
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Cracking the HP Secure Web Console
Michael W. Shaffer 04 November 2000

Agilent Laboratories has for some time employed a device known as the HP Secure Web Console ® (1)
for providing network access to the console port of various UNIX hosts that we manage. Physically, the
device is a small featureless box with a single serial port, a single 10BaseT Ethernet connection, and a
power brick. When the serial port is connected to the console port of a host and the Ethernet connection is
cabled to your existing network, the device provides network access to the host console through a java
applet that may be run in any web browser. To access the applet and make a connection to the console, an
administrator would point their browser at the IP address or hostname assigned to the web console device
and would be greeted with a simple login screen. This initial login is based on user accounts and passwords
stored in the web console device itself. The password hashes are assumed to be reasonably secure since they
are stored and sent over the network as MD5 hashes. However, the hash is passed in the clear from the login
applet to the device, so the possiblity does exist for sniffing and cracking of hashes by an intruder with
proper access to the network.

Once the user has logged in, the web console will supply to the browser several java applets including a
menu for various administrative chores and most importantly a java console client which emulates an
ordinary text terminal. When first using these devices, I was somewhat disconcerted to find that the SSL
security indicator on the browser is never activated, indicating that at least the HTTP traffic between
browser and console was being conducted in the clear. I discussed this with several colleagues, and we were
unable to reach a consensus as to whether the traffic to and from the console was really secure or not. Some
insisted that the conversations were secure, while others remained unconvinced. At this point I set out to
explore the issue further using some basic network surveillance tools, notably nmap (2) and tcpdump (3).
The nmap utility is a popular and effective tool for scanning hosts and networks to determine their status,
network port exposure, and to some extent what operating system or other software they may be running.
The tcpdump tool, on the other hand, is a network traffic 'sniffer' which is commonly used for capturing,
logging, and monitoring the actual data packets which a network carries.

I began by simply running tcpdump and watching all traffic between my workstation (shown as wksta in the
traces shown) and a chosen web console device (shown as webcon) during a typical login session. After
several sessions and some casual analysis of the tcpdump output, I began to notice that there was traffic not
just to and from port 80 on the web console (http) but also to and from port 23 (telnet). The command I
used to observe this traffic was:

tcpdump -l -x host webcon &> webcon.log &

This command starts tcpdump and directs its output into a log file for later analysis. The options used are:

-l: Make output line buffered so that traffic can be followed from the log file as it is received by a
command such as 'tail -f webcon.log'.
-x: Show the full data (actually up to the first 128 bytes) of each packet in the output as well as a
human readable representation of the packet headers. If more data is desired from each packet, the -s
or 'snaplen' option can be used. For instance: 'tcpdump -l -x -s 65535' would show the maximum
amount of data that tcpdump can process from each packet.
host webcon: This is the 'filter expression' and appears last on the command line after any options.
This expression tells tcpdump to focus only on traffic going to or from the host named webcon. The

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

expression syntax allows filters to be specified on nearly any aspect or feature of a packet from the
ethernet frame, IP, and protocol headers (3). If no expression is specified, then tcpdump will report all
packets that it is able to collect.

Kernel filter, protocol ALL, datagram packet socket
tcpdump: listening on all devices
11:49:31.252993 eth0 > wksta.1073 > webcon.www: S ...
 4500 003c 0000 4000 4006 4d4b 821d ecd0
 821d fc65 0431 0050 ce21 29bb 0000 0000
 a0c2 16d0 a5fc 0000 0204 05b4 0402 080a
 0000 a0ab 0000 0000 0103 0300
11:49:31.258258 eth0 < webcon.www > wksta.1073: S ...
 4500 002c 8f56 0000 1d06 2105 821d fc65
 821d ecd0 0050 0431 ef7b 6201 ce21 29bc
 6012 1000 4cc9 0000 0204 05b4 8888 8888
 8888
11:49:31.258358 eth0 > wksta.1073 > webcon.www: ...
 4500 0028 0000 4000 4006 4d5f 821d ecd0
 821d fc65 0431 0050 ce21 29bc ef7b 6202
 5010 16d0 5db6 0000

... much traffic from login and loading of the console applet ...

11:49:31.879889 eth0 > wksta.1075 > webcon.www: ...
 4500 0028 0000 4000 4006 4d5f 821d ecd0
 821d fc65 0433 0050 cdef adb8 ef7e 520a
 5010 1920 e78e 0000
11:49:31.985539 eth0 > wksta.1076 > webcon.telnet: S ...
 4500 003c 0000 4000 4006 4d4b 821d ecd0
 821d fc65 0434 0017 cda3 e5d0 0000 0000
 a0c2 16d0 ea51 0000 0204 05b4 0402 080a
 0000 a0f4 0000 0000 0103 0300
11:49:31.990518 eth0 < webcon.telnet > wksta.1076: S ...
 4500 002c 8f6d 0000 1d06 20ee 821d fc65
 821d ecd0 0017 0434 ef7f 4a01 cda3 e5d1
 6012 1000 a963 0000 0204 05b4 8888 8888
 8888
11:49:31.990587 eth0 > wksta.1076 > webcon.telnet: ...
 4500 0028 0000 4000 4006 4d5f 821d ecd0
 821d fc65 0434 0017 cda3 e5d1 ef7f 4a02
 5010 16d0 ba50 0000

Ouput of 'tcpdump -x host webcon' during a web console login

More focused analysis revealed that the port 23 traffic began immediately after a successful login when the
console java applet appeared in the user's browser. The nature of the applet and the fact that it appeared to
be communicating with the well known port for the telnet service on the console led me to suspect that it
was in fact some sort of modified telnet client.

At this point I decided to check my assumptions about the console applet and also see if there were any
other ports open on the web console by using nmap. I ran a full scan of all tcp ports on the webcon device
using the command:

nmap -sS -p 1- webcon &> nmap.log &

The options used for this nmap run are:

-sS: Use a tcp 'SYN' scan instead of the normal full 'CONNECT' scan.
-p 1-: Scan all tcp ports from 1 upwards (meaning all of them from 1 to 65535).
webcon: The name of the particular host to scan. tcpdump, nmap has a huge variety of options (2), and

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

it can be used to perform a variety of both tcp and udp scans on either single hosts or entire networks.

Like
Starting nmap V. 2.53 by fyodor@insecure.org (www.insecure.org/nmap/)
Interesting ports on webcon (xxx.xxx.xxx.xxx):
(The 65534 ports scanned but not shown below are in state: closed)
Port State Service
23/tcp open telnet
80/tcp open http

Nmap run completed -- 1 IP address (1 host up) scanned in 8 seconds

Ouput of 'nmap -sS -p 1- webcon'

The scan revealed that there were indeed only two ports open, telnet and http. I now began to focus
entirely on the traffic between my workstation and the web console through the telnet port.
Continuing with my assumption that the java applet involved was using some modified 'secure'
version of the standard telnet protocol, I decided to compare traces of similar activity through from
both a web console telnet session and a normal telnet session. After making the initial connection
to both sessions, I simply typed a long string of 'a' characters into each. In cryptographic terms, this
could be considered a simplistic 'known plaintext' attack since I was feeding some known input to the
console applet and watching the encrypted traffic that it would produce based on that input.

Kernel filter, protocol ALL, datagram packet socket
tcpdump: listening on all devices
19:03:51.091949 eth0 > wksta.1138 > webcon.telnet: P 3804397219:3804397220(1) ...
 4500 0029 11df 4000 4006 e9a4 c0a8 0020
 821d fc65 0472 0017 e2c2 7ea3 dbaa bab8
 5018 7fb8 9e74 0000 56
19:03:51.283528 eth0 < webcon.telnet > wksta.1138: P 1:2(1) ack 1 win 4096
 4500 0029 44f9 0000 1a06 1c8b 821d fc65
 c0a8 0020 0017 0472 dbaa bab8 e2c2 7ea4
 5018 1000 0e2c 0000 5673 6169 7068 730d
 3724
19:03:51.302447 eth0 > wksta.1138 > webcon.telnet: . 1:1(0) ack 2 win 32696 ...
 4500 0028 11e1 4000 4006 e9a3 c0a8 0020
 821d fc65 0472 0017 e2c2 7ea4 dbaa bab9
 5010 7fb8 f47b 0000
19:03:51.367076 eth0 > wksta.1138 > webcon.telnet: P 1:2(1) ack 2 win 32696 ...
 4500 0029 11e2 4000 4006 e9a1 c0a8 0020
 821d fc65 0472 0017 e2c2 7ea4 dbaa bab9
 5018 7fb8 9e72 0000 56
19:03:51.493494 eth0 < webcon.telnet > wksta.1138: P 2:3(1) ack 2 win 4096
 4500 0029 44fa 0000 1a06 1c8a 821d fc65
 c0a8 0020 0017 0472 dbaa bab9 e2c2 7ea5
 5018 1000 0e2a 0000 5656 3031 0332 47aa
 7082
19:03:51.493559 eth0 > wksta.1138 > webcon.telnet: P 2:5(3) ack 3 win 32696 ...
 4500 002b 11e3 4000 4006 e99e c0a8 0020
 821d fc65 0472 0017 e2c2 7ea5 dbaa baba
 5018 7fb8 4818 0000 5656 56

Partial output of 'tcpdump -x host webcon and port telnet' during a secure web console
session

Kernel filter, protocol ALL, datagram packet socket
tcpdump: listening on all devices
09:52:49.808752 eth0 > wksta.1033 > telnethost.telnet: P 319405533:319405534(1) ...

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

 4500 0035 0000 4000 4006 4d53 821d ecd0
 821d fc64 0409 0017 1309 bddd e888 4594
 8018 28e6 cef2 0000 0101 080a 0006 8386
 37ba 7200 61
09:52:49.809004 eth0 < telnethost.telnet > wksta.1033: P 1:2(1) ack 1 win 32768 ...
 4500 0035 4247 4000 3f06 0c0c 821d fc64
 821d ecd0 0017 0409 e888 4594 1309 bdde
 8018 8000 6dde 0000 0101 080a 37ba 7bf9
 0006 8386 61
09:52:49.809065 eth0 > wksta.1033 > telnethost.telnet: . 1:1(0) ack 2 win 10470 ...
 4500 0034 0000 4000 4006 4d54 821d ecd0
 821d fc64 0409 0017 1309 bdde e888 4595
 8010 28e6 2601 0000 0101 080a 0006 8386
 37ba 7bf9
09:52:50.041074 eth0 > wksta.1033 > telnethost.telnet: P 1:2(1) ack 2 win 10470 ...
 4500 0035 0000 4000 4006 4d53 821d ecd0
 821d fc64 0409 0017 1309 bdde e888 4595
 8018 28e6 c4df 0000 0101 080a 0006 839e
 37ba 7bf9 61
09:52:50.041283 eth0 < telnethost.telnet > wksta.1033: P 2:3(1) ack 2 win 32768 ...
 4500 0035 4248 4000 3f06 0c0b 821d fc64
 821d ecd0 0017 0409 e888 4595 1309 bddf
 8018 8000 6dad 0000 0101 080a 37ba 7c10
 0006 839e 61

Partial output of 'tcpdump -x host telnethost and port telnet' during an ordinary
telnet session

It did not take long for me to notice that there was some highly alarming regularity in the traffic
produced by the console applet in response to my string of 'a' characters. While the traffic was
different from that produced by the clear text telnet session, it was also completely uniform. In the
examples above, I have highlighted the byte '61' in several of the packets from the ordinary telnet
session. This is the hexadecimal value of the ASCII 'a' character code, so it is not surprising that a
string of packets carrying this value are seen when a string of 'a' characters are typed into the session.
In the traffic for the secure web console session, I have highlighted the byte '56' from several of the
packets which seem highly similar to those from the ordinary session. While observing the tcpdump
output in realtime, I could easily see that the console applet was sending a '56' for every 'a' that I
typed. This uniformity suggested initially that if an encryption algorithm was in use it must be an
extremely simplistic one since the critical function of all robust encryption schemes is to introduce as
much randomness as possible into their output. This behavior suggested that the encryption (more
properly referred to as 'encoding' in this case) being performed must be some sort of one-to-one
mapping of character values to transmitted values.

I studied this further by entering a number of strings of known, ordered characters (for instance, the
lower case alphabet 'abcdefghijklmnopqrstuvwxyz') into the console applet and recording the
transmitted byte values to build up a 'translation table'. The pattern that emerged soon suggested an
elementary transformation, but for the sake of completeness I persisted until I had mapped nearly the
entire printable ASCII character set in this fashion. A portion of the mapping that I recorded is shown
below:

Encoded Typed
 57 a
 55 b
 54 c
 53 d
 52 e
 51 f
 50 g

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

 5f h
 5e i
 5d j
 5c k
 5b l
 5a m
 59 n
 58 o
 47 p
 46 q
 45 r
 44 s
 43 t
 42 u
 41 v
 40 w
 4f x
 4e y
 4d z
 4c {
 4b |
 4a }
 49 ~

Sample of observed character value mapping

Many readers will already have deduced the transformation from the above sample, but to belabor the
point a bit more I wrote out a complete table of the binary, hexidecimal, and ASCII character values
for the uppercase alphabet. It was observation of the relationships of the binary representations of the
plain and encoded values that made the relationship most apparent. The pattern I noticed suggested
that a simple XOR or 'Exclusive OR' was at work. XOR is a really convenient operation since you can
take two numbers, XOR them with each other, and then XOR the result with either of the first
numbers to get the other number. What this means is that I only had to do a couple of XORs with the
plain and 'encrypted' character values to confirm that this was indeed the operation and that the 'key'
was the hexadecimal value 0x37.

 Encrypted ASCII
 Hex Binary Char Hex Binary Dec
 --
 77 0111 0111 @ 40 0100 0000 64
 76 0111 0110 A 41 0100 0001 65
 75 0111 0101 B 42 0100 0010 66
 74 0111 0100 C 43 0100 0011 67
 73 0111 0011 D 44 0100 0100 68
 72 0111 0010 E 45 0100 0101 69
 71 0111 0001 F 46 0100 0110 70
 70 0111 0000 G 47 0100 0111 71
 7f 0111 1111 H 48 0100 1000 72
 7e 0111 1110 I 49 0100 1001 73
 7d 0111 1101 J 4a 0100 1010 74
 7c 0111 1100 K 4b 0100 1011 75
 7b 0111 1011 L 4c 0100 1100 76
 7a 0111 1010 M 4d 0100 1101 77
 79 0111 1001 N 4e 0100 1110 78
 78 0111 1000 O 4f 0100 1111 79

 40 0100 0000
 77 0111 0111 XOR

 37 0011 0111

 41 0100 0001
 76 0111 0110 XOR

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

 37 0011 0111

Table of encoded and plain values for the uppercase ASCII alphabet

Now that I had a guess as to what the encoding scheme for the console applet was, I decided to search
the various online security forums to see if I could confirm my hypothesis and determine if the value
that I had deduced was a constant or might vary from session to session or device to device. A quick
visit to Google netted a brief thread (4) from the Security Portal (5) web archives of the BUGTRAQ
security mailing list from around December 1999 that confirmed both my analysis and the 0x37 key
value.

For completeness, I developed a simple perl script that will 'decode' the content of a web console
session from the output of snooping the session traffic with a tcpdump command similar to those
shown above. The source for the script appears below.

#!/usr/bin/perl

%charmap = (
 0x0a, "<>\n",
 0x0d, "<>\n"
);

$f_show = 0;

while (<>)
{
 chomp;
 $line = $_;

 if ($line =~ /^[0-9]{2}:/o)
 {
 $f_show = 0;
 }

 if ($line =~ /^\s+5018 [0-9a-f]{4} [0-9a-f]{4} 0000/o)
 {
 $f_show = 1;
 }

 if ($f_show)
 {
 if ($line =~ /^\s+5018 [0-9a-f]{4} [0-9a-f]{4} 0000 ?(.+)$/o)
 {
 $line = $1;
 }
 while ($line =~ /([0-9a-f]{2})/g)
 {
 $word = $1;
 $val = hex ($word) ^ 0x37;
 if (defined ($charmap{$val}))
 {
 $msg = $charmap{$val};
 }
 else
 {
 $msg = chr ($val);
 }
 print $msg;
 }
 }
}

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Simple perl script to 'decode' secure web console traffic

To use the script, simply run:

tcpdump -x dst host webcon and dst port telnet &> decode.log

and then pipe the 'decode.log' file through this perl script to see everything that was typed into the
console java applet in plain text.

Conclusions
The method used for data encoding or 'scrambling' as HP refers to it in the HP Secure Web Console is
not likely to provide a sufficient level of security from any but the most naive attackers who wish to
snoop on the activities of system admins using these devices. Any system administrator considering
deployment of new devices such as this (even those that feature the word 'Secure' in their name),
should test them carefully in their own environment and question their vendors directly to be sure that
the exact methods of data transmission are known and are in fact secure. Such testing does not require
either expensive tools or exotic skills but simply patience and careful observation. In many cases
(such as this one) a complete analysis and exploit of a security weakness is both simple and
educational for the administrator who wishes to understand more about the functioning of systems
under their control.

Bibliography
. 1 HP Secure Web Console.

URL: http://www.unix.hp.com/management/confmanagement/swc/index.html (04 November
2000).

. 2 NMAP -- The Network Mapper.
URL: http://www.insecure.org/nmap/ (04 November 2000).

. 3 TCPDUMP.
URL: http://www.tcpdump.org/ (04 November 2000).

. 4 Zeverina, David. Re: HP Secure Web Console. 02 December 1999.
URL: http://www.securityportal.com/list-archive/bugtraq/1999/Dec/0060.html (04 November
2000).

. 5 Security Portal.
URL: http://www.securityportal.com/ (04 November 2000).

