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1. Introduction
This paper is submitted in partial satisfaction of the SANS Institute’s GIAC Security 
Essentials Certification requirements.  It is also intended as a resource for information 
technology personnel to incorporate Capability-based design, and the security assurances 
it can bring, into their development efforts.

2. Abstract
The Capability security model confers several important assurances on the design of a 
computing system.  In particular, the Capability model guarantees that no entity in the 
system has any access rights except those implied by the object references, or 
Capabilities, that the entity holds [1].  The Capability model is elegantly simple.  In place 
of reliance on authentication protocols and access-control lists to produce access 
decisions, the Capability model provides that one’s access rights are manifest and in-hand 
at all times. It is never necessary to consult an authority to obtain an access decision.  One 
obtains access to an object straightforwardly by invoking one’s Capability (if one 
possesses it) to the object.  One may of course create one’s own object, which yields the 
creator a Capability to that object. The creator may then hand to other entities Capabilities 
to the object. Capabilities used in appropriate combinations allow work to be done 
efficiently with large numbers of objects.

In the Web computing world, many technologies at various levels of abstraction, based 
on different security models, cooperate to implement applications and services.  The 
challenge of designing a Capability-based application in this environment is considerably 
greater.  But the potential rewards to Capability design: very high security assurance; fine-
grained access control; high performance; flexible administration; and extensibility make 
the challenge worthwhile.

3. Capabilities in Theory

3.1. Confinement
A major consequence of the Capability model is that an entity cannot even express an 
attempt to access an unauthorized object.  An entity either possesses a Capability, which 
contains within it particular authorizations, or the entity does not, hence it cannot even 
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express the access attempt.  Thus Capability security supports confinement [2], [3], a key 
property of high-security systems.  Confinement guarantees that an invoked program 
cannot access any objects except those objects to which the invoker grants the program 
access.  In particular, the program cannot utilize any channel that would allow exporting, 
or leaking, data from the invoker’s objects.  Complete confinement is difficult to achieve 
in systems not architected for it.  Many of the prevalent browser and email-client 
vulnerabilities stem from untrusted software (embedded in Web pages, contained in 
attachments, etc.) being allowed to execute in an unconfined context [10].

3.2. The Confused Deputy
Capabilities also solve the Confused Deputy problem [6].  The Confused Deputy problem 
is a least-privilege problem.  It arises when an entity sees ambiguity about which of its 
access rights to use, those of the entity’s invoker, or those pre-allocated to it to perform its
function.  This ambiguity can lead to damaging misuses of authority.  Non-Capability-
based systems typically authenticate a user, then make the user’s access rights currently 
active in the session available to all programs (processing entities) the user initiates.  In the 
example in [6], the user may specify a debug-output file to a compiler, which also runs 
with its own permission to write temporary files in a system area.  If the user specifies the 
wrong debug-output filename (or a rogue version of the compiler was installed earlier 
surreptitiously), the compiler could damage critical files in the system area.

In contrast, Capability systems prevent the confusion because the compiler will hold a 
Capability that implements writing a temporary file (name irrelevant, but unique) to the 
system area, and be given another Capability by the user for writing debugging output.  
The compiler’s temporary file Capability can even limit the maximum file size, to forestall 
a denial-of-service attempt. Since the user has no Capability for the system area, the 
Capabilities are independent, the compiler uses each for a specific function, so the 
compiler cannot use an authority for the wrong purpose.

Systems which rely on ambient authority, that is authority determined by group 
membership, user id or other environmental information, are vulnerable to Confused 
Deputy problems. Access control lists (ACLs) are generically vulnerable to Confused 
Deputy because no matter how detailed the grant (or deny) information in the list, the 
available authority depends both on properties of the subject and on properties of the 
entity acting on the subject’s behalf.  Confusion about which authority to apply can arise 
unpredictably from the dual dependency.

3.3. Capability Mechanics
What does a Capability “look like”?   Intuitively, it’s an encapsulated object reference.  
Like any object reference, the holder can use it to invoke methods on the referent object.  
Unlike an ordinary reference, though, the reference may only activate a subset of the 
methods defined on the object.  Thus, varying levels of authority on an object can be 
expressed by creating different Capabilities to the object with varying subsets of methods 
active. An analogy is the familiar GUI dialog box with some of its controls grayed out.
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How does an entity obtain Capabilities?  Four ways are explained in [11]: 

1. At birth; 

2. To each object the entity creates; 

3. Passed to the entity from another entity (as depicted in the “Granovetter 
diagram”);

4. In the initial conditions—ambient (or replicated to every primordial object).  E.g., 
everyone with working lungs has a Capability to the oxygen in the air.

3.4. Requirements and Non-Requirements on Capabilities

3.4.1. Requirements: Non-Bypassable, Non-Forgeable, Complete, 
Transferable

Since invocation of a Capability is the sole security primitive, systems that implement 
Capabilities must protect the integrity of Capabilities.

Capabilities must be non-bypassable:  It must be infeasible to obtain a valid Capability 
except by invocation of another Capability whose contract provides the requested 
Capability.  Capabilities must be non-forgeable: It must be infeasible for an entity to 
fabricate a Capability which the entity does not already hold.  Capabilities must be 
complete: It must be infeasible to message any object except through a valid Capability, 
and that Capability defines exactly the messages that may be sent.  The Capability itself is 
the authorization to access the referenced object.

An entity is free to share or transfer its Capabilities with another entity with which it has a 
Capability to communicate.  The model places no transfer restrictions on the holders of 
Capabilities. At first, this appears to pose a significant risk of misappropriation of 
authority, or misattribution of actions by a user.  However, the risk posed is no greater 
than with ACL-based systems, and in practice will be less.  

In ACL-based systems, a user’s identity is checked against the access list associated with 
an object to find a list item which specifically grants (or denies) access to that user.  This 
is the basic security check for all access attempts.  If the user gives his authentication 
tokens to another user, or the tokens are stolen, the receiving user can immediately act 
with the full authority of the first user.  The principle of Least Privilege is not maintained 
because a user can either transfer no authority (by not sharing authentication tokens) or 
too much authority (by sharing them) [17].  Sharing authority at a fine-grained level is 
difficult with ACLs because they usually require an additional entry by the object owner 
to grant authority or to allow a user to grant authority to someone else.  In contrast, a 
Capability gives a specific authority on the object it references, but transitively allows 
transfer of that authority to others.  A user can even give another user a subset of the 
authority in a Capability by creating a new object that uses the original Capability in 
limited ways, then handing a Capability to the new object to the other user.  In 3.4.3 
below, we discuss how to maintain accountability for the results of such transfers.
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3.4.2. Non-Requirement: Revocability
Revocability, or the ability of an entity to invalidate outstanding Capabilities to an object 
the entity owns, is not a requirement of the Capability model.  However, most practical 
security policies will require the ability to revoke at least some Capabilities.  An object 
owner will not in general be able to recall outstanding Capabilities to its objects, because it
would be difficult to limit the authority of the message to discard a given Capability, and 
the entity receiving the message could just ignore it.  Instead, the owner must destroy the 
object whose Capabilities the owner wishes to revoke.  If the owner wishes to revoke 
from some entities but not others, the owner must organize the shared objects and hand 
out Capabilities to them according to a pattern that allows revocation to the desired degree
of generality.  Specific examples are discussed in Section 5, below.

3.4.3. Non-Requirement: Accountability
Capabilities, as the combination of object reference with authorization, make either object 
owners or the Capability infrastructure responsible for maintaining accountability, usually 
by use of a logging service API.

If the object owner is responsible for logging, then the owner must know the stated 
identity of the subject to which it gives a Capability to an object, and arrange to log 
accesses to the object.  But Capabilities are transferable between entities, so use of a 
Capability by other entities would be incorrectly associated with the original holder 
(though the delegation of the authority is relevant).  This misleading association presents 
no greater risk than ACL-based systems, however.  Recall from 3.4.1 that a subject can 
transfer its authentication tokens to another subject, just as easily as the subject can 
transfer its Capabilities to another subject.  Either way, the second subject’s actions can 
be misattributed to the first.  The risk with Capabilities is actually less, because 
Capabilities only give access rights to their particular referenced objects.  Whereas 
transferring a subject’s authentication tokens allows someone else to act with all the 
authority of that subject.

If the infrastructure is responsible for logging, then any access to any object may 
potentially cause logging.  Some form of subject authentication, security sessions and 
services to manage them would be necessary to associate a Capability use with a subject. 
These dissimilar architectural approaches illustrate the flexibility of the Capability model 
toward accountability mechanisms. 

4. Capabilities in Current Practice
Capability operating systems have sufficient control over the computing domain that the 
above axioms can be implemented using established system programming techniques.  
Capability-based machines (proposed [4], and implemented [5]) implement Capability 
addressing in the CPU architecture and memory-management unit.  It is a simpler 
problem to implement a secure operating system on a single Capability machine, or a 
secure application on a Capability OS, because the machine or OS have the ability to 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2005                                                                                                                 Author retains full rights.

confine the application.

4.1. Operating Systems

The KeyKOS Operating System [7] was a commercial product for the IBM System 370 
line of mainframe computers. Its feature set focuses on:

• Minimal kernel footprint and overhead,

• Very high performance of primitive operations (e.g., calling through a Capability),

• An integrated persistence facility, where a subset of, or the entire low-level state of the 
system could be saved to mass storage for later restart.  

KeyKOS is not a full-service operating system; it does not contain a file system, network 
stack, or user interfaces.  Rather, KeyKOS is a hardware multiplexor, capable of hosting 
virtual operating system instances, or OS components such as file systems, within 
domains. The domain in KeyKOS is the basic client of the KeyKOS kernel.  All non-
kernel code runs within one or more domains.  The KeyKOS kernel’s responsibilities are 
to perform Capability calls and returns and manage the persistent store.  The primary 
strength of KeyKOS is to support mutual confinement of domains with high assurance.

The EROS Operating System ([8], [9]) brings the KeyKOS architecture to the PC in an 
open-source implementation. This system can be used as a virtual server platform, where 
multiple, isolated instances of various commercial operating systems can run within a 
collection of domains.  The Capability architecture allows communication channels 
among the operating systems to be specified exactly and arbitrarily limited.  The 
persistence feature allows restart of the system and resumption of processing with very 
little latency.

4.2. Programming Languages and Libraries

4.2.1. Netscape Capabilities API
The Netscape Capabilities API, [12], addresses a prevalent security problem: protecting a 
client computer from damage caused by executing software downloaded from the World 
Wide Web.   The API allows a Java applet writer to enumerate the privileges the applet 
may wish to have on the client machine, as the applet executes within the Netscape 
browser.  At runtime, the applet may prompt the user to authorize the applet to use a 
particular privilege. This model is in contrast to the earlier, rigid, “sandbox” rule for 
applets, which imposed a restrictive blanket policy on all access by the applet to the client 
system.  It also avoids the all-or-nothing proposition of ActiveX, where downloaded code 
has privileges up to the full extent of the user’s authorizations on the client system if the 
user expresses trust in the stated creator of the downloaded code.  Besides not supporting 
the principle of least-privilege, the ActiveX authentication scheme is vulnerable to a 
particular human error with improperly-issued certificates [13].
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Paradoxically, the Netscape Capabilities API does not quite offer Capability security.  In 
particular, it does not generate encapsulated object references to the objects that the 
applet writer wishes to get authorization to use.  Rather, the programmer uses the 
netscape.security classes to enable ambient privileges within a critical section of 
code (a method subgraph or just a portion of a method). The presence of privilege is 
reflected in the stack frames of the active method calls, so the privilege is restricted to the 
thread that obtains it. The Java 2 Privileged Block API  [16], works in a similar manner, 
except the higher privilege takes effect in the run() method of a separate object created 
for the purpose of executing the privileged operation.  

4.2.2. The E Programming Language
The E programming language ([14], [15]), is an interpreted, Capability-based 
programming language with some important influences from Smalltalk, such as runtime-
only type-checking.  It also features the ELib subcomponent, written in Java, which 
implements the distributed communication features of E. E itself is currently implemented 
on top of the Java Virtual Machine, that is, the E compiler and interpreter generate JVM 
opcodes.  An E programmer can make use of the standard Java Runtime Environment 
classes via an import mechanism. 

E promulgates a model of distributed computing that is:

• Capability-based, and
• Deadlock-free.  

E (via the ELib library) preserves the requirements of Capabilities discussed earlier (non-
bypassability, non-forgeability, completeness and transferability) across distributed 
components by use of encryption and unguessable identifiers, also called Swiss numbers.  
Such numbers may be generated by a pseudo-random number generator periodically 
reseeded from a source of highly random bits.

Recall that a Capability is an encapsulated object reference.  The referent of the Capability 
may be a local or remote object.  The system must guarantee that messages to the object 
only propagate via a Capability.  The encryption protects the authentication between two 
parties that need to communicate across the distributed link, and ensures that the 
communication between the parties is safe from eavesdropping and tampering.  The 
unguessable identifiers make it infeasible for either party to successfully fabricate a 
Capability to some other object on the remote side in lieu of receiving it via a message.

E (or a Java program written to the ELib API) prevents distributed deadlock by replacing 
synchronous calls across components on the network with event-loop concurrency
executing in a Promise-based architecture. Event-loop concurrency replaces the multiple 
threads that may be activated to handle concurrent service requests with a single thread, 
called a vat, that services an event queue, reminiscent of GUI programming models.  The 
primary rule of event-loop programming is that the service thread must not block, except 
in the event mechanism when awaiting a new event. In traditional synchronous 
programming, the service thread could make a call to a remote component that would 
block the thread.  Since there is only one service thread, this is unacceptable.  Instead, 
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calls across components do not block, but immediately return placeholder objects called 
Promises. A Promise represents a commitment by its maker (the called component) to 
either provide the actual object requested (a fulfilled Promise) or provide indication that 
the call has failed (a broken Promise).  The fulfillment of a Promise by a called component
is asynchronous; the fulfillment (or breaking) of the Promise is simply queued to the 
caller’s event queue via the communication layer.  If the caller is ready to service the call 
immediately, it simply returns a fulfilled (or broken) Promise to the caller.  The Promise 
acts as a wrapper around the requested object or object reference (if fulfilled) or error 
indication (if broken).  A Promise can be requested with a timeout, so that the Promise is 
automatically broken if there is no fulfillment or break received in the timeout period.

Figure 1 below depicts an interaction diagram for a hypothetical, simple securities trading 
system.  All distributed components of the system are designed as ELib-managed event 
loops.  The Client component wishes to fetch a stock quote and pass it to a rule-based 
Portfolio Service for possible trading action.  The “active” periods for each component 
each indicate one pass of the internal event loop.  Event loop passes are independent; any 
number (limited by system resources) may take place in a time period.

The Client requests a quote from the Quote Service.  The ELib call to make the request 
immediately returns a Promise for the result and forwards the request with the ID of the 
issued Promise to the Quote Service.  The Client, in the same event loop pass, then 
requests a trading action from the Portfolio Service, passing quotePromise as an 
argument to the call.  The Client receives tradeResultPromise, then returns from 
the event loop pass.  Meantime, the Quote Service is obtaining the quote.  This is likely an 
asynchronous action, but not necessarily an ELib exchange.  When the Quote Service has 
a Quote, it calls ELib to fulfill the QuotePromise that ELib within the Client has 
associated with the request. At this point, the Client can fulfill quotePromise held by 
the Portfolio Service, and allow that service to make its trading decision based on the 
Quote.  Finally, the Portfolio Service fulfills the Client’s TradeResultPromise
issued earlier and the Client may now use the TradeResult.

Note that the Client runs concurrently with the other two services when setting up the 
request.  Because the Promise architecture allows a pending object (the unfulfilled 
Promise) to be passed to other calls (which may in turn yield other Promises), the system 
as a whole can exhibit a lot of concurrency with a constant number of threads. 
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Event Loop (Vat) Event Loop (Vat) Event Loop (Vat)

Client
Client

Quote
Service

Portfolio
Service

tradeResultPromise =
portfolioService.tradeStrategy(quotePromise)

Receive a QuotePromise.

quotePromise
= quoteService.getQuote

(tradeableSymbol)

Receive  a
TradeResultPromise

.

Request quote for
symbol from

exchange feed
(asynchronous).

. . .

Queue processing of
request pending
fulfillment of

QuotePromise.Fulfill
QuotePromise
with a Quote.

Fulfill
QuotePromise with

the Quote.

Use the Quote to make
tradeResult
(buy/sell/hold).

Fulfill
TradeResultPromise
with a TradeResult.

Display the
TradeResult.

Figure 1.  Interaction diagram for simple trading scenario

The major effect of event-loop concurrency and Promises on system design is to 
drastically simplify the system synchronization protocol, a very valuable effect as 
synchronization problems are notorious for being among the most difficult to diagnose.  
These design features reduce the static and dynamic frequency of thread blockage. The 
lower frequencies lead to higher thread duty cycles, fewer context switches, and lower 
resource consumption than designs that use a worker-thread pool approach.

5. Techniques for Application Design Using Capabilities
Extending the Capability architecture to distributed applications and services on today’s 
major platforms is a harder class of problem, because the basic properties of Capabilities 
must be preserved across machine, operating system, network, middleware and 
application technologies not designed with Capabilities in mind.  The remainder of this 
paper focuses on this problem, some existing technologies that address aspects of it, and 
offers some further approaches to solving it.

5.1. Facets
A logical service on the network may define a complex, feature-rich interface.  Security 
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policy may require that subsets of the interface are made available to subjects according 
to the subjects’ access rights.  Facets provide a convenient pattern for supporting this 
policy in the design of the service [18].  A subject is given a Capability to a facet, or 
interface subset, of the service upon request if the subject is authorized to use the facet.  
The Capability references the facet object, which implements some subset of all the 
messages defined for the service.  Clearly, one could create a facet for every possible 
combination of messages taken from the full interface.  However, the pattern is most 
economical when the full service interface is divided into a manageable number of major 
facets which are each associated with certain access rights.  For example, a simple policy 
would divide the interface to a service into general query, privileged query, update, and 
administrative groups of methods.  The service implementation has wide latitude in 
choosing design patterns for its constituent objects.  It is only necessary to ensure that a 
subject with a Capability to one facet cannot message another facet, except through 
another Capability that references that facet.

The below diagram shows a basic multi-faceted network service in use by several clients.  
Each client already has authenticated to some service that issues an authentication token, 
serving as proof (to some degree) of identity.  Each client has a Capability to the 
Director/Authorizer, which hands out Capabilities based on authorizations granted to a 
holder of an authentication token.  Some Capabilities are public, meaning that no 
authentication token is needed to obtain them.

Multi-faceted Network
Service

Shared
objects

Facet
A

Facet
B

Facet
C

Directory/Authorizer

Client 1

Client 2

Client 3

Authentication token

Authentication token

Capabilities

Capabilities

Null authentication
token

(Public) Capability

Figure 2 - Use of a multi-faceted network service

5.2. Façades
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If facets decompose a large interface into smaller interfaces in order to authorize use of 
each interface separately, then a façade has the converse purpose: To aggregate facets of a 
service’s interface into a larger interface, possibly with more abstract methods in place of 
the specific methods of the facets.  This abstraction can make authorization and 
invocation more convenient [19].  However, Capabilities make the pattern stronger than 
described in the reference.  A Capability to a façade does not confer Capabilities to the 
interface facets that make up the façade, though those facets can still be authorized 
separately.

5.3. Protecting Capabilities in Existing Application 
Frameworks

There is a great variation in security policies in today’s application frameworks.  Support 
ranges from native Capability security in E and ELib to responsibility being left entirely to 
the programmer (CORBA, RMI).   The challenge of implementing Capability-secure 
systems lies in preserving the requirements of the Capability model across the collection 
of technologies used to build the system.  This section will demonstrate that it is easier to 
use the framework security features only to meet the requirements of Capabilities rather 
than to compose the framework policies together with Capabilities and try to make sense 
of the resulting hybrid model.

The examples depicted below focus on only a client and a server tier, for simplicity.  For 
multi-tier applications, intermediate tiers function as servers of some classes of objects 
and clients of others.  The client and server patterns discussed can be reapplied between 
those tiers.

5.3.1. CORBA
The CORBA remote object framework implements inter-object distributed invocation and
object reference lookup services [20].  A C++ or Java programmer specifies an interface 
for network-visible objects in Interface Definition Language (IDL), and generates “stub” 
and “skeleton” classes from the IDL with a generator program.  The stub classes 
implement the client object reference to the remote object.  The skeleton classes take care 
of dispatching calls received on the server side, from remote references, to the actual 
object implementation.  The object request broker (ORB) handles binding of a client stub 
instance to a remote object instance.  Once the binding is established, stub and skeleton 
code communicate directly via the Internet Inter-ORB Protocol (IIOP). 

CORBA does not specify a security policy.  The Borland implementation offers an SSL 
add-on that applies the SSL feature set (one- or two-way certificate-based authentication 
and encryption of traffic) to communication between clients and ORBs and stubs and 
skeletons.  A security service that implements password and certification authentication, a 
Gatekeeper middle tier, and an API for server objects to create ACLs for authorization are 
also offered. 

The CORBA security features include the familiar mechanisms of SSL, password-based 
authentication and ACL-based authorization.   We now examine possible ways to use the 
CORBA security features to design a Capability-secure application, and some pitfalls that 
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could arise in realizing Capability security in a non-Capability system.

CORBA uses a name service that clients query to obtain references to remote objects.  
The name service must only know about objects that are public, i.e. ambient Capabilities.  
Otherwise objects responsible for handing out other Capabilities could be bypassed by 
asking the name server.  Even with the Security Service add-on, once a client 
authenticates, it can obtain a reference to any remote object by name because the name 
service does not require authorization for references before returning them. 

Rule: Only ambient Capabilities should be registered with the CORBA name 
service.

CORBA’s IIOP sends object references over the wire in “stringified” (e.g., serialized) 
form.  Unless the object reference strings are unguessable, e.g. by incorporating Swiss 
numbers, a client could construct a Capability to an unauthorized object if the client 
knows how to name the object in this manner. This violates the unforgeable property of 
Capabilities.  Even if valid Capabilities to specific objects could not be feasibly 
constructed, clients could go on “fishing expeditions” for valid object references unless 
the space of object reference strings is extremely sparse and the strings are uniformly 
distributed in the space. 

Rule: Objects that dispense Capabilities must name the referent object in a way that 
makes it infeasible for a client to fabricate a valid CORBA reference to the object.

The next diagram shows one possible arrangement for implementing revocable 
Capabilities in CORBA.  The “shadow objects” are the ones to which clients actually 
receive references (Capabilities).  (From the point of view of the Service Object, the 
shadow objects themselves are Capabilities.)  References to shadow objects may be 
shared between clients, and separate shadow objects may be created to allow individual 
revocation.  Each shadow object can be set up with particular methods enabled or 
disabled depending on the client’s authorizations.  Moreover, it is straightforward to 
generate the shadow object class definitions from the same IDL file used to define the 
actual CORBA object on the network, with a tool similar to the existing idl2cpp or 
idl2java.  This model can be composed with the Facets approach (5.1), by creating a 
shadow object class for each facet.  A CORBA Authorizer component would need to be 
written to hand out Capabilities to shadow objects to authorized clients [3].
Messages
Messages
Messages
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Figure 3 - Capabilities implemented with shadow objects

5.3.2. Java Remote Method Invocation (RMI)
The Java RMI facility [21] is similar in architecture to CORBA.  It uses client side proxy 
classes (“stubs”) generated by a compile-time tool, rmic, to message remote instances.  
Unlike CORBA, RMI does not use separate, server-side adapter classes  (the “skeletons”). 
Services register with a name service, the RMI Registry, which clients use to find remote 
objects.  RMI allows for another dimension of flexibility in that the service can use the 
Java class loader and serialization mechanisms to load the object instance from a method 
call argument, or from a file or the Internet.

The same rules for managing Capabilities in CORBA apply to RMI.  The facet and 
shadow object patterns for a Capability-based design apply as well.  

5.3.3. Comparing Frameworks
It is worth noting here that CORBA and RMI still operate on the synchronous-call model, 
unlike the E language and ELib library.  That is, a remote object invocation blocks the 
thread that makes it.  So even though CORBA and RMI solve important problems in 
designing distributed systems, they do not natively protect object references nor do they 
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offer a model for creating deadlock-free systems, as E and ELib do.  On the other hand, E 
and ELib do not contain a pre-built facility for dispensing Capabilities to (authorized) 
clients, where as CORBA and RMI have basic, if insecure ones.

Whichever framework is used, attention must be paid to preserving Capability semantics 
at layers below the framework.  Saving an object instance or Capability in a persistent 
store requires that no subject that is not authorized for the Capability be able to access 
that store.  SSL or another means of protecting traffic and authenticating the 
correspondent must be used for exchanging Capabilities over the network.  Clients must 
be protected from code on the network that would misappropriate Capabilities.  Note that 
enforcement stops short of explicit client action to share Capabilities, just as it is 
impractical to prevent a person from sharing his or her password.

5.4. Capabilities on the Web
Most of the discussion of distributed object frameworks in this paper covers server-tier 
and middle-tier components, because most distributed object technology is deployed in 
those components.  But the Web is an end-user medium, with the Web browser the most 
familiar software artifact.  

5.4.1. Client Framework Components 
A Web page that is part of a Capability-based application can dynamically download a 
software component to execute within the browser.   Such component may be a Java 
applet, a plug-in, or a compiled ActiveX control that is coded to the framework API and 
uses the techniques discussed.  However there are well-known tradeoffs to this design, 
such as trust issues with accepting downloaded code to run in the user’s security context 
(or some narrower context); and user experience issues with latency and errors in the 
actual download or instantiation.

5.4.2. HTTP Cookies and Object References
Probably the bulk of Web pages delivered to browsers is coded in the HTML and 
Javascript scripting languages.  These languages fall well short of supporting basic object-
oriented properties of encapsulation, inheritance, polymorphism, etc.  The challenge for a 
Capability application designer is to model the system so that Web pages can exchange 
some form of object references without an object-oriented framework.

The widely-used HTTP Cookie construct [22] specifies a format for exchanging state 
information between client and server.  A Web page can dispense Capability 
“equivalents” via Cookies to the user’s browser.  (The Cookie string would be an 
“equivalent” because it would not be an object reference in the framework.)  If the Cookie 
string contains a Swiss number that designates a particular object in the server, and the 
Cookie is exchanged via SSL, then the Capability requirements of 3.4.1 are met.  (The 
session ID Cookie exchanged by many sites is one type of object designator.) The 
completeness requirement here intends that the Cookie strings act as Capabilities for 
objects covered by the security policy.  “Objects” not known to the distributed 
framework, such as HTML blocks and Javascript variables, should contain no Capability 
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equivalents.

Note that some sites use URL parameters rather than Cookies to exchange state 
information.  The problem here is that misbehaving Javascript could lift a Capability 
equivalent from such a parameter and POST it anywhere, whereas Cookie exchange can 
be restricted to a particular, SSL-authenticated server trusted not to introduce such code 
[3].

6. Conclusion
A distributed system is subject to myriad threats. The Capability security model is simple, 
consistent, flexible, and expresses a wide range of policy, which are all major 
countermeasures to the threats. There are production-quality tools becoming available 
that support end-to-end implementation.

In contrast, an application security model composed from the various security features of 
the implementation platforms is vulnerable to platform-specific attacks and changing 
behavior of the security features.  An end-to-end, platform-independent Capability-based 
design should be considered at the outset for any substantial system to be exposed to the 
Web.

7.
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