
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 Page 1 of 20

Tarpits for an Imperfect World
Christopher Shove Cook
July 9th, 2002

Abstract

Life isn’t perfect. While many security plans are predicated on people making rational
choices based on defined risks, the real environments I’ve seen have been less
deliberate. Sometimes, security means mitigating security holes you can’t close. One
exciting new approach – tarpitting or slowing down unwanted traffic – has been used in
email and Web environments for years. In 2001, Tom Liston wrote the “LaBrea”
program (http://www.hackbusters.net/LaBrea) that creates a tarpit for unwanted TCP/IP
connections. This can be a whole new layer of protection administrators haven’t had
before, and it’s an idea I’m almost forced to describe as seductive. Taking unused IP
addresses, LaBrea creates ghost systems that mimic open, unprotected computers.
Where tarpits go beyond similar ideas like honeypots and honeynets is that a tarpit is
really sticky – it not only accepts TCP connections, after completing a connection, it
doesn’t let go, keeping the connection alive until the originating system deliberately
breaks it. The tarpit traps attackers.

I implemented a LaBrea Tarpit as a prototype to see how what was involved, how
reliable it was, how much work it was to configure and maintain, and how much
protection it could offer. The software was relative easy to install, although the
configuration had some surprises. After the first few days, the tarpit had created a
thousand ghost systems and was fielding over one million transactions a day, trapping
tens of thousands of attackers, yet it did all this while consuming little network
bandwidth and almost no computer loading. After the first week of running a tarpit, the
number of malevolent connections dropped by 60 percent and stayed low during the
time the tarpit was run. As a side benefit, the tarpit was effective as a new kind of
network-based intrusion detection system. In the end, although the scans and
connections haven’t stopped, I believe the real systems on my networks were either
less exposed to scanning, or at least better hidden among the decoys.

Background

Anyone connected to the Internet lives with the networking equivalent of thugs roaming
the streets, trying each door to see what was left open. My company was forced to
build and harden new systems offline: unhardened systems connected to the Internet
have an uncorrupted life measured in seconds. In that same way, users who set up ISS
BlackICE1 (which I recommend as a cheap, host-based Intrusion Detection System2),
ZoneAlarm3 or any of the other personal firewalls, quickly see so many warnings about
blocked connection attempts that most users I talked to had turned off routine
notifications in frustration. The traffic in malevolent connections is that bad.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 Page 2 of 20

If this is the threat, what’s the vulnerability? However attractive it might be for security
professionals to design fortified systems with carefully planned and layered defenses,
security in the real world remains less… tidy. Many organizations resist setting rules
that are seen as limiting or intrusive, and security policies and practices are often
weakened by political and idiosyncratic exceptions. Some organizations, by their
structure and charter, have to remain open.

Forget security design limitations for a second. Even when security is tightly built and
layered, the work usually stops at the walls of your network. Microsoft’s
recommendations for IIS and the Code Red worm (“A Very Real and Present Threat to
the Internet” 4) covered detection, removal and patching a system. The
recommendations from Security Focus, McAfee, Symantec, and BugTraq may differ in
details, but the goals were the same: find the problem, clear it from your systems, and
harden them against re-infection. That’s perfectly good as far as it goes, too, but when
did we stop noticing that we’ve given up on the root cause? As with the personal
firewall notifications, most IT security people I’ve talked to have given up on tracing
attacks back to their source and getting them off the air. I know that, for me, it was a
difficult and relatively unsuccessful chore that took me away from more productive work.
Eventually I gave up trying to fix the source, and we fell back to blocking the worst
offenders at the borders of our networks. I doubt I’m alone in that progression.

If the IT community’s cure for Internet-wide infections is to patch and protect as many
systems as possible, can anyone reasonably say it’s worked? By the evidence I see on
any open Internet connection, abstinence does not seem to have held back this tide.

One corollary to the Law of Unintended Consequences says that no good deed goes
unpunished. Locked down networks are easy to detect – most network protections are
designed to be obvious – but one result is that scanners and hackers can test and skip
thousands of protected addresses in minutes, making it easier to focus their attention on
the less protected systems. Going back to my analogy, suppose the thugs knew at a
glance which houses on a block were strongly locked? Although it’s an unpleasant
thought, obvious protection acts as an unintentional multiplier against the less
protected.

What makes tarpits promising is that they change the ground rules. If running a tarpit
can actually slow down or trap automated searches, and if they can salt the scanner’s
results with bogus and possibly damaging data, we might be able to protect the strong
without accidentally endangering the weak. This promise of delaying or stopping the
thugs while sprinkling the landscape with attractive decoys is what makes a tarpit such
an exciting idea.

Risk Evaluation

I’m going to evaluate the security in my company as an example. The details are
specific to my case, but the results – dangerous gaps in security – are common.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 Page 3 of 20

I see the security in my environment as abysmal, although in fairness, it’s probably
average for an organization involved in government-funded research and development.
The easiest place to start is with this question: Have any of our systems been hacked?
You bet. Over the last year half a dozen systems were hacked. I don’t have to resort to
theoretical arguments or presentations with shocking counts of unsuccessful hacking
attempts. Or at least so you’d think. Open SMTP relays are especially popular right
now (yes, that was us sending you Spam) with FTP abuse second (temporary storage
for hacked DVDs) and forgotten Linux systems cracked down to the r00t following a
close third. For some reason, we seem to be especially popular with French and
Brazilian hackers, but forget that part. We usually find the hacked systems reasonably
quickly from the network volume, unusual traffic or other symptoms, and then kill them
quickly (and possibly their owners). Still, we’ve been hacked many times, and I can
expect, if the basic conditions continue as is, we’ll continue to have our systems
cracked.

Why would this level of insecurity be tolerated? It’s a complicated answer. My
company is really a small section of a much larger, somewhat disjointed corporation.
That corporation designs and implements their policies based on the greatest good for
the greatest number, but sometimes we’re not part of that number. Working out the
differences often looks more like a frozen tug of war than a reasoned discussion.

What kind of security structure does my company have? It’s best to start from the top
down. My company has no IT Security policy for our Enterprise, for individual
departments or for specific issues. Our parent corporation has their IT Security policy
they follow, but that policy conflicts with our business requirements. For complicated
political reasons we’ve haven’t adopted our parent corporation’s policy, adapted it, or
written our own policy. While this isn’t sensible, it certainly appears stable. This doesn’t
mean we’ve abandoned the idea of a security policy, but the evidence is that we have to
work without one, at least in the short term.

We have several facilities, some of which we share with partners and part-time
competitors. Welcome to the new competitive paradigm. Some of these facilities have
firewalls while some only do basic filtering at the border routers. Servers and
workstations have been hacked in both situations, and oddly, the systems protected by
firewalls have fared slightly worse. Discounting firewall logs, we don’t run any formal
Intrusion Detection Systems (IDS), either network-based or host-based. Some people
(me among them) have set up informal detection systems of varying capabilities, and
some systems have those capabilities built in. Every day, the systems that pay
attention report unsolicited connection attempts, which we dutifully and ineffectually
report. As with the IT Security Policy question, we’re working on improving the network-
level detection and security, but we aren’t depending on, or expecting, rapid change.

In case you were getting depressed, this is where things get better. Our facility servers
have been hardened using procedures adapted from the NSA Security Guidelines
(http://www.nsa.gov/)5. We pay attention to announced vulnerabilities and keep our

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 Page 4 of 20

systems patched and updated. With some notable exceptions (which I won’t note here),
our facility servers have been secure and dependable.

The more limited project-based servers, legacy systems, prototypes and “temporary
solutions” are a different, mixed bag. Some very smart and talented people created
some of these systems, while others are half-thought, cobbled-together accidents
waiting to happen. Maintenance ranges from active and current though minimally
documented legacy systems. We haven’t implemented a systemic “scan, detect and
repair” procedure (yet) for the facilities, although we do ad hoc network scanning for
specific vulnerabilities.

Almost all the desktop systems have anti-virus software, automatically updated from
central sites. The central sites are updated promptly and consistently, and the clients
are (finally) getting and installing the updates routinely. This has been very effective in
stopping email worms from getting a foothold, and, where they do get in, it limits their
spread.

Interestingly, our users have been one of the most effective layers of defense. The IT
groups spend considerable time and effort communicating with our users about what’s
happening, what the current threats look like and what they can do to protect
themselves. We host routine users’ group meetings where we try for two-way
communication, telling them what we know and listening to what they need. The results
have been reassuring. Time and again, viruses and worms that crippled other major
businesses passed us by. Since our institutional-level protection is so thin, my
conclusion is that we’ve been saved by our users’ careful practices. I cannot overstate
the benefits we’ve seen from quickly informing our users, and listening to what they
need.

So we have an organization that works well at the user and desktop levels, but with little
depth of defense, and institutional barriers to many enterprise-level options. The
challenge becomes: how to thicken this defense without getting tangled in existing
conflicts?

Tarpits

I won’t explain Tarpits in great depth – that’s been done already by much smarter
people than me – but here are the basics. Devin Carraway
(http://www.devin.com/peachpit/), who markets several Tarpit tools, includes this
description on his web site:

"Tarpitting," briefly, is the tactic of slowing down a TCP connection when
a hostile party's autonomous agent is on the other end -- an approach
originally conceived to deal with spammers, though in principle it should
work well with most any known-hostile web spider, to some degree.6

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 Page 5 of 20

The idea of a network tarpit seems to have started with the first bulk commercial email
(Spam). During less cynical times (“when everybody knew everybody”), email SMTP
hosts were built to move email without asking a lot of questions. They were relatively
simple to run and nobody worried about misuse much because email traffic was small
enough that many people saw running an SMTP host as a kind of low-key public
service. Spam changed that when commercial users started dumping huge quantities
of email on unsuspecting SMTP servers. If they congested or even brought down an
email server, it didn’t really matter to them, since there were literally thousands of other
open SMTP hosts available. That abuse was hard to stop for two reasons. First, SMTP
hosts were less sophisticated back then, and many couldn’t block email relaying.
Secondly, many networks had deployed email with one of the requirements being open
SMTP hosts for sending out email. Changing from that initial assumption required
redesign and redeployments that couldn’t be done overnight. (The third reason was
system administrators who chose to allow Spam through their systems, an indifference
that still engenders boycotts, but that’s a different problem.)

Tarpitting was a technique developed as one way of slowing down outsize relays
without harming legitimate relay traffic. I can’t quote when it started, but a later example
John Buckman wrote an article called “Stop Spam Now!” in 1998
(http://john.redmood.com/stopspam.html)7 that described different characteristics of
Spam vs. legitimate email, and included a section describing how to tarpit Spammers.
Since his description included tarpitting as a given concept, I assume the idea was
already well established. The general idea behind email tarpitting was simple: identify a
characteristic of Spam (for example, huge distribution lists) and rather than simply deny
access, create programs that watched for that condition. When a Spam threshold was
crossed (for example, after the 50th name on a distribution list), new code kicked in that
kept the connection open but started introducing deliberate, escalating delays into the
SMTP service. To the system sending the email, the SMTP host simply appears
temporarily busy. Because the connection wasn’t broken, and because the sending
system continues to receive “Still busy” replies from the SMTP host, many automated
Spam programs wait very patiently for the imaginary traffic to die down.

The next stage started with autonomous programs called “Spiders”. Here’s how the
web site http://spiders.must.die.net/ describes them:

Spider?

Crawling around the Web now are a wide variety of robots known as
"spiders". Their goal is to recursively scan every document available and
make a condensed form of the data they collected available to whoever
controls them.

Many of these are Search Engines, which allow the general public to
search the spider's index for specific items for "free". (Without the right
tools you usually have to view their advertising, though.) On the whole,
Search Engines are beneficial to have around.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 Page 6 of 20

However a new species of spider seems to have made its way onto the
Web lately that is less beneficial to the public. These particular bugs have
a more sinister purpose in mind: They collect e-mail addresses so that
their owners can send everyone unsolicited advertising. No, thanks.

One method of building a Spider tarpit is to add a special branch to a web site (marked
with big warnings to stop real users from falling in). That branch is stocked with
attractive phrases, provocative words and lots of “@” characters. As added bonuses,
some tarpits are recursive, leading Spiders on infinite loops, and some are set to
transfer pages in the tarpit very slowly. Once a Spider trips into that branch, it falls into
long loops filled with what looks, to a Spider, like really good eats. In fact, the
addresses and information are slow-acting poison: plausible but fake email addresses,
legitimate addresses of senators and congresspeople, nonsense text filled with
shocking and controversial key words, and so on. Some examples I ran into recently (in
no special order) are:

• http://spiders.must.die.net/ (part of the die.net site)
• http://www.confusticate.com/ (choose the link, “tarpit, anyone?”) and
• http://www.deepthought.org, which even drops a poisoned cookie on your system

so that once you’ve visited the tarpit section, any attempt to return to the site
drops you back in the tarpit.

I think the sites are entertainingly designed, but that may just be me.

The CodeRed and Nimda worms inspired Tom Liston to extend the idea of a tarpit to
TCP/IP connections. These worms were flooding the Internet, and one key to their
success was the speed with which they could scan for new systems. Tom Liston wrote
CodeRedNeck as his first response8, which, through some twists and turns, evolved into
LaBrea (version 2.4 Beta 3 as of this writing).

Like other tarpits, the idea was to slow down unwelcome connection attempts without
harming legitimate traffic. Mr. Liston approached this from an interesting direction.
Here’s a quote from the LaBrea.README file, taken from his post to the Intrusions list
at www.incidents.org9 (as quoted on the (http://www.threenorth.com/LaBrea10 website):

I'm pretty sure that most of you are using your allotted ip address space
somewhat like I am. At any given time I'm using only about 20-30% of the
ip addresses that I have available. What if I could put something on those
other 80% of my ip addresses that would give "Code Red" something to
play with that would slow it down to a crawl? A sort of "DoS" back at the
worm.

Since those "extra" ip addresses aren't actually expecting any inbound
traffic, anything fired at them can safely be assumed to be "bad" traffic. If I

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 Page 7 of 20

wrote a little piece of software that sat on those ip's and listened on port
80, anything that it heard could safely be "played" with.11

The logic chain is simple. Systems that don’t exist shouldn’t be receiving stuff. Any
traffic to nonexistent systems is, by definition, unwanted. Unwanted traffic is bad traffic.
Administrators are free to fool the computers that send bad traffic.

The first step is for LaBrea to find unused Internet (IP) addresses on the local network.
Instead of making the administrator provide static unused addresses, LaBrea finds
unused addresses dynamically by watching unanswered Address Resolution Protocol
(ARP) requests. Bear with me for a little bit and I’ll explain. If a computer needs to find
another computer on the same network, it broadcasts an ARP request. ARP requests
are packets sent to all computers on the same segment that ask, “Who is using IP
address <x.x.x.x>?” If a computer is using that address, it answers; if no computer is
using that address, there’s no answer, and it’s possible the IP address may be unused.
Modern switched networks complicate things a bit, so LaBrea includes the “-s” (safe)
option, which makes LaBrea send out its own ARP broadcast for that same address just
to make sure nobody’s using it, (Practical tip: always use the “safe” (–s) option.) After
LaBrea finds and verifies an unused IP address, it starts answering ARP requests
saying, “Sure! Send packets for IP address <x.x.x.x> over here!” This is the first part of
creating a ghost system. It does the same thing for every unanswered ARP request
(except for the addresses and ports you tell it to ignore), building a list of available,
unused IP addresses. None of these addresses should be receiving traffic.12

Once LaBrea has captured one or more addresses to use, the goal is to put convincing
ghosts answering each address. Now, real computers react in certain ways to requests,
so a ghost computer will have to make at least some of those same responses. Start
with the basic TCP protocol for establishing a connection between computers: the three-
way handshake. Here’s a simplified description of the process:

1. The source computer that wants to establish a connection sends a TCP
packet to the destination computer’s address. That packet has the
synchronization (SYN) bit in the packet header set to 1, and is called,
amazingly, a “SYN packet.”

2. The destination computer, if it’s listening, hears the request (the SYN

packet) and sends back a reply packet with both the synchronization
(SYN) and acknowledgment (ACK) bits set. This is called a SYN/ACK
packet.

3. The source computer receives the SYN/ACK packet and replies with an

ACK packet, acknowledging the connection.

The whole handshake is measured in milliseconds, after which the two computers have
established their connection and can begin the real conversation by exchanging data.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 Page 8 of 20

There’s one more important detail: the port number13. Along with the Internet address,
the first SYN packet will include the port number it wants to connect to on the
destination computer. Different services run on different ports, and computers only start
conversations on ports they’re listening to – that is, when they offer a service on that
port. Scanners work by sending packets to bunches of addresses (and sometimes
bunches of ports), waiting for the few systems that answer.

LaBrea mimics the TCP handshake. If it sees a SYN packet, it sends back an
appropriate SYN/ACK packet (and also specifies that subsequent packets should be
very small). The originating computer then sends the last packet in the handshake (an
ACK packet that LaBrea dutifully checks and ignores). At that point, the requesting
computer has committed many other resources to the connection – computer time,
memory for counters, buffers, etc., and it starts a countdown clock, waiting for the
destination (tarpit) computer to start talking. For its side of the conversation, the LaBrea
computer has committed… well, nothing, really. LaBrea doesn’t keep track of the
connection. It has rules for handling each packet as it comes in, and it just follows
those rules. It doesn’t remember anything, and it doesn’t save anything for the next
time – no commitment, no resources, and no strain.

What services does a LaBrea ghost reply to? All of them. When a request comes in to
any port number, if that port number hasn’t been specifically excluded, the tarpit always
answers, “Yes.” They’re shameless that way.

For a basic tarpit, that’s the end of things. It doesn’t do any more. This is the IT
equivalent of getting a telephone call from a telemarketer, saying, “Hello, could you wait
for a second?” and putting the phone down. The requesting computer will wait a decent
interval, send a few “Anyone there?” packets spaced out over time (which the tarpit
ignores), and eventually the requesting computer drops the connection. While the
timeout values vary between computers, most are measured in minutes, compared to
the usual milliseconds for a handshake. Any scanner fishing for live systems will get
very, very slow answers.

LaBrea can do even better, too. It has a marvelous option called “persistent
connections.” Think of it as “extra-sticky.” After the handshake, the source computer
waits for the tarpit to call back, but of course it never does. After a certain amount of
time has passed, the source computer sends its “Anyone there?” query. If LaBrea is set
for persistent connections, it promptly replies, “I’m still here – please wait,” every time it
receives a query packet. The source computer thinks the connection is good, it resets
its timeout clock and starts waiting again. Every time the source computer queries the
tarpit computer, it gets back a valid, if off-putting, answer. TCP isn’t that smart a
protocol – as long as it’s receiving the proper responses within the times it expects, the
connection is never broken. The tarpit can trap connections this way for days, weeks,
or, according to the LaBrea site, even months.14

Side Note: Because the Linux TCP/IP protocol stack handles packets
more stringently than Windows. LaBrea has a special section just for

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 Page 9 of 20

Linux. The technique is quite fancy, embedding information in the
sequence number, but that’s why some log entries specify “Linux”
packets.

Although these “persist” connections are very small, there’s a possibility that enough of
them could cause network congestion. The Persistent option makes you specify a
maximum data rate, above which it starts dropping packets. Our practical experience
saw that maximum reached once, and then just barely, but it’s a reassuring option.

LaBrea also mimics responses for SYN/ACK packets. On the surface, sending a
computer a SYN/ACK packet doesn’t make sense. The trick is that, if the receiving
computer is listening on the port that receives the SYN/ACK packet, it responds with a
Reset (RST) packet. This is a less conspicuous technique for finding active ports.
LaBrea ghost systems answer a SYN/ACK packet with a Reset (RST) packet just like a
real system.

Can packet forging be dangerous? Easily. In theory, LaBrea is mimicking non-existent
(or unavailable) systems, so it’s hard to argue that the requests to those addresses are
legitimate. LaBrea also has a fairly flexible address and port exclusion mechanism, so
it’s possible to exclude whichever systems you choose. Good enough so far. Suppose,
though, that LaBrea accidentally captured a critical system’s address and began
tarpitting all the local users who wanted that service? A runaway tarpit could easily
bring your whole network down. That’s why I was cautious about introducing the tarpit,
and why I wanted to know how well it worked in my real, less unpredictable
environment.

Implementation

LaBrea Program

Installing LaBrea was relatively easy. I chose to download the source code
(http://www.hackbusters.net/Beta.html) and build it myself, although RPM files are also
available. Call me old-fashioned. I built it on a testbed Red Hat15 Linux 7.3 system I
use for all manner of scans, detections and whatnot. The LaBrea documentation
mentions that it needs the “libpcap”16 and “libnet”17 packages installed first, and after a
false step or two, I got all the software compiled and built in the right order. Note that,
unlike libpcap and libnet, LaBrea doesn’t install itself, so you have to copy the single
executable “LaBrea” file where you want it. I put it in /usr/local/bin.

Unfortunately, I didn’t have a test environment capable of testing this kind of software.
Gritting my teeth, I waited until late one evening when I knew nothing critical was
happening and brought the software up on a live network. I set the logging to verbose (-
v) and set the program to log to the screen (standard output) and not to detach (the –O
option). That way I could watch what it was doing as it did it, and I could easily kill it at

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 Page 10 of 20

the first sign of anything going wrong. I didn’t attempt to do any reporting. The test
system also has a fairly robust iptables firewall configuration, which I left enabled.

LaBrea started captured its first address almost immediately and started answering
traffic. It looked good, but I didn’t want to run it long without capturing the data, so I
stopped the system and restarted it, this time redirecting the output to a log file. After
another couple of minutes I killed the process and checked the logs.

I noticed some odd Server Message Block traffic (SMB is the protocol Windows uses).
A system inside my network was being treated tarpitted. I also noticed that one of my
router’s IP addresses had been captured as an unused address, which shouldn’t have
happened.

My first goal was to create a stable, working prototype with known behavior that didn’t
risk killing my local networks. Once I had that, I knew I could slowly expand its
behavior, but without that, I had nothing useful. With low risk in mind, I excluded the
NetBEUI ports (137-139) and all local addresses from being tarpitted by adding these
lines to the /etc/LaBreaConfig file:

137-139 portignore
<x.x.x.x>-<y.y.y.y> ipignore

[Note: The <x.x.x.x> and <y.y.y.y> were the starting and ending addresses of my
local subnet. This was a wider exclusion than was necessary, but again, it limited
the risk.]

For the next test I wanted to run the tarpit for about an hour, using syslog logging. I
monitored the log using “tail –f <system log file>”. The tarpit seemed itself looked
benign, but the system log traffic was alarming. It started slowly enough, but as the
tarpit began to harvest addresses and trap connection attempts, the number of packets
it was handling (and subsequent logging) increased geometrically. After a few minutes I
stopped the program and changed back to logging to a file because the volume was
killing my system logs.

The LaBrea logging grows by megabytes – far too large to examine without filtering.
Unfortunately, turning off verbose logging stops almost all the logging, and I wasn’t
willing to run a tarpit blindly, either, so I settled for big logs. Redirecting the output to a
file is a good practice (I recommend something in the “/var/log” tree), but don’t be
caught unawares by how quickly that file can grow. When the tarpit started running
continuously, it was handling a million transactions and creating 100 megabytes of log
entries every day. Earlier I said the tarpit looked benign, and I know this doesn’t sound
benign, but according to my network monitor, all this activity only consumed around
1500 bytes per second (yes, bytes) of bandwidth and 2% of the system’s CPU capacity.
Not counting the huge logs, the tarpit system – and my network – was loafing.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 Page 11 of 20

Next, I started comparing the logs to what I was seeing on the IDS-equipped hosts, and
that’s when I noticed that the tarpit was missing some of the scans the IDS was
reporting, MS SQL and FTP scans in particular. The tarpit system was still running the
original iptables firewall that had been set to drop quite a number of “unwanted”
packets, including MS SQL and FTP, so this wasn’t a big surprise. I knew I’d either
have to redesign the firewall or bypass it. Unfortunately, the test system I’d put LaBrea
on was also running many other services to simply open the firewalls.

I needed to build a real Tarpit system, and just at the right time, an old desktop system
fell into my lap. Such is fate. Knowing it might have to survive without firewalls, I
wanted the system to be as hardened as I could easily get it. I chose to use Red Hat
Linux again with the Bastille scripts (http://www.bastille-linux.org)18. I recommend their
scripts, but if you’re going to use Bastille, first check the most current operating system
versions they support. Although other Linux dialects are god (OpenBSD coming to
mind), I wanted to use Red Hat again because it’s a dialect I already know, and I have
the materials. Even though Red Hat 7.3 was available and stable, I chose 7.2 because
at the time, the Bastille scripts hadn’t been updated for Red Hat 7.3. I installed it with a
basic configuration. I also included X and Gnome because I like them, although they
add complexity and aren’t necessary. I updated anything that needed it, made one last
pass through the service list (I had missed one or two), and then ran the Bastille 1.3.0
scripts. I followed most of the defaults throughout the Bastille installation. In addition to
the hardening, Bastille created its own iptables firewall script, but I had to turn it off,
much though it pained me, because it interfered with detection. I’m still working on
either moving the LaBrea program so that it receives packets before the firewall blocks
them, or designing a set of firewall rules that protect the tarpit system while passing
through the tarpit traffic. Until one of those is complete, though, the local firewall and
LaBrea don’t play well together.

As before, I installed libpcap, libnet and then LaBrea, setting it up as it was previously,
including the same configuration file. I ran LaBrea and it acted like the previous
installation, but this time, without the firewall, I was seeing many more connection
attempts, including everything the host-based IDS systems had been reporting. After
closely monitoring this system long enough to be sure it wasn’t doing something
untoward, I realized I needed better reporting tools to sift through the quickly growing
logs.

Reports: LaBrea Reporter

LaBrea Reporter was next on my list. I had lots of raw logs and useful tools (if you don’t
use the UNIX grep command, now is the time to learn), but I needed better summaries
of what was happening. I started with LaBrea Reporter
(http://people.opera.com/sverrest/LaBrea/)19, a script Sverre Stoltenberg wrote for
LaBrea written in the Python20 open-source scripting language. Python is new to me
(as so many things are), but it isn’t difficult to learn.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 Page 12 of 20

LaBrea rapport:
===============

Start date: Wed Jun 26 00:01:28
End date: Wed Jun 26 23:55:05

Total transactions: 380634

New source hosts tarpitted this period: 105
 Number of target hosts: 1145
 New tarpitted connections this period: 12695
 Answered SYN/ACK & FIN/ACK scans: 32969 ...

Tarpit Target ports
===================
 21: 2
 22: 996
 25: 6
 80: 2676 ...

Source address
==============
 996 129.81.42.202 Wed Jun 26 01:07:08 - Wed Jun 26 01:08:32 EST
 1134 213.10.150.199 [ipd50a96c7.speed.planet.nl] Wed Jun 26 12:23:27 - Wed Jun 26 12:25:13
EST ...

Target address Total Port: Count Port: Count Port: Count
============== ===== ============ ============ ============
 xxx.xxx.xxx.10: 13 | 22: 1 80: 2 1433: 7
xxx.xxx.xxx.101: 26 | 22: 2 80: 17 1433: 7 ...

This report is created with LaBrea-file.py, a variation
of LaBrea-stats.py. The latest version can be found at
http://people.opera.com/sverrest/LaBrea/

Information abount what LaBrea is can be found at
http://www.threenorth.com/LaBrea/

Easy was good. The LaBrea Reporter script didn’t immediately work with LaBrea 2.4
beta 3. The log entry formats in this version weren’t exactly what Reporter expected.
The offsets – where the Reporter script looks in each log entry – weren’t correct. I
adjusted the offsets to fit the new formats and I’m very happy I did. The Reporter gave
me summaries of the packet activity, the source hosts in order, and the destination
hosts in order, along with summaries. These were critical reports, especially in the
beginning. Here’s part of one report (including my extensions):

I’ve chopped this example report dramatically to get it to fit. The full report listed all the
source and target addresses, which is important information.

It could be very bad if the tarpit captured a local address, particularly if it had captured
the address of a critical system. The LaBrea Reporter gave me a summary of all the
source addresses (the theoretical “bad guys”) in address order. I could easily search for
local addresses. If there are a substantial number of local systems being tarpitted,
there’s a real chance that your tarpit has captured an address it shouldn’t. In my first
run, I found a critical address (one of the routers) and legitimate local addresses in the
report as “source addresses”. I added exclusions for the critical addresses and used

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 Page 13 of 20

search tools (primarily “grep”) to find out why local addresses were in the tarpit. This is
how I found out that people are ignoring “This system is no longer available” messages
for really extended periods of time.

One useful option would be a less verbose reporting option. The full logs are very large,
and while that level reporting is good at first, another option would be helpful. “Persist”
traffic, for example, fills over 90% of the logs and only shows that the tarpit has trapped
connections. I’ve looked at modifying the code, but it’s still on my To-Do list.

Reports: LaBrea::Tarpit

My next goal will be to implement the LaBrea::Tarpit program
(http://scans.bizsystems.net/)21. These Perl modules look very promising. They even
start the LaBrea program from inside their own wrappers, and that seems to solve many
of the reporting problems I was having. The logging is much more concise, and, in
theory, it uses report modules to create various reports, including a report formatted for
the Dshield.org (http://dshield.org/)22 central reporting site, plus it saves LaBrea running
information in cache files, which saves a lot of re-discovery when LaBrea restarts during
log rotation. Unfortunately, I haven’t yet gotten the reporting side of LaBrea::Tarpit to
work, but this remains high in my “To Do” list.

Conflicts, Problems and Changes

Conflict: Firewall

I’ve already mentioned in the Implementation section above that most firewall rules limit
what LaBrea is allowed to mimic. The options are to run without a host-based firewall or
to design firewalls that allow tarpit activity while protecting the tarpit system itself.

Conflict: DHCP

During the first sustained test, another engineer noticed that DHCP clients started
getting “No address available” messages from the DHCP server. We ran a few more
tests and got that same answer for each new system. A moment’s thought gave the
answer.

Like many networks, our clients are a mix of static, reserved and dynamic IP addresses.
To avoid IP address conflicts, we set the DHCP server to PING addresses before
allocating them to avoid our users getting embarrassing address conflict messages.
Suddenly, though, no matter which unused IP address the DHCP server chose, when it
PINGed that address, it always got an answer.

I blushed, briefly, and added the DHCP server to the ipignore list.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 Page 14 of 20

Conflict: System Monitoring

We run system-monitoring software – WhatsUp™ from Ipswitch (http://ipswitch.com/)23,
although this applies to most system monitoring programs. These programs usually
work by periodically checking a list of systems using a combination of PINGs, TCP
packets and SNMP requests. When the tarpit started running, I noticed that the
monitoring software started saying that systems I knew were really, indubitably and
sincerely dead, had suddenly and inexplicably come back to life.

I eventually realized that the tarpit had swallowed the IP addresses of these demised
systems and put up ghosts in their place, and the monitoring software simply believed
the ghost answers.

Like the DHCP software, we excluded the monitoring system using ”ipignore” and, so
far as the monitoring system was concerned, the ghost systems evaporated. Similar
problems would probably corrupt the results of any internal monitoring software.

Conflict: Port Locking

Many Enterprise-level switches and hubs allow “port locking”. When a port is locked, it
only accepts a connection from a specific, registered computer. Every network card
uses a unique address burned into it at the factory called a Media-Access Control
(MAC) address, and local networks really use those MAC addresses to that move
packets. A port is locked when it’s set to only allow traffic from one or more specific
MAC addresses. This prevents people from plugging a foreign computer into your
network successfully, and as a side benefit, it means people have to tell someone when
they move a computer.

While a network card usually uses its own MAC address, nothing limits it to that.
LaBrea creates ghost MAC addresses to match its ghost IP addresses, and sets the
network card to listen to all traffic (“promiscuous mode”). This is important, since if
someone scanning a network saw the same MAC addresses in replies from multiple IP
addresses, it would be obvious they had hit a tarpit or a honeynet.

If port locking is used, that port will block all the tarpit traffic, since it’s coming from
unregistered MAC addresses, and hopefully report it as foreign. Make sure to have port
locking turned off for the tarpit system.

Problem: Accidental System Capture

This isn’t a problem we saw, but a possibility that rose in our minds during the system-
monitoring problem I mentioned above. Suppose an important system – say, your
authoritative Domain Name Server (DNS), if you run one – crashed for an hour. Most
TCP/IP stacks have secondary DNS servers for just such an event, and the clients will
switch to the secondary DNS when the primary doesn’t answer promptly. Everything

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 Page 15 of 20

keeps running automatically. Suppose, though, that after a minute or two, requests to
the primary DNS server suddenly started getting valid – but really slow –
acknowledgments? Every client DNS request would (eventually) time out, but this is a
failure they’d be unlikely to handle gracefully.

This thought gave us chills. A LaBrea tarpit is designed to capture unused IP
addresses, and if it isn’t restricted, it captures every unavailable system’s address. Any
system that went down might be accidentally captured. This would never be a good
thing for a critical system.

Populate the LaBrea configuration file with all the critical servers: name servers,
authentication servers, routers, file and print servers, application servers, etc. Exclude
them all. Don’t leave a tarpit running unsupervised if you haven’t excluded all of your
critical addresses.

Change: FIN/ACK packets

Early in the tests, we noticed activity entries in the log that clearly showed someone
scanning up through our addresses in order. When I turned on a packet-sniffer system
(I used the Ethereal24 package as it comes packaged with Red Hat), I found that the
tarpit wasn’t answering these scans because they were FIN/ACK packets (packets with
both FIN and ACK bits set). This packet doesn’t make official sense – there’s no reason
those bits would be set at the same time – but systems that hear them answer with a
Reset (RST) packet, and the tarpit wasn’t.

This wasn’t a problem per se. LaBrea never said it mimicked every possible reaction.
Still, when we started seeing thousands of FIN/ACK scans, I added a FIN/ACK section
to the LaBrea source code, copying from the SYN/ACK code, adjusting it to answer
FIN/ACK packets and adding appropriate messages. I freely admit that I did this
somewhat blindly, not fully understanding the original code, and there were any number
of other fixes also needed, but when I tested the changes using HPING2
(http://www.hping.org) to fashion my own FIN/ACK packets, the tarpit sent back
appropriate RST packets.

Change: PING packet reporting

I knew the tarpit was answering PINGs – I’d deliberately run PING against tarpit
addresses as a test – but when I checked the logs, there were no PING reports. I even
added a PING section to the Reporter program, but the totals were zero in every report.
I found a minor code defect. LaBrea answers ICMP PINGS correctly, but then it
prematurely (if gracefully) bails out of the reporting section of the code. I’ve written the
author to mention this problem and my less than graceful workaround.

Conclusions

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 Page 16 of 20

Did I create a stable tarpit that’s benign to my users? Yes.

Even though it’s still Beta software, LaBrea has been stable, and the only
changes I’ve made to that code were to extend its functionality and fix a non-
critical reporting problem. With the proviso that it’s important to do your
homework about the addresses and ports to be ignored and/or excluded, the
scheme LaBrea uses for capturing unused IP addresses appears to work as
promised. As a side benefit, LaBrea and its reporting tools are very useful as a
kind of network-based intrusion detection tool. I find I’ve been checking the
reports daily.

Has our tarpit been successful at limiting scanners? Probably.

If scanning and hacking volume is any measure, the tarpit looks good. Activity
started slowly, but after a few days of running, the tarpit was recording roughly
one million transactions a day, including tarpitted connections, SYN, SYN/ACK
and FIN/ACK scans, persist activity, additional activity and ICMP PING packets.
By the start of the second week, the tarpit volume had dropped to under 400,000
transactions a day, and it’s stayed below that total during the following two
weeks. In fact, the volume may still be dropping, although the sample is too
small to be significant yet. (No systems have been hacked in the last two weeks,
either, for what that’s worth.) Does this mean scanning is more limited? Not
having access to the hackers and scanners, I can’t say why the traffic changes
with any certainty. Still, I suspect some people have chosen to stop scanning my
addresses, which makes me think the tarpit has probably been at least
somewhat effective.

Are internal users safer because of the tarpit? This doesn’t have a clear answer.

I have no hard evidence so far (the test period is far too short for a valid sample),
but I believe the ghost systems have at least provided some system protection
through obscurity. Any vulnerable systems on my network are much harder to
find in a field of convincing, slow ghosts. Unfortunately, because we don’t have a
body of intrusion detection data to compare against, I can’t measure any
improvements. I think the local users are realizing some level of protection, but I
have no hard proof.

Is the tarpit protecting users outside my network? I believe so.

The tarpit seems to be successfully trapping – sometimes for long times – more
HTTP connections than I’m comfortable thinking about. Although I’m shocked at
the volume, the tarpit seems to be doing exactly what it set out to do: trapping
unwanted connection attempts from dumb, automated programs. Does this
make the Internet a better place? Yes, I think this goal is also successful to
some extent, even if the exact contribution is hard to measure.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 Page 17 of 20

Will the hacker community adapt to tarpits? Probably.

I expect to see scanning tools incorporate tarpit detection before too long,
especially if tarpits become more popular. I also expect to see tarpits become
more sophisticated in that same kind of arms-race development curve that virus
and anti-virus software have been dancing for years. It’s a new arena for an old
pattern.

Finally, and perhaps the most important question, is a tarpit fun? Completely. They’re
small, undemanding, and everyone should build one.

References

“Bastille Linux” release 1.3.0. Bastille Linux development team. URL:
http://www.bastille-linux.org/ (6/28/2002).

Beker, Jeremy. “confusticate.com”. URL: http://www.confusticate.com (6/20/2002).

BlackICE version 3.5.cbq. Internet Security Systems, Inc. URL: http://www.iss.net
(7/9/2002).

Carraway, Devin. “Peachpit -- a Tarpit for Censorware.” URL:
http://www.devin.com/peachpit/ (6/21/2002).

“Die.net” homepage. URL: http://www.die.net/ (6/20/2002).

“Dshield.org Distributed Intrusion Detection System” home page. Dshield is a
trademark of Euclidian Consulting. URL: http://dshield.org/ (6/18/2002).

Ethereal network protocol analyzer version 0.9.3. Network Associates, Inc. URL:
http://www.ethereal.com/ (6/22/2002).

“Global Information Assurance Certification.” SANS Institute. http://www.giac.org
(7/9/2002).

“HackBusters” homepage. URL: http://www.hackbusters.net (5/30/2002)

“Incidents.org” web site discussion list. SANS Institute. URL:
http://incidents.org/intrusions/index.html (6/30/2002)

“LaBrea -- The Tarpit” web page. URL: http://www.hackbusters.net/LaBrea (5/30/2002)
 and mirror site URL: http://www.threenorth.com/LaBrea/ (5/30/2002).

Microsoft TechNet. Microsoft Corporation. URL: http://www.microsoft.com/technet/
(6/30/2002).

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 Page 18 of 20

“McAfee AVERT Virus Information Library”. Network Associates, Inc. URL:
http://vil.nai.com/ (7/9/2002).

“NSA Security Recommendation Guides: Windows NT Guides.” Security
Recommendation Guides. National Security Agency. URL: http://www.nsa.gov/
(6/20/2002).

Python Scripting Language. Release 2.2. Python organization. URL:
http://www.python.org/ (6/23/2002).

Redmood, John. “Stop Spam Now!” URL: http://john.redmood.com/stopspam.html
(6/18/2002).

Robinton, Michael, and Bizsystems. “LaBrea::Tarpit” Perl module, release 1.03. URL:
http://scans.bizsystems.net (6/23/2002).

SANS Institute. URL: http://www.sans.org (7/9/2002).

Schiffman, Mike D. “The PacketFactory” homepage 7/2/2002. URL:
http://www.packetfactory.net/ (7/9/2002).

Stoltenberg, Sverre, “LaBrea Reporter script” release 1.10. 2001/09/25. URL:
http://people.opera.com/sverrest/LaBrea/ (6/21/2002).

“tcpdump/libpcap” web page. 5/13/2002. URL: http://www.tcpdump.org/ (7/9/2002)

WhatsUp Gold. Ipswitch, Inc. URL: http://ipswitch.com/ (6/13/2002).

ZoneAlarm version 2.6.362.0. Zone Labs, Inc. URL: http://www.zonelabs.com
(6/18/2002).

Endnotes:

1 BlackICE is a trademark of Internet Security Systems, Inc., http://www.iss.net
2 Intrusion Detection Systems are sometimes abbreviated as IDS, and subdivided into
Host-based IDS and Network-based IDS (NIDS).
3 ZoneAlarm is a trademark of Zone Labs, Inc., http://www.zonealarm.com
4 “A Very Real and Present Threat to the Internet.” Microsoft TechNet. Microsoft
Corporation. URL:
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/topics/code
alrt.asp (6/30/2002).
5 “Security Recommendation Guides: Windows NT Guides.” Security Recommendation
Guides. National Security Agency. URL: http://www.nsa.gov/ (6/20/2002).

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 Page 19 of 20

6 Carraway, Devin. “Peachpit -- a Tarpit for Censorware.” URL:
http://www.devin.com/peachpit/ (6/21/2002). Tarpitting is also sometimes called
“teergrubing”, after the German word for tarpit.
7 Redmood, John. “Stop Spam Now!” URL: http://john.redmood.com/stopspam.html
(6/18/2002).
8 Liston, Tom. “LaBrea.README” file. LaBrea software. Release 2.4 Beta 3.
3/25/2002. Tom Liston’s post to the Incidents.org list has long since expired, but it is
extracted in the LaBrea 2.4 Beta 3 LaBrea.README file. Here’s the quote from that
file:

The original concept for LaBrea started in response to the CodeRed worm. Our
IP block was being scanned non-stop. I began to wonder:

"Is there anything that can be done to stop this worm?" Of course,
many things came to mind, but most of them were illegal. Then,
late one night, I thought, "Maybe I can't stop these machines from
scanning, but I bet I can slow them down..."

The following morning I posted to the INTRUSIONS list at incidents.org:

"I'm pretty sure that most of you are using your allotted ip address
space somewhat like I am. At any given time I'm using only about
20-30% of the ip addresses that I have available. What if I could
put something on those other 80% of my ip addresses that would
give "Code Red" something to play with that would slow it down to
a crawl? A sort of "DoS" back at the worm.

Since those "extra" ip addresses aren't actually expecting any
inbound traffic, anything fired at them can safely be assumed to be
"bad" traffic. If I wrote a little piece of software that sat on those ip's
and listened on port 80, anything that it heard could safely be
"played" with.

My hypothetical program should be pretty simple: you see an
inbound packet at port 80 with SYN set, and you craft up a return
packet with SYN/ACK set and perhaps an option to set the MSS to
something small... say about 60 bytes. What does that do? Well,
as far as the attacking worm is concerned, after replying with an
ACK, it has completed a three-way handshake... it's connected. It's
also been told to send information back to you in small chunks (to
keep traffic to a minimum), which it dutifully does. The only
problem is, my program just answers SYN packets and ignores
everything else. So now the worm has to sit around while the
whole TCP connection times out. I'm not sure what the timeout NT

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.
 Page 20 of 20

is, but I think most stacks are pretty persistent about "good"
connections, so it should hang it up for a good long time."

A few days later, Mihnea Stoenescu sent a message back to the list:

"Tom's concept works - I have a living proof.

For a few hours I've been teergrubing CodeReds via three-way
Handshake on behalf of an entire C-block, by using only one host. At a
rate of 6 hosts per minute hitting my block, I'm consuming circa 15
minutes of effective attack time every minute. A lot of hosts can be
scanned in 15 minutes."

9 Incidents.org web site discussion list. SANS Institute. URL:
http://incidents.org/intrusions/index.html (7/9/2002)
10 Liston, Tom. “Section 2: What Prompted You to Write It?” URL:
http://www.threenorth.com/LaBrea/ (5/30/2002)
11 Liston, Tom. LaBrea.README file. LaBrea software. Release 2.4 Beta 3.
3/25/2002.
12 An ARP request is really asking for the Media-Access Control layer (MAC) address of
a computer. IP addresses are used between networks and subnets, but inside a
subnet, every packet is sent a MAC address. So that it’s not obviously a tarpit, LaBrea
creates a ghost MAC address for each ghost IP address.
13 A “port number” is an additional address on top of the Internet Protocol (IP) address.
Every Internet computer has 64K different “port” numbers it can use for different
services. Although nothing is fixed – any service can be offered on any port – most
services have default ports (HTTP on port 80, SMTP on port 25, etc.). If a connecting
system wants a specific service from an unknown server, it connects to the computer
using the default port for that service.
14 “LaBrea::Tarpit HELD SINCE“ web page. URL: http://www.hackbusters.net/cgi-
bin/guests.cgi?captured.
15 Red Hat Linux. URL: http://www.redhat.com (5/12/2002).
16 Libnet beta version 1.1.0-b7, The Packetfactory. URL: http://www.packetfactory.net/
17 “tcpdump/libpcap” web page. 5/13/2002. URL: http://www.tcpdump.org/ (7/9/2002)
18 Bastille Linux. Release 1.3.0. URL: http://www.bastille-linux.org/ (6/28/2002).
19 Stoltenberg, Sverre. LaBrea Reporter script. Release 1.10. 2001/09/25. URL:
http://people.opera.com/sverrest/LaBrea/ (6/21/2002).
20 Python Scripting Language. Release 2.2. URL: http://www.python.org/ (6/23/2002).
21 Robinton, Michael, and Bizsystems. LaBrea::Tarpit. Release 1.03. URL:
http://scans.bizsystems.net (6/23/2002).
22 “Dshield.org Distributed Intrusion Detection System” home page. Euclidian
Consulting. URL: http://dshield.org/ (6/18/2002).
23 Ipswitch, Inc. WhatsUp Gold. URL: http://ipswitch.com/ (6/13/2002).
24 Ethereal network protocol analyzer. URL: http://www.ethereal.com/ (6/22/2002).

