between types should always be through publicly exposed contracts (set of rules that 
define how to access a type). In addition to this, CLR also checks for correct usage of exception 
handling and stack overflow. If the code is found to be not type safe, then a security exception is 
raised and execution stops at once.  CLR also verifies the metadata by examining the metadata 
tokens. All these tokens should index correctly into their type tables. If it is a string table, it 
checks that the tokens are not pointing at strings that are longer than their buffer size to avoid 
any possible buffer overflow. If the code passes verification, then MSIL is translated into native 
language of the system using a JIT compiler. If the assembly is completely loaded from local 
system, then verification happens as part of JIT compilation. 
 
2.5.2 Code Access Security  
In Code Access Security [2], permissions are granted based on the evidence. Evidence defines 
the identity of the code.  Evidence is presented to the security manager whenever an assembly is 
loaded into CLR, by the hosting system. Evidence is typically composed of the following 
elements: 
 
• Zone: Zones as defined in the Internet Explorer 
• URL: URL name of the code 
• Hash: Hash value of the assembly 
• Strong name: Strong name signature of the assembly 
• Site: The site name of the origin of the code 
• Application Directory: Location of the assembly on the local system 
• Publisher certificate: Digital signature of the assembly 
 
.NET class library has a number of classes that can be used as standard forms of evidence. Using 
the code access security, even though the user in the Operating System is privileged, CLR 
restricts the access depending on the evidence of the assembly. 
 
2.5.3 Role based Security 
.NET allows developers to implement role based security in the application. These roles are not 
the same roles, which the operating system offers. These are very specific to the application and 
defined within the application only. Permissions are granted based on the Identity and Principal. 
Identity of a user can be established through authentication, which can be done using the native 
operating system or through an authentication service like Passport. Principal [16] contains the 
Identity and the authorization roles the user has. There are three types of Principals: 
 
• Generic Principals: These are defined in the application only. 
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• Windows Principals: They represent the NT users and their roles. 
• Custom Principals: These are special kind of principals that are custom made for the 

application. 
 
Similar to code access security, role based security is also implemented using the objects and 
classes provided by the Class Library.  It is also possible to make use of Windows Roles inside 
the application. Information obtained from code access security and role based security are used 
to grant permissions according to the security policy defined on the system.  
 
2.5.4 Stack walk 
An assembly may need to load a dependant assembly, during its runtime. Within the same 
assembly, a method may call another method. Every time a method is called, the current state of 
the execution along with the parameters passed to the method (if any) will be stored in the stack, 
as a new record. This ensures that the program returns to the correct point of execution. As the 
code is getting executed, the stack size changes depending on the methods called. Somewhere in 
this chain, if any method requires access to a protected resource, CLR implements a complete 
stack walk [2] to make sure that all the methods that are in the stack have access to that resource. 
A security exception will be thrown and execution fails, if any of the methods are not having the 
required permissions.  Luring attacks can be avoided using stack walk. Luring attack [12] is 
initiated by remote code that tries to load a local assembly (located on the system). By default, 
the local security policy grants FullTrust to local assemblies. This will be exploited by the 
remote code in the luring attack. Because CLR performs a complete stack walk before granting 
access to the protected resource, remote code execution fails, as it does not have permissions to 
access the resource. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In the above Figure 3, local application uses the Assembly1 located on the same system and can 
gain full access to all the resources. However, if someone is trying to execute a code from 

www.unknown.com 

Assembly1 

Local application 

Resources 

Figure 3: Luring Attack 
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www.unknown.com that also executes the Assembly1, then the code execution fails because 
CLR detects it in the stack walk. 
   
3.0 CORBA 
Common Object Request Broker Architecture is a very popular distributed object technology 
platform that is proposed and being controlled by Object Management Group (OMG). OMG is a 
non-profit organization supported by more than 800 hardware and software vendors. OMG 
specifies the standards for object oriented technologies. Once the standards are set by OMG, 
applications can be developed to conform to those standards. 
 
3.1 Object Management Architecture (OMA) 
 OMA [21] is defined by OMG, which explains object oriented software environment. It consists 
of an Object Model (OM) and Reference Model (RM). Object model is an abstract model that 
defines basic requirements. RM is built using the OM. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
As shown in Figure 4, OMA RM consists of five main elements 
• Object Request Broker (ORB) 

ORB [20] is the heart of this architecture. It provides the communication channel between 
client objects and target objects in a transparent manner i.e. client objects need not be aware 
about the location of target objects. 

 
• CORBA services 

These are the basic services that are required by most of the objects. OMG provides 
specifications for all these services. Two of these are services are naming service and 
security service. Naming service allows clients to find objects based on their names. Security 
services [17], which is the largest of all the CORBA services, provides security related 
services like: 
• Identification and authentication 
• Authorization and access control 
• Auditing 
• Confidentiality and Integrity 
• Non-repudiation 

Figure 4: Object Management Architecture Reference Model [21]      
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• Security Administration 
Current version of the security services is 1.7. These services are also called CORBAsec. 
 
• Horizontal Facilities 

These are services that are at a higher level than CORBA services. These services can also be 
used by most of the applications, like printing and email facilities. 

 
• Vertical Facilities 

These services are useful for a specific business environment like health care, 
telecommunications or manufacturing. 

 
• Application Objects 

These are the objects that are defined by the application developers. These are very specific 
to the application and are not defined by OMG. 

 
3.2 Interface Definition Language 
One of the main goals of the distributed object technology is to enable the use of different 
programming languages. CORBA offers this feature through Interface Definition Language 
(IDL) [17]. An interface should be written in IDL and compiled into the required programming 
language i.e. the language in which client program and server program is written. There are 
compilers available to map IDL into different languages like C++ or Java. Compiling an IDL 
interface generates stub and skeleton. Stub will be used in the client side program and skeleton 
will be used in the server side program.   
 
3.3 Common ORB Architecture 
CORBA defined by OMG is comprised of the following components: 
• Object Request Broker 
• Client This is the object that requires a particular operation or service. 
• Servant This is the object that provides a predefined service. 
• IDL Stubs This is the client side interface to the ORB.  
• IDL Skeletons This is the servant side interface to the ORB. 
• Dynamic Invocation Interface This allows invoking the target objects without the need of a 

stub. 
• Dynamic Skeleton Interface This is the server sides equivalent of DII. 
• Object Adapter OA is a server side component that manages the object references, method 

invocation, activation and deactivation of objects. More importantly, it is the responsibility of 
the OA to integrate with security services. A unique ID called ObjectID identifies each object 
within the scope of an OA. 
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Fundamentally, CORBA works on a client and servant concept. Client which itself is an object, 
requests for a service from another object called servant. Client and servant could be located on 
the same system or different systems connected across a network.  An object can act as a client, 
servant or both. The originator of the object invocation is client and the recipient of the 
invocation is target. Sometimes, a target may need to invoke another object and hence it becomes 
a client also. In order to invoke an object, client needs the object reference of the target object. 
Client may already know this prior to the invocation or can obtain it from the naming services. 
Object reference consists of interface ID, implementation ID and optionally any data required for 
the target object. Once the object reference is obtained, client can communicate to the object 
reference through ORB. ORB receives requests from clients, marshals the parameters sent with 
the request, dispatches the request to the appropriate server, ensures the target object is activated 
and returns the output to the client. To make this entire transaction secure, it is required to ensure 
the following: 
• Client is identifiable and authenticated 
• Client is authorized to invoke the target object 
• Target object is authenticated 
• Confidentiality and integrity of the message transfer 
• Protection against unauthorized access and modification 
 

 
ORB 

DII IDL 
Stub 

ORB 
Interface 

OA 

IDL 
Skeleton 

DSI 

 
      Client 

 
Servant 

     Figure 5: Common Object Request Broker Architecture [17]     
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CORBA Security services offer the above functionality. In addition to meeting those basic 
requirements, following services are also offered: 
• Auditing 
• Security Management 
• Non-repudiation 
 
3.4 CORBA Security Services 
OMG has defined the CORBA Security Services Specification that explains the ways to make a 
stand alone or distributed CORBA application secure. According to this specification, CORBA 
security is organized into several packages of different services. 
 
3.4.1 Main Security Functionality Packages 
 It is divided into two levels, Level 1 and Level 2. In addition to those two levels, optional 
packages are also specified by OMG. 
 
3.4.1.1 Security Functionality Packages, Level1 
 This level is targeted for applications, which are unaware of the security i.e. application objects 
are completely isolated from the security services. This level is suitable for applications, which 
do not have its’ own security requirements. It offers the basic services: 
• Authentication of users 
• Establishing trusted relation between client and target 
• Confidentiality and integrity of the messages 
• Access control 
• Delegation 
• Auditing to some extent 
 
3.4.1.2 Security Functionality Packages, Level2 
This is targeted for the applications, which have their own security requirements. Applications 
can control the security provided at the object invocation. All the functionality offered at level 1 
is also offered here along with some additional services. Some of the services are: 
• Ability to authenticate inside or outside an object system 
• Domain Access Policy 
• More delegation options 
• Security Policy Administration 
 
A secure ORB implementation must provide at least one of the above levels to become a Secure 
ORB. 
 
3.4.1.3 Optional Security Functionality Packages 
 As the name suggests, the services offered in this package are not mandatory. Non-repudiation 
is one such service that generates, stores and verifies the evidence of transactions in the 
application. 
  
 
 
3.4.2 Security Replaceable Packages 
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This package specifies how replaceable the services offered in the ORB. ORB allows the use of 
interceptor interfaces to incorporate different services. Entire ORB services can be replaced or 
Security Services alone can be replaced as per the requirement. 
 
3.4.3 Common Secure Interoperability (CSI) Packages 
 These packages offer the features required for inter-operating among different ORBs. 
Applications developed using distributed objects can make use of different hardware platforms 
and operating systems. Different ORBs are required to inter-operate without compromising the 
security. There are three levels of CSI.  
• Identity based policies without delegation (CSI level 0): Only the principal identity is 

transmitted from client to target. Delegation (explained in section 3.5.3) is not supported. 
• Identity based policies with unrestricted delegation (CSI level 1): Delegation is supported in 

this level i.e. intermediate client objects can impersonate the originator client. 
• Identity and privilege based policies with controlled delegation (CSI level 2): Along with 

different kinds of identities like audit ID and access ID, privileges like groups and roles will 
also be transmitted from client to target. Initiating objects can control the delegation of 
credentials. 

 
An ORB must offer one of the above packages to be a secure interoperable ORB. 
 
3.4.4 Other interoperability packages 
In addition to the above, following packages are also specified by OMG to provide secure 
interoperability: 
• SECIOP Interoperability package 
• Security Mechanism package 
• SECIOP plus DCE-CIOP Interoperability 
 
3.5 Concepts of CORBA security 
 
3.5.1 Principal 
Principal [23] is an identifiable active entity that is authenticated. For example a user logging 
into a system or application is a Principal. To access objects, every system entity must 
authenticate itself and establish its rights. Principal is comprised of two kinds of attributes, 
Identity attributes and Privilege attributes. Identity attributes serve the purpose of establishing 
identity to different security services. Several identities could be associated with the same 
principal, each serving its own purpose. For example, audit ID is used in the security auditing 
and access ID is used to determine the access rights. Privilege attributes are a list of groups and 
roles the entity is attached to and are used for access control.  Identity and privilege attributes are 
obtained after successful authentication. In addition to that, Public attributes can be obtained 
without authentication. Authentication can be done by supplying a security name (user name), 
authentication data (password, challenge/response) and the required privilege attributes. After 
successful authentication, principal obtains the credentials, which is a list of security attributes. 
Once the principal obtained its credentials, it can invoke objects subjected to the security policy 
defined at the client and the target side. 
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3.5.2 Security Policy 
Security policy is a set of rules that can be implemented at the client side or target side or both 
ends. This could be same or different at both ends. There are different types of security policies 
like audit policy, access policy or message protection, each focussing on a specific area. Broadly, 
security policy is used to meet the following requirements: 
• Trusted relationship between client and target 
• Access control 
• Auditing 
• Non-repudiation 
• Confidentiality and Integration 
 
3.5.2.1 Establishing a trusted relationship between client and target 
Server may require the client to authenticate and client may require the server to authenticate. 
Objects can be accessed only after mutual authentication is successful. Alternatively, target may 
request the client to submit its' credentials. 
 
3.5.2.2 Access control 
This is implemented using an access policy. This consists of two layers, Object Invocation Policy 
and Application Access Policy. Object invocation policy decides whether the client has the rights 
to invoke the protected object. This is enforced by ORB and Security services regardless of the 
kind of application. Access decision is made based on the privilege attributes of the client, 
restrictions on these attributes like time of the day, type of operation requested and any control 
attributes on the target object. Application access policy enhances the security offered by ORB 
by implementing additional access control that is specific to the application like starting and 
stopping a service or access database. Access policy decides the access control for the protected 
objects.  
 
Privilege attributes of the client and control attributes of the target are the key parameters based 
on which access decision is made. Privilege attributes grant special authority to do some 
operation. This can be done using roles or groups. Required permissions are granted to the 
role/group and individual users are attached to them. This makes the policy administration easy. 
Control attributes associated with the target object specify the permissions to different clients. 
These can be in the form of an Access Control List (ACL). ACLs consist of users, groups or 
roles and their permissions. Same ACL can be attached to multiple objects. It is possible to group 
a set of objects into a single entity called domain and apply an access policy to the domain. This 
kind of access policy is called domain access policy.  
 
Domain is a logical grouping of objects based on some common characteristics. Security Policy 
Domain consists of one or more objects, which are controlled by a common security policy. 
Domain manager is the primary object to which the security policy is attached. All other objects 
in the domain are members of that domain. An object can be part of multiple domains, in which 
case the security policy is the combination of all those domain policies of that object. Security 
administrators set the domain policy.  Permissions to do an operation on a secure object can be 
granted in the form of rights. Rights are grouped into Rights Family. “corba” is an example for 
rights family that contained most commonly used rights like s(set), g(get), m(manager) and 
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u(use). Additional rights can be defined as required. Rights Access policy can be defined for an 
object in terms of principals, rights to do an operation and right combinator. Right combinator 
defines the interpretation of multiple rights like any of the rights or all of the rights. Below 
example illustrates the domain access policy and required rights for a human resource 
department with two job functions Manager and Consultant who can execute different 
operations. 
 
Example: The two job functions can be mapped into roles in the policy. Rights can be assigned to 
each of the roles and users can be given the appropriate role. There are two kinds of operations 
op1 and op2. 
 
Domain access policy: 
User name Roles Rights Family:Rights 
paul consultant corba:gs 
john manager corba:gsmu 
 
 
Required Rights: 
Operation Rights Family: Rights Rights combinator 
op1 corba:gs any 
op2 corba:sm all 
 
User paul has consultant role and is allowed to do operation op1 but not allowed to do op2. User 
john is allowed to do both operations. 
 
3.5.2.3 Audit 
CORBA security services allow logging the access grants and revokes according to the audit 
policy. This is useful to analyse the security policy violations. Auditing is controlled by an audit 
policy. Audit policy can be defined based on the requirements like kind of operations or type of 
action i.e. success, failure or both. Audit policy can be set at the client or target or at both ends. 
 
3.5.2.4 Non-repudiation 
 Creating, storing and verifying the evidence of transactions. Storing information like a client has 
invoked an object and a target has operated on the data sent by a particular client can be 
controlled by security policy. This evidence can be used to make the users accountable for their 
actions. 
 
3.5.2.5 Confidentiality and Integrity 
 Messages transferred between client and target can be eavesdropped or even tampered. Security 
policy provides means of maintaining confidentiality and integrity of the messages in transit. 
Generally, establishing a trusted relationship between client and target ensures message 
protection. Symmetric and asymmetric key technologies are generally used to provide this. 
 
 
3.5.3 Delegation 
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Client object can delegate some or all of its' attributes to another object as part of the invocation. 
When a client request a service from a target object, the target object may need to invoke another 
target object to complete a method. This chain could possibly grow bigger. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
As shown in Figure 6, there will be an initiator, who initiates this chain and a final recipient who 
is the final target and a number of intermediate objects. Initiator can decide whether any of the 
attributes can be delegated to an intermediate object. Target object can restrict access based on 
the type of credentials i.e. initiator or delegated. There are different delegation schemes like  
• No delegation Delegation is not enabled at all i.e. intermediate objects use their own 

credentials to access other objects. 
• Simple delegation Client allows intermediate objects to use all of its attributes. It also 

enables the intermediates to delegate the attributes to other objects. Intermediate objects 
impersonates the client by presenting client credentials to the target. 

• Composite delegation Credentials of client and intermediate objects are presented 
seperately. Targets can control the access using the two credentials. 

• Combined privileges delegation Credentials of client and intermediate are presented to the 
final recipient as a single object. 

• Traced delegation Credentials of each intermediate object is added and presented to the 
target. 

 
4.0 Conclusion 
.NET and CORBA offer various kinds of facilities to address the security concerns. 
 
Identification and authentication 
Distributed object technology allows clients to access objects or services available remotely. It is 
very important to establish the identity of clients through proper authentication mechanisms, 
before granting access. 

 

                           Figure 6: Delegation [23] 

Initiator 

Intermediate 

Final recipient 
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 .NET allows the usage of various kinds of user authentication mechanisms like native operating 
system or Passport service. Developers can implement their own authentication mechanisms 
within the application. 
CORBA Security services provide interfaces which can be used to provide authentication. 
External security services can also be integrated with CORBA using interceptors. 
 
Unauthorised Code 
Application executing a malicious remote code may try to access the critical system or 
application resources.  
Code access security policy in .NET restricts the access to the code based on the evidence, which 
may be composed of Zone, URL, Hash or Site. 
In CORBA, security policy can be defined to establish a trusted relationship between client and 
target objects. Secure interoperability among different ORBs can be achieved using CSI 
packages. 
 
Access Control 
System resources and application resources are accessed differently by various objects and 
services. Control mechanisms that are used to protect critical resources should be scalable and 
flexible. 
Four levels of security policy in .NET offers fine grained access control. A group of systems can 
be managed by defining enterprise policy. Access control can be further restricted on individual 
systems using Machine Policy or User Policy. 
Domain access policy in CORBA can be used to define access control for similar type of objects. 
Any number of objects can be made domain members and an object can be made member of 
multiple domains. 
  
Authorisation 
Access to critical resources may be required for some legitimate users. Mechanisms to define 
authority and make access decisions based on the authority are required.   
Role based security in .NET grants special permissions to access resources without allowing 
unauthorised access and disclosure. These roles can be completely specific to the application or 
operating system (Windows NT) roles.  
Privilege attributes in CORBA in the form of roles or group membership can be used to define 
authority. 
 
Confidentiality and Integrity 
Messages transferred between the objects must be sufficiently protected as they are subjected to 
eavesdrop or alteration.  
Cryptography namespace in .NET Class library can be used to ensure confidentiality and 
integrity of data transferred on the network.  
Message protection in CORBA can be achieved as part of trusted relationship i.e. client and 
target can exchange a symmetric key encoded with their own private keys, before transferring 
the data. Symmetric key can be used in the subsequent communications between client and target 
objects. 
 
Security Administration 
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Managing security in distributed object environment is very challenging. Security administration 
should be able to cater the growing needs of an organisation, allowing enough flexibility.  
Security policy can be administered in .NET using the tools provided as part of the SDK. 
(caspol.exe) or MMC snap-ins. 
CORBA security services offer numerous interfaces, which can be used to administer the 
security policy. 
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