
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 1

XML Digital Signature by Example
Practical Assignment: GSEC Version 1.3

Table of Contents

1) Abstract
2) Signature Processing
3) Types of XML Digital Signature

3.1) Detached
3.2) Enveloping
3.3) Enveloped

4) Components of XML Digital Signature

4.1) Name Space
4.2) Signed Information
4.3) Signature Value
4.4) Key Information

4.5) Object Signed
5) Implementation

5.1) IBM XML Security Suite
5.2) VeriSign XML Trust Services

5.3) Microsoft Visual Studio .NET
6) Summary

 Appendix A – Example generated using Microsoft Visual Studio .NET
 Appendix B - References

Joseph Kee May 2002

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 2

1) Abstract

With the release of the recommendation by the World Wide Web Consortium on
XML Digital Signature [1] in February 2002, another milestone has been reached
in developing trusted transactions in XML. As more guidelines become available
from the Consortium, the development community will have standards to follow in
developing web services.

XML Digital Signature provides applications with authentication, data integrity
and non-repudiation abilities. XML Digital Signature can be applied to one or
more items of digital content. These items of digital content may be any type of
data but are usually XML documents, and are referred to by URIs. Also, if the data
items are within the same XML document, these local data objects are referred to
via a fragment identifier. XML Digital Signature can be used in many application
areas, such as electronic mail, electronic fund transfer, software distribution, EDI,
etc. This paper starts by giving a general overview of the Digital Signature
process, follows by discussion on the different types of Digital Signature. This is
followed by an examination of XML Digital Signature implementations by some
of the major software providers. Finally this paper will conclude with the security
concerns governing the implementation of XML Digital Signature.

2) Signature Processing

Digital signature uses an asymmetric (public) key cryptography system, which
employs a public key and a private key. A hash algorithm is used to calculate a
fixed length message digest from a variable length message. This message digest is
encrypted using the private key of the sender. The encrypted signature is sent to
the receiver with the message, which may be encrypted as well.

The receiver decrypts the signature with the public key of the sender. The receiver
also re-calculates the message digest using the same hash algorithm as the sender.
The two message digests are then compared and if the two message digests are
identical, the receiver can be sure that the message has not been changed and the
sender cannot repudiate the message. This is a conceptual representation of
signature processing. The exact verification process depends on the cryptography
standard that a particular implementation employs. The following page shows a
graphical representation of this signature generation and verification process.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 3

Message

Hash Algorithm

Message

Hash Algorithm

Signature Processing

Sender Receiver

Message
Digest

Digital Signature
Signing

Digital
Signature

Message
Digest

Digital Signature
Verification

Signature Verified or
Signature Rejected

Private Key Public Key

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 4

3) Types of XML Digital Signature

There are three types of XML Digital Signatures. The Classification of the type
depends on the position of the signature in relation to the data being signed. The
three types are Detached, Enveloping and Enveloped signature. The following
sections describe of each of these three types of XML Digital Signature.

3.1) Detached Signature

In the Detached Signature type, the signature and the data being signed are located
independently. In the example following, we are preparing a Digital Signature for
the document from a web site called “somewhere.com”. In the XML that contains
the Digital Signature we reference this external network resource through URI like
http://somewhere.com/data.xml. The data and the signature are therefore not in the
same document, and are represented by two separate trees in different locations.

<Signature>

<SignedInfo>
.
.
<Reference URI=http://somewhere.com/data.xml>

.

.
</SignedInfo
</Signature>

Detached Signature can also include references to objects within the same
document as sibling items. In this case the signature and the object being signed
co-exist in the same document. This is similar to the other two types of Signature
(Enveloping and Enveloped) because the signature and the object being signed are
in the same document. The difference is no parent-child relationship exists
between the signature and the object being signed for Detached Signature. The
following is an example of this kind of Detached Signature. If we view the XML

Document at
somewhere.com

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 5

document in the example as a tree, the signature and the object being signed
(“Customer”) are two separate branches of the “Sales” tree.

<Sales Id=”Sales”
<Signature>
<SignedInfo>
.

<Reference URI=”#Customer”>
.
</SignedInfo
</Signature>

<Customer Id=”Customer”>
.
Data
.

</Customer>
 </sales>

3.2) Enveloping Signature

In the Enveloping Signature type, the signature is the parent of the object being
signed. Therefore, the signed data object resides inside the XML signature
structure. This object is identified via a URI fragment identifier. In this example
the signature is the tree and the object being signed is a branch of the tree.
<Signature>

<SignedInfo>
.
<Reference URI=”#Sales”>
.

</SignedInfo
<object Id=”Sales”>
 Data…
</object>

</Signature>

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 6

3.3) Enveloped Signatures

In the Enveloped Signature type, the signature is the child of the object being
signed. The signature covers the entire XML document that contains the signature
as an element. The enveloped signature must take care not to include its own value
in the calculation of the Signature Value. In the following example the object
being signed (“Sales”) is the tree and the signature is a branch in the tree.

<Sales Id=”Sales”
<Customer>
.
Data

.
</Customer>
<Signature>
<SignedInfo>

.
<Reference URI=”#Sales”>
.
</SignedInfo

</Signature>
 </sales>

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 7

4) Components of XML Digital Signature

There are five parts to a Digital Signature. They are the XML Namespace, the
signed information, the value of the signature, the key information, and the object
to be signed.

4.1) Namespace

A XML namespace [3] distinguishes names used in an XML document by a URI
reference. It is used to distinguish duplicate element type and attribute names. In
line 1 of the example in Appendix A, the namespace points to
http://www.w3.org/2000/09/xmldsig#, which is the W3C recommendation for
XML signature processing and syntax. This is the name space that should be used
in XML Digital Signature documents. This name space provides a universal
unique identifier for element types and attributes names used in XML Digital
Signature documents.

4.2) Signed Information (SignedInfo)

This section contains information about what is actually signed. It consists of five
subsections. These are the Canonicalization method, the signature method, the
reference, the transforms, and the digest method.

4.2.1) Canonicalization method

XML documents that are logically equivalent in the context of an application may
differ in physical presentation. An example of physical difference may be the
number of white spaces in the start and end tags or the order of the attributes.
Every well-formed XML document has an equivalent structural unique canonical
XML document. Line 3 of the example in Appendix A describes the
Canonicalization method, which is based on the W3C recommendation [6]
released on March 15, 2001. The source document is transformed using the W3C
recommended algorithm into a canonical XML format, and the digest is then
computed over this canonical form of the document. In a Microsoft .NET
implementation, transformation can be done either with, or without comments
through two separate classes.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 8

4.2.2) Reference

A reference contains the location of the entity to be signed, the transforms, the
digest method and the digest value. There are one or more references inside the
Signed Information section.

4.2.2.1) URI attribute

The URI attribute identifies the location of the entity to be signed. The location of
the signed entity can either be a remote document, a fragment of a remote
document, or a fragment located within the same document as the signature. Line 5
of the example in Appendix A refers to a fragment “SalesId” in the same
document. This is an example of an enveloping signature where the signed data is
inside the signature structure.

4.2.2.2) Transforms

Transforms are optional. We may have one or more transforms where the output of
one transform is the input to the next. The output of the last transform is then used
as the input to the message digest calculation. Example of standard transforms
includes Base-64 encoding, Xpath filtering, enveloped signature transformation
and XSLT transformation.

 Xpath Filtering

 Xpath (XML Path Language) is used when addressing parts of an XML document.

It uses a paths expression to identify nodes in an XML document. Xpath supports
numerical, equality, relational and Boolean expressions. The Xpath expression is
evaluated against each node set of the input document. If the result is true the node
set is included in the output, otherwise the node set is excluded. Xpath filtering
allows part of an XML document to be omitted when required. An example is the
enveloped signature, which must be removed from the digest calculation.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 9

 XSLT (Extensible Stylesheet Language Transformation)

 The XSLT [16] process takes the source XML document and applies a XSLT

stylesheet and creates a new document. The transformation process is basically
pattern matching where the XSLT stylesheet is the template of what we want the
result to look like. It is recommended that the output from XSLT transform be
canonicalized. The following diagram is a representation of this transformation
process.

4.2.2.3) Message Digest

Signing of a large document is time consuming, therefore the message digest,
which is a hash value of the canonical XML document, is signed instead. In the
W3C recommendation only one digest algorithm is defined. This is the secure hash
algorithm (SHA-1) as designed by the National Institute of Standards and
Technology (NIST) and the National Security Agency (NSA). For a message of
less than 2 to the power 64 bits in length, the hashing algorithm produces a 160-bit
condensed representation called a message digest. In future, additional strong
digest algorithms may be developed through the US Advanced Encryption effort.
Line 6 of the example in Appendix A refers to the SHA1 algorithm. Lines 7 and 8
of the example show the digest value.

Source XML
Document

Output
Document XML,

HTML, WML

XSLT
Transformation

XSLT
StyleSheet

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 10

 Secured Hash Algorithm (SHA-1)

 SHA-1 [8] is a one-way hash and as such is secured in two aspects. Firstly, it not

possible to calculate the message from the message digest. Secondly, two
messages will not yield the same message digest. The size of the message used in
this hash algorithm is the number of bits in the message. The message is padded at
the end so that the total size of the message is multiple of 512 bits. To calculate the
message digest, each 512-bit block is separated into 16 words of 32 bits each. A
message digest of 160 bits is calculated from running the algorithm repeatedly
against each of these 16-word blocks until the whole of the message is processed.

Base64 encoding

 The content of the Digest Value in line 8 of the example in Appendix A is the

base64 encoding of the 160-bit string produced from the Secured Hash Algorithm.
Base64 encoding uses the 65-character subset of the US-ASCII character set. This
character set consists of the 26 alphabetical characters in upper case (A to Z), the
26 alphabetical characters in lower case (a to z), the 10 digits (0 to 9), and the “+”,
“/”, and “=” characters. The 65th character (“=”) is reserved the special processing
function of padding.

The encoding process divides the input into 24 bits block. Each 24-bit block is
processed and produces four encoded characters of 6 bits each. The first 144 bits
of the 160 bits from the message digest is processed initially as 6 blocks of 24 bits.
This results in twenty-four Base64 encoded characters. The remaining 16 bits is
padded to form an additional four Base64 encoded characters. This gives a total of
28 Based64 encoded characters as show in line 8 of the example in Appendix A.
Padding is performed using two different methods. The input is divided into 6-bit
groups, and the last group with less than 6 bits is padded with zeros. If there are
less than four 6-bit group, the “=” character is added to the end to make up the four
characters. The advantage of using Base64 encoding is that the 65 characters used
are universal in most character sets including ASCII US and EBCDIC.

 Digest Value for Document Object Model (DOMHASH)

The Digest Value for Document Object Model (DOMHASH) specification [7] has
been available since April, 2000. Any examination of XML Digital Signature
would not be complete without a look at this model as well.
XML data is structured in a tree form with terminal nodes. The DOM allows
programmatic dynamic access and update to an XML document by defining the
logical structure of the document. The same internal DOM structure may be

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 11

represented by different surface characteristics, and differences such as the order
of attributes, white spaces and character encoding may arise. One usage of
DOMHASH is to provide a canonicalized digest value of a document operating on
a DOM tree. The hash value is calculated for node types such as text and attribute,
with comment and document type definitions excluded from the hash value
calculation.

4.3) Signature Value

The value of the XML Digital Signature is calculated from the signed information.
The Digital Signature Standard from the National Institute of Standards and
Technology (NIST) allows the use of the RSA Digital Signature Algorithm and the
Elliptic Curve Digital Signature Algorithm (ECDSA) in addition to Digital
Signature Algorithm (DSA). All three algorithms must be used in conjunction with
the Secured Hash Algorithm (SHA-1), which computes a fixed length message
digest from the variable length message. Then RSA, DSA or ECDSA is used to
calculate a digital signature from this message digest. RSA refers to the Public
Key Cryptography Standard (PKCS1) as described in RFC 2437. RSA Laboratory
released version 2 of the specification in 1998. Draft 3 of Version 2.1 was released
in April 2002 by RSA. The example in Appendix A uses RSA to calculate the
digital signature.

4.3.1) RSA Cryptography

RSA [10] uses both a public and private key. The public key (K) consists of two
components, which are the RSA modulus (n) and the RSA public exponent (e).
Both the modulus and the exponent are positive integers. The private key also
consists of two components, which are the RSA modulus (n) and the RSA private
exponent (d). The modulus (n) is the same in both the private and the public key.

RSA signature and verification primitives are defined as follows:
Let m be the message digest, s the signature and K the private key, which consists
of the modulus and private exponent (n, d).

The Signature Primitive uses the private key (K) and the message digest (m) as the
input and calculates the signature (s). The signature is calculated as: s = md mod n.

The Verification Primitive uses the signature (s) and the public key (n, e) to
recover the message digest (m). The message digest is calculated as m = se mod n.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 12

4.3.2) DSA Cryptography

The Digital Signature Algorithm (DSA), which is part of the Digital Signature
Standard (DSS) [9] in computing and verifying digital signatures, is published by
the National Institute of Standard and Technology. The private key is a randomly
generated integer and the public key is calculated using the following formula.
y = gx mod p where

y is the public key
x is the private key
p is a prime modulus
g is calculated from a combination of p and a prime divisor of p – 1.

In DSA signature generation a pair of numbers r and s are generated from the
message M and the private key x after the Secure Hash Algorithm is applied to the
message. In the verification process, the value of the signature v is recalculated
from the received message (M), the public key (y) and signature (r, s). The
signature is verified if v is the same as the received r.

4.4) Key Information (KeyInfo)

The Key Information section is optional. It may contain keys, key name, public
key management information and a digital certificate. The receiver may obtain this
key information from different source. Lines 13 to 22 in the example in Appendix
A show the key information. Line 15 in the example identifies to the recipient that
RSA cryptography is used in this signature. Lines 16 to 20 show the value of the
public key, which consist of a modulus and a public exponent. The receiver uses
this key value to validate the signature.

4.5) Object signed

The documents to be signed are identified by URI. In the example in Appendix A,
the document to be signed is included in the same document as the digital
signature. Line 23 to 26 is the object being signed in this case. The signature is the
parent node of the object element (SalesId) to be signed. This is an example of an
enveloping signature. XML Digital Signature is useful in many applications. In an
electronic mail system, it is used to verify the identity of the sender. In electronic
funds transfer applications, it can be used to ensure that the transfer request was
not altered in transit. In software distribution applications, it ensures that the
software was not tampered with before installation. In legal systems, it can also be
used in conjunction with a time stamp to protect and verify the integrity of the
document. In Electronic Data Interchange (EDI), it helps to ensure non-repudiation

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 13

of transactions. These are a small sample of some of the types of applications that
can benefit from digital signature.

5) Implementation

There are a number of Vendors providing Toolkits to implement XML Digital
Signature. Most of these vendors support Java, with Microsoft also providing
support in their Visual Studio .NET development environment. The following is a
brief description of three of the leading providers.

IBM XML Security Suite

IBM developed the XML [11] Security Suite in 1999, with the latest version being
released in April 2002. It provides utilities in three areas, including XML Digital
Signature, XML Encryption, and XML Access Control Language (XACL). It
provides full support in every aspect of XML Digital Signature. For an application
that uses the Document Object Model (DOM) or Simple API of XML (SAX), it
provides utilities to handle Canonicalization and hashing. For the JAVA
programmer it is an excellent toolkit for XML security implementation. This
product can be downloaded from the IBM Alpha Works website.

VeriSign XML Trust Services

VeriSign [12] is a leading provider of digital trust services, and provides services
called XML trust Services. It consists of four components including XML Key
Management Specification, Security Assertion Markup Language, XMLPlay and
Extensible Provisioning Protocol. XML Key Management Specification provides
integrated authentication, digital signature and encryption services. With their
flavor of XKMS, a developer can delegate the entire XML Digital Signature
processing to VeriSign. This service is invoked through an XML transaction with a
trust processor.

Microsoft Visual Studio .NET

Microsoft .NET technology provides a rich platform for application development.
With Visual Studio .NET, millions of VB programmers will be able to learn and
deploy Web Services without learning a new programming language like JAVA.
The .NET framework also provides extensive support in security. The .NET

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 14

framework provides the developer with an easy to use toolset they can use to
implement authentication and cryptographic routines. All of the security functions
in .NET are packaged together as a single component. By adding a reference to the
security component, the developer will be able to use all the security functions
including XML Digital Signature.

6) Summary

XML Digital Signature can be used for authentication, data integrity and non-
repudiation but cannot be used for data encryption. A fully secured message
requires the use of XML encryption in addition to XML Digital Signature. The
standard for XML encryption is close to completion, with the Candidate
Recommendation being released by W3C in March 2002. Furthermore, a standard
protocol for registration and distribution of public keys is required for the success
of XML Digital Signature. XML Key Management Specification (XKMS) will
provide this standard. As with SSL keys, most organizations will likely delegate
this function to a third party such as VeriSign. Other related areas to XML security
include XACL and SAML. Extensible Access Control Language XACL and
Security Assertion Markup Language SAML are published by the Organization for
the Advancement of Structured Information. (OASIS)

 As more companies increase their use of XML for business-to-business
applications, the security of these XML-based transactions becomes paramount. It
is vital that the private key used in XML Digital Signature is protected against
modification and disclosure, otherwise transaction security can be compromised.
When implementing XML Digital Signature it is also useful to have a full
understanding of the cryptographic algorithm being used because, as always, poor
implementation will increase the vulnerability of any system.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 15

Appendix A

Example generated using Visual Studio .NET.

Line

1 <Signature xmlns="http://www.w3.org/2000/09/xmldsig#">

2 <SignedInfo>

3 <CanonicalizationMethod Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-
20010315" />

4 <SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1" />

5 <Reference URI="#SalesId">

6 <DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />

7 <DigestValue>

8 5hhaOqoD+/8KPBK7kVB5oruAO6M=</DigestValue>

9 </Reference>

10 </SignedInfo>

11 <SignatureValue>

12 TdInKSBKGykx8zKjMlbcYmFOArMLTECcowoyR4RNOy0KBaWktS0PF5DsPdnrA
L1VUAtfBC7k9+ldo8Xb/v2ks74bvJNE7D5Queu/vTeqVPQCscf4RUiVOr1PsumWxA
lGtiHRHWgubDUsSYMy9rFrMTKeYjJGrhLvirEMssk2kYU=</SignatureValue>

13 <KeyInfo>

14 <KeyValue xmlns="http://www.w3.org/2000/09/xmldsig#">

15 <RSAKeyValue>

16 <Modulus>

17 txJ9CpOap1IRkC3HalgkKQniqiHzIiiV4l3ghdtQ9XvVfOoAC04XcP3WYikA9JlgSxcr
+Qm54FXtcOHJYBHtYi3tyKgHBDQysj7glewp+m7mZUHP4mLzDYOcGBOBT1sjJ
HwrJiADSc50ZvrSzGnA0WbmgACHptgoHZUwz21XN2U=</Modulus>

18 <Exponent>

19 AQAB</Exponent>

20 </RSAKeyValue>

21 </KeyValue>

22 </KeyInfo>

23 <Object Id="SalesId">

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 16

24 <Product xmlns="http://www.aisnet.com">

25 Intrusion Detection</Product>

26 </Object>

27 </Signature>

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 17

Appendix B

References

[1] XML – Signature Syntax and Processing (W3C Consortium Feb 12, 2002)
 http://www.w3.org/TR/xmldsig-core/
[2] XML – Signature Interoperability (W3C Consortium May 2002)

 http://www.w3.org/Signature/2001/04/05-xmldsig-interop.html
[3] Namespace in XML (W3C Consortium January 14, 1999)
 http://www.w3.org/TR/REC-xml-names/
[4] XML Electronic Signatures (Institute for Applied Information Processing and

Communication Sept 24, 2001)
http://www.nanobiz.com/xmlsig/docs/iaik/iaik.htm

[5] XML Namespaces by Example (XML.COM January, 1999)
http://www.xml.com/lpt/a/1999/01/namespaces.html

[6] Canonical XML (W3C Consortium March 15, 2001)
http://www.w3.org/TR/2001/REC-xml-c14n-20010315

[7] Digest Value for DOM (IBM April 2000)
http://www.ietf.org/rfc/rfc2803.txt

[8] Secured hash standard (Federal Information Processing Standards April 17, 1995)
http://csrc.nist.gov/publications/fips/fips180-1/fip180-1.txt

[9] Digital Signature Standard (Federal Information Processing Standards January 27,
2000)

http://csrc.nist.gov/publications/fips/fips186-2/fips186-2.pdf
[10] RSA Cryptography Standard (RSA Laboratory Oct 1998)

http://www.ietf.org/rfc/rfc2437.txt
[11] IBM XML Security Suite (IBM April 26, 1999)

http://www.alphaworks.ibm.com/tech/xmlsecuritysuite
[12] VeriSign XML Key Management (VeriSign October 2001)

http://www.verisign.com/resources/wp/xml/keyManagement.pdf

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 18

[13] Fact Sheet on Digital Signature Standard (National Institute of Standards and
Technology May 1994)

http://www.nist.gov/public_affairs/releases/digsigst.htm

[14] XML & Security (XML Journal Dec 2000)
http://www.sys-con.com/xml/articleprint.cfm?id=91

[15] XML and Security (XML Journal Dec 2001)
http://www.sys-con.com/xml/articleprint.cfm?id=294

[16] XSL Transformations (W3C Consortium Nov 16 1999)
http://www.w3.org/TR/xslt

[17] KeyTools XML (Baltimore May 2002)
http://www.baltimore.com/keytools/xml/w3cietf.asp

[18] XML Digital Signature (The XML Cover Pages April 26 2002)
http://www.oasis-open.org/cover/xmlSig.html

