
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 1

Honey in the Pot or Tar in the Pit:
A Case Study of a Honey Pot and LeBrea Tar Pit

Gregory E. Kane

GSEC Practical Assignment V1.4
Option 2

ABSTRACT:

The following paper will discuss the configuration and implementation
of a honeypot system, Phase I. The honeypot system was selected
because of the potential usage and impact on a live LAN in a
production environment. It is believed that a honeypot could greatly
enhance the overall shield in a layered defensive system. The system
was installed and incorporated into an existing LAN. The honeypot
worked somewhat as expected, though there were some unexpected
problems encountered and noted in this paper. The system was
hacked on at least one occasion prior to installation of Phase II. Phase
II includes using Labrea Tar Pit on the basic honeypot.

Introduction:

Generally, honeypots are used to observe and track the tactics used by
the blackhat community through recording a blackhat’s attack on a
particular system environment1. Honeypots, as well as honeynets2
versus our developing Honeypot Array, have proven to be a valuable
source for the collection of information relative to the tools the
blackhat community is using3. Honeypots can also aide system
administrators as an early warning management tool against blackhat
activity on their system. The topic of honeynets will not be included in
this paper. Discussed in the paper is the approach taken for each type
of tool used in the honeypot, problems discovered in installing and
using the particular tool and the results of the implementation. An
overall review of the honeypot system is also included. Additionally, a
review of LeBrea Tar Pit4 (Sticky Honeypot) will be addressed,

1 Honeypots: Definition and Value of Honeypots, Spitzner, Lance, March 2002.
2 The HoneyNet Project: http://project.honeynet.org
3 Klug, David. “Honey Pots and Intrusion Detection”, September 13, 2000
4 LaBrea Tar Pit: http://www.hackbusters.net/LaBrea/

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 2

including the installation of LeBrea and results observed and obtained.
As a note, an additional product honeyd5, which is similar to Labrea
Tar Pit is available, but will not be used or reviewed. The prime focus
of this paper will be the efficacy of the system reviewed and the
usefulness of the tools used.

The Honeypot- Phase I

The Basic System Configuration

The Honeypot used for this paper had been installed using a default
installation of Mandrake 8.16. The exception to the default was adding
the Apache Web Server and ProFTPD. Additionally, Sendmail was
installed and used in favor of the standard install of PostFix. Mandrake
was chosen based upon the fact that the overall lab, and potential
production system, in which the test took place has standardized on
the Mandrake platform.

The honeypot was placed in the DMZ off a cable router (Figure 1). The
reason for using a default installation and placing the honeypot in the
DMZ was to give the computer the look of an ordinary, nothing special
platform, that could be used by a potential hacker for his or her own
desires. As noted in general literature many installed systems in
homes and businesses are not hardened, or placed behind a well
configured firewall, thus giving the intruder an easy platform picture.
The specific IP address of the honeypot was not advertised in any
form, relying on scans for discovery.

The honeypot was initially added to the network, and placed in the
DMZ, on April 20, 2002 at 1400 hrs. The initial plan was to keep the
honeypot on-line for one week. Compromise of the system was
expected rather early on, which proved to be true. The focus was to be
on what tools were used to compromise the system, and whether the
installed honeypot tools were responsive to intrusions, rather than just
how quickly the honeypot was compromised. After the completion of
the honeypot testing, Labrea Tar Pit was added to the platform and
kept on-line for a week. Labrea is discussed later in this paper. The
basic specific computer configuration was as follows:

5 Honeyd: http://www.citi.umich.edu/u/provos/honeyd

6 Mandrake Linux: http://www.linux-mandrake.com/en/features.php3
NOTE: Additional packages were needed to load most of the tools selected for the honeypot. Where necessary, these additional
packages are noted.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 3

 Intel based system board
 333 Mhz processor
 96 Megs of mainboard memory
 3.2 gig Samsung Hard Drive

The Data Collection Tools Used

The selection of tools was based on the tool’s availability in rpm
(RedHat Package Manager) format, and the lessen need for a large
amount of additional dependency packages for the tool to function.
Most rpm’s, unless otherwise indicated, were obtained at
http://rpmfind.net. In all, over 10 tools were examined with Scanlogd,
Logwatch, Tripwire, Chkrootkit, and Snort, being chosen. Where cron
scripts were not available with the tool, a script was written to gather
information from each tool and to forward the collected information to
an email account. Each tool was scheduled at different times. Syslog
was scheduled to send data every 18 minutes, with the addition of
saving the log to a floppy disk. Tripwire and logwatch were scheduled
every hour. Chkrootkit ran an email report every 12 minutes. It was
believed that varying the times would not set a pattern for the intruder
to potentially follow.

SCANLOGD RPM-2.2-1.5

OVERVIEW:

Scanlogd is a small footprint TCP port scan detection tool originally
developed for a Phrack magazine article.7 Scanlogd was chosen
because of the tool’s small foot print and what seemed to be an
excellent tool to send port scan notifications, yet remain rather
stealthy. The response email would then act as an early warning
system as outside scans began.

When detecting a port scan, scanlogd writes one line through the
syslog system. The manpage for scanlogd stipulates, “ Logging is done
with a facility of deamon and a priority level of alert. In
/etc/syslog.conf you may using something like:

 daemon.alert /var/log/alert “

7 Solar Designer, 1998. "Designing and Attacking Port Scan Detection Tools” and http://phrack.org/show.php?p=53&a=13p

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 4

INSTALLATION:

Installation was rather straight forward for an rpm package. As was
the normal case with Linux, additional software was needed to be
loaded to solve dependency issues of the scanlogd rpm on the default
Mandrake 8.1 installation. According to information on the web site for
the tool8, “This release of scanlogd can be built with support for one of
several packet capture interfaces. In addition to the raw socket
interface on Linux, scanlogd is now aware of libnids and libpcap.” The
two additional packages were downloaded and installed for this
project. A script was written to send the alert log to a designated email
account every 30 minutes.

OBSERVATION AND RESULTS:

Scanlogd was extremely easy to install and configure. When the alert
log arrived via email, in most cases the email was blank, that is until
April 25th when a major attack of the system commenced.

Scanlogd performed flawlessly in recording all probes and the final
attack, to be discussed later in this paper, on the honeypot. Scanlogd
actually recorded scans that were not recorded elsewhere. How ever,
scanlogd did not list the ftp attempts which was probably because of a
configuration problem. Based upon performance and ease of
installation scanlogd was an excellent addition to the honeypot.

CHKROOTKIT RPM-0.35-3

OVERVIEW:

Chkrootkit9 is another small footprint program that constantly
monitors the system for an introduction of a rootkit signature. The
selection of chkrootkit was to allow the monitoring of the potential of a
rootkit being installed on the system. The program is designed, as
noted on the author’s website, to check for 30 of the more common
rootkits such as:

8 Scanlogd: http://openwall.com/scanlog/d/
9 Chkrootkit: http://www.chkrootkit.org

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 5

1. lrk3, 4, 5 and 6
2. Solaris rootkit
3. FreeBSD rootkit
4. tOrn
5. Ambient’s Rootkit for Linux (ARK)
6. Ramen Worm

The program checks for many more possible rootkits. More information
is available at the author’s website.

The chkrootkit program uses the following commands:

Awk, cut, echo, egrep, find, head, id, ls, netstat, ps, strings, sed, and
uname.

The one possible problem with these commands is that they
can be replaced by a rootkit, and the above is discussed on the
developers website. Regardless of this possible problem, chkrootkit
was installed and used.

INSTALLATION:

The installation rpm required no additional packages. A script was
written that would email the results to a designated email account. A
cron job was scheduled to run with the script every 12 minutes. The
selection of 12 minutes was with the realization that a blackhat
installing a root kit was a real possibility. As the honeypot was being
remotely monitored, the reporting scheduling would give enough
warning time to allow further investigation.

OBSERVATIONS AND RESULTS:

The reports that were received were detailed. All through the
experiment, chkrootkit did not report any installation of a rootkit.
However, many of the logs for the period of the attack were lost
because the system was made inoperable by the attack. There was an
instance in another log that indicated that the attacker did install
something, but chkrootkit’s report is missing for that period. It can
only be assumed that chrootkit did respond appropriately.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 6

TRIPWIRE RPM-2.3.1.2

OVERVIEW:

The selection of Tripwire as a file monitor was based on Tripwire’s
standing within the general industry as the defacto standard. Tripwire
is well discussed throughout available literature and is available as a
rpm package or tar ball. The version of Tripwire used for this project
was from the Tripwire Open Source Project10 rpm package. According
to the Tripwire Open Source Project FAQ, “Tripwire is a tool that
checks to see what has changed on your system. The program
monitors key attributes of files that should not change, including
binary signature, size, expected change of size, etc. The hard part is
doing it the right way, balancing security, maintenance, and
functionality11.”

INSTALLATION:

The rpm for Tripwire did not require a multitude of additional packages
to satisfy dependencies. The rpm was obtained from
http://rpmfind.net. Installation using the rpm was simplistic. That is
where simplicity ends. Configuration of Tripwire took some time. After
installation of the rpm, it is required to run the installation shell script.
This shell scripts creates two important files, the twpol.txt (policy file)
and the twcfg.txt (configuration file). The twpol.txt is a default policy
file based on RedHat 7.1. Depending on the flavor and version of Linux
used, the policy file will need modification. Part of the configuration is
running a comparison of the boxe’s file systems against the default
policy file. The resulting comparison gives an indication of the changes
needed in the twpol.txt. Again, depending on the Linux flavor used,
this modification can take quite sometime and is not for the faint
hearted. Once the policy file is correctly edited, Tripwire has a process
to encode the plain text file so that it is generally unreadable. The
plain text twpol.txt can then be removed from the system. Tripwire
does provide a utility to unencode the file back to plain text for editing.
Finalization is straight forward based on the directions provided in the
documentation. A clearly written alternate to the general Tripwire
documentation for installation is also available and proved

10. The Tripwire Opens Source Project: http://www.tripwire.org/
11. The Tripwire Open Source Project: http://www.tripwire.org/qanda/faq.php

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 7

invaluable12. A shell script was written to send the reports to an
established email account every hour.

OBERVATIONS AND RESULTS:

As expected Tripwire worked well. One aspect of tripwire is that it will
report ALL file changes. This means that if the policy file is not
configured tightly, the user will start receiving multiple file changes.
Watch out for the log files, as these files change frequently and will
report back through Tripwire. There were no false positives noted
during the period of the project. During the period of this project
Tripwire did work well, however the Tripwire email for the period of the
attack was never received. The reason was that sendmail was
rendered inoperable by the time the report was due out. The Tripwire
report on the test box was not recovered for the period of the attack
because of the test box becoming inoperable and the data was
unrecoverable.

SNORT RPM-1.85 and Windows Version 1.7

OVERVIEW:

The following is taken directly from the Snort webpage13.

“Snort is a lightweight network intrusion detection system,

capable of performing real-time traffic analysis and packet

logging on IP networks. It can perform protocol analysis,

content searching/matching and can be used to detect a

variety of attacks and probes, such as buffer overflows,

stealth port scans, CGI attacks, SMB probes, OS

fingerprinting attempts, and much more. Snort uses a

flexible rules language to describe traffic that it should

collect or pass, as well as a detection engine that utilizes a

modular plugin architecture. Snort has a real-time alerting

capability as well, incorporating alerting mechanisms for

syslog, a user specified file, a UNIX socket, or WinPopup

 12 http://www.linuxsecurity.com/feature_stories/feature_story-81.html
 13 SNORT: http://www.snort.org/about.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 8

 messages to Windows clients using Samba's smbclient.”

Snort is a real workhorse when it comes to monitoring a system.
Though Snort has IDS capabilities, the program was chosen to deliver
accurate packet logging. In addition to having Snort running on the
test box, a Windows version14 of Snort was running on another box,
on the inside of the network.

INSTALLATION:

Both installs were very easy and only required the addition of libpcap
to the default Mandrake 8.1 install, and the Windows version. Snort
was set to log to the box it was installed on.

OBSERVATIONS AND RESULTS:

Few packets were able to be removed from the inoperative honeypot.
Including snort in the honeypot package appears to be an excellent
choice. Snort did capture many, many packets, however these were
lost due to system crash. Snort requires setting file size limits and use
remote logging. Keeping the logs off of the honeypot would preclude
the serious problem encountered with this project. The few logs that
were able to be recovered indicated some sort of an attack that

The Attack – Lessons Learned

The honeypot began receiving minor probes and ftp attempts within
hours of being placed into the DMZ on the 20th of April. These minor
probes and snoops began to increase in frequency, mostly at night,
and for only a few milliseconds at a time. Until the 25th, the day the
attack occurred, probes and snoops were no more than 5 in a 24 hour
period at first and up to 9 the night prior to the attack. A rather
curious situation occurred in that the night of the 24th saw no scans or
probes. Scans and probes picked back up after 0100 on the 25th. It
was the quite before the storm. The attack began on April 25th at
10:25:33 as reported by scanlogd. The initial scanning from the first
intruder stopped at 11:11:20. At 12:40:34 another IP appears in the
scanlogd report and lasts until 12:42:05. At that point scanlogd
reports another IP beginning scans at 12:45:41 and continued until

 14 Snort for Windows: http://www.silicondefense.com/software/index.htm

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 9

13:18:59. Scanlogd stopped recording after that time. The stopped
response occurred because of the server being flooded and the logs
filling to maximum size possible. One lesson learned was all logs
should have a maximum size set. As the logs filled from the flooding,
basically a denial of service attack (DOS), the system slowly stopped
responding. Additionally, the small size of the hard drive did not leave
enough room for the system to maintain logging operation. However,
the filling of the logs did not crash the server. Sendmail logs were
filled with the error messages. In retrospect, in a prudent measure,
the server should have been configured to send all logs to a remote
log server. However, other than the Win98 system running Snort,
additional computer equipment was not available at the time. The
Win98 system was protected by a firewall and virus protection. The
firewall logs and the Snort logs all show the initial attack as the Win98
machine was also attacked.

The test server was being monitored remotely, via email reports with
no one on-site to respond. At 13:30:01 the message log shows that
eth0 was set in promiscuous mode and the log shows eth0 leaving
promiscuous mode at 13:32:50. Nearly a full three minutes of running
in promiscuous mode! It is believed that a rootkit was installed during
the earlier attacks of that morning. There was nothing pre-installed on
the test server that would open the network card to promiscuous mode
and then close it. Somewhere in the logs there must be an indication
of a previously installed rootkit or compromise, but currently that
indication has not been found. The systems sendmail stopped at
10:49:13 for no apparent reason. However, system logs were still
actively recording. The message log was pulled off the test server at
17:08:13 over 6 hours after the system stopped sending out the email
reports.

After pulling the message log, syslog and alert logs from the test
server, the server was disconnected from the Internet at 17:17:00.
Approximately 30 seconds after disconnecting from the Internet the
system froze solid. No response what so ever. A cold reboot of the
system failed. The emergency boot disk had no effect in bringing the
system up. An attempt was made to boot from the original media for
the system installation. That did not work but produced an error
message that hda1 could not be found. At this point the remaining logs
were lost and the first phase of the project was terminated. Additional

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 10

forensics of the hard drive may reveal added material but is beyond
the scope of this project.

An attempt was made to follow the IP’s for the three main intrusion
attempts. One led to a University in Sweden, which is totally
untraceable and the two others led to computer security companies in
the United States. The two companies in question have been
contacted. Discussions have begun with management of both
companies. Almost beyond belief, one of the company’s management
finally admitted that their servers are from time to time being hacked
and the challenges the company has. This incident has helped two
computer security companies take another look at their own security.

An ironic situation occurred during the 25th after 12:00:00. The email
service that was receiving the email reports went down for over 6
hours. When the email service returned to operation, all email for the
account was lost for those 6 hours. This adds to the lessons learned.
When sending reports via email, have a stable email server provider.

What is known for sure is that an attack occurred beginning at
10:25:33 on the 25th of April. Something was downloaded to the test
server by one of three intruders, which probably caused the system
freeze up and the hard drive error after disconnecting from the
Internet. Based on the given evidence, the last intruder probably
delivered the malicious payload, which somehow terminated the server
when the server was disconnected from the Internet. During the initial
intrusion attempts the first intruder attempted to flood the server with
packets for a Denial Of Service. The total packets received in less than
two minutes were over 1.2 gigs in total size. The sniffer logs were not
recovered but provided an initial log folder size count. During the
attacks on the test server, which was in the DMZ, the Win98 platform
was also attacked but the attacks appeared to be stopped by the
firewall. The Win98 system tested clean.

The tools on the server, for the most part, lived up to their billing.
They did what they said they would. The hardest tool to install was
Tripwire. There are some questions about chkrootkit as there was
probably a rootkit installed by an intruder and chrootkit did not report
it. However, that does not mean that chkrootkit did not do its job. It
may have very well been that the rootkit used was not in chkrootkit’s
signature configuration. Another tool that functions like chkrootkit may

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 11

have caught it. However, that data is lost and will not be recovered.
This is where the project faltered. The potential for a rootkit that is not
defined to be used. Then for a general system failure, loosing logs
that could possibly identify the payload(s), was a blow to the overall
success of this portion of the project. The tools on the server worked
in most cases, but the system failed. To potentially stabilize the log
failures in the future a much larger hard drive, in the range of 20 gigs,
will be used. Additionally, an alternative or adjunctive tool will be
located for chkrootkit

LeBrea Tar Pit RPM 2.3-1 – Phase II

OVERVIEW:

LaBrea was chosen for Phase II of the project to have intruders
captured and “tar pitted” for analysis. According to the program
author, “Labrea works as a low-level network application that creates
“virtual machines” on your network – machines that don’t really exist
yet are able to answer connection attempts in a special way that slows
and even stops the connecting process15.” Labrea can react in two
specific ways, which were the reasons that this software was chosen.
Labrea can tar pit and send a notice to syslog and message logs. The
notices indicate the originating ip of the intruder. Secondly, in
becoming a “sticky honeypot” Labrea can hold that connection. Labrea
was added to the same basic system as used in Phase I with the
exception that chkrootkit was not installed. The decision to keep
chkrootkit off the test box was made because the initial indications in
Phase I that the current version of chkrootkit may not be as effective
as was needed. All log reports were emailed to a designated email
address. LaBrea has a multitude of switches that can be added to
increase functionality. Additionally, sniffing was limited to the Win98
box.

INSTALLATION:

The Labrea rpm had only one unfulfilled dependency, which was libnet.
Libnet was downloaded from the general rpm source noted earlier, and
installed. In order to find an up-to-date rpm package, Labrea was
downloaded from http://www.stearns.org/labrea/. Installation was not

15 Labrea Tar Pit: http://www.hackbusters.net/LaBrea/LaBrea.txt

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 12

notable. Labrea ran out of the box with the switches as indicated at
the Labrea home page.16

OBSERVATIONS AND RESULTS – DURING/AFTER

During the period of the test, May 2–7, Labrea did manage to tarpit
one scan. There appeared to be no other scans on the virtual machines
that LaBrea set up. Another point was that the LaBrea program set up
these virtual machines with the same identified services. Further study
and configuration of LaBrea is needed to allow the setting of different
services for a range of ip’s. The remainder of the tools on the test box
worked well. There were multiple scans against the test box that were
noted by the tools and logs. LaBrea is not designed to use active ip’s
for tarpitting so none were noted. What did seem somewhat out of
place was that while the test box was scanned numerous times, only
one virtual tarpit was scanned. This lack of scanning of the tarpitted
machines is unknown and deserves further investigation.

CONCLUSION – IMPACT:

Overall this project was a success. The project did capture data
showing that an intrusion did occur. What it was not able to do was
identify the tool or tools used to compromise the system. The failure to
identify the problem and be reasonably sure how the intruder was able
to compromise the system17 was a shortcoming in this project. A
separate logging computer needed to be used along with the separate
computer for packet sniffing. The packet sniffing box was a Windows
98 machine using Snort for Windows. With the vulnerabilities of
Windows 98 being well known the data could not necessarily be
trusted. A hardened Linux box will be used in the future. The use of a
small hard drive on the test box did not provide ample room for sniffer
logs. There were logs from Win98 sniffer box, but these proved
inconclusive. The tools selected did perform as stipulated by the
individual software authors. An addition that could have been used
was a keystroke logger. The logger would have given greater insight
into the attack. Another observation is that Mandrake Linux 8.1 while
being more secure than previous additions is still lacking a built in
secure kernel. An overall more secure kernel for Linux, not an add-on
package, needs to be developed for all Linux distributions. Further
investigation on the use of the tools in this project, especially
 16. Labrea Homepage: http://www.hackbusters.net/LaBrea

17. The Honeynet Project, Know Your Enemy, New York, Addison-Wesly, .2002. 9.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 13

chkrootkit, and other potential tools needs to be continued. The
outcome of this project will be the development and implementation of
a “HoneyPot Array.” The HoneyPot Array will allow continued
development of tools necessary to keep pace with the blackhat
community.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 14

Figure 1

 //

D-Link Cable Router

Cable Modem

Internet

 DMZ

Honeypot –
FTP &
Apache
Server

 Win98 sniffer
box used during
project.

Print Server

File Server

The inside LAN was removed –
isolated – from the test.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 15

REFERENCES

1. Spitzner, Lance. “Honeypots: Definition and Value of
Honeypots”, March 2002.

2. The HoneyNet Project: http://project.honeynet.org

3. Klug, David. “Honey Pots and Intrusion Detection”, September

13, 2000

4. LaBrea Tar Pit: http://www.hackbusters.net/LaBrea

5. Honeyd: http://www.citi.umich.edu/u/provos/honeyd

6. Mandrake Linux: http://linux-mandrake.com/en/features.php3

7. Solar Designer, ”Designing and Attacking Port Scan Detection
Tools”. 1998. http://phrack.org/show.php?p=53&a=13

8. Scanlogd: http://openwall.com/scanlogd

9. Chkrootkit: http://www.chkrootkit.org

10.The Tripwire Open Source Project: http://www.tripwire.org

11.The Tripwire Open Source Project:
 http://www.tripwire.org/ganda/faq.php

12. http://www.linuxsecurity.com/feature_stories/feature_story-
81.html

13.SNORT: http://www.snort.org/about.html

14.Snort for Windows:
 http://www.silicondefense.com/software/index.htm

15.LaBrea Tar Pit: http://www.hackbusters.net/LaBrea/LaBrea.txt

16.LaBrea Homepage: http://www.hackbusters.net/LaBrea

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 16

17.The Honeynet Project, Know Your Enemy, Boston, Addison-
Wesly, 2002. 9.

