
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec


©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

An Introduction to Quantum Key Distribution 
 
Derek Bastille 
GSEC Practical Assignment Version 1.4 
January 15, 2005 

Abstract 
 

Quantum Key Distribution (QKD) is a methodology for generating and distributing 
random one-time encryption keys using the principles of quantum physics. These keys 
are secure from eavesdropping or tampering while in transit from the sender to the 
receiver thanks to the fundamental principles of quantum physics which state that the 
process of observing a quantum system changes the system such that it is not possible 
to fully reconstruct its pre-measurement state.   

QKD is only used for the transmission of keys and cannot be used as an 
encryption algorithm itself.  However, it does provide a potential solution to the need to 
provide longer encryption keys to commonly used algorithms.  Current research is 
focused on proving the security of QKD and increasing its range and stability.  This 
paper provides a brief introduction to that research and outlines an example protocol 
and QKD implementation using the original Bennett and Brassard paper [2]. 
 

Overview 
 

For as long as humans have been communicating, there has often been at least 
one extra participant in the conversation between the sender and the receiver--the 
eavesdropper.  When the information being passed is intended to be public knowledge 
this is not a problem; however, when the message is intended for the receiver only, the 
participants need some way to keep their conversation private. 

One way for the sender (who is typically referred to as Bob) to get a private 
message to Alice (the receiver) is to send the message in such a way that the 
eavesdropper (Eve) cannot get physical access to it while it is in transit between Bob 
and Alice.  Unfortunately, this method is rarely practical and depends heavily on trusted 
third parties to get the message safely from Bob to Alice.  The remaining method 
assumes that Eve has full access to the message while it is in route and, therefore, 
encrypts the message to prevent Eve from getting any information from it.   

Many different algorithms have been developed over the years to satisfy this 
need to encrypt messages as they pass from sender to receiver.  In the earliest ones, 
the security of the message depended entirely on the security of the algorithm itself.  
For example, the Caesarean (that is, attributed originally to Julius Caesar) cipher 
transposes the letters of a message by a specific number of places to encrypt it.  Thus, 
the message: GET HELP might be transposed into JHW KHOS while it is in transit.  
This, obviously is not a very secure cipher since even if you do not know that the ‘key’ is 
shifting by 3 places, you can break it by trying all combinations of transpositions and/or 
analyzing the frequency of the letters [5]. 
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One way to look at the effectiveness of an encryption method is to see to what 
degree that algorithm can transfer the randomness of the key to the message such that 
the message cannot be recovered without the key.  For another example, here is a 
cipher that uses a key of the same length as the message that is to be encrypted.   To 
see how it is used, let’s go back to Bob and Alice. 

In this case, Bob wants to send the message “Let’s have lunch at Tony’s” to 
Alice, but does not want to invite Eve.  As shown in Figure 1, Bob first converts the 
letters in the message to numbers using a table known to both he and Alice. 

 
 L E T S H A V E L U N C H A T T O N Y S 
 17 42 05 26 00 11 95 42 17 13 50 64 00 11 05 05 47 50 89 26 
+ 11 23 14 52 09 35 61 77 82 12 67 70 32 84 84 56 91 19 07 31 
 28 65 19 78 09 46 56 19 99 25 17 34 32 95 89 51 38 69 86 57 

 
Figure 1: A Vernam Cipher Example 
 
  Then, Bob uses a subset of a random string of digits that he has shared with 

Alice ahead of time.  This set of random numbers is the same length as the message 
(Figure 1, row 2).  Bob adds the random digits to the numbers derived from the 
message (ignoring carries) and sends the final message off to Alice.  

Alice decodes the original message by subtracting the same subset of random 
digits from the encoded message and then converting the numbers back to letters.  
Once the message has been successfully transferred, both Bob and Alice destroy their 
copies of the random digits so that they cannot be reused.  Since the encrypted 
message, while in transit, is essentially randomized by the key, Eve will be unable to 
decode it no matter how much knowledge she has of the algorithm or how much 
computing power she throws at it for a brute-force attack.   

Encryption algorithms that use random keys of the same length as the message 
are known as Vernam ciphers (after Gilbert Vernam who invented them in 1918) [2] and 
have been proven to be unbreakable as long as the key is never reused for subsequent 
messages.  One of the main disadvantages to Vernam ciphers is that the parties using it 
must find a way to securely exchange and store many sets of one-time keys for use in 
encrypting their messages.  By extension, Vernam ciphers are also only useful between 
parties that already know and trust each other.  Therefore, because of these 
impracticalities, Vernam ciphers are normally only used for highly sensitive military and 
diplomatic communications. 

Many other ciphers and algorithms have been developed since the Vernam 
cipher, but nearly all have been broken by increasingly sophisticated mathematics and 
computer processing power.  In fact, many would argue that it was the need to break 
advanced encryption schemes, such as Enigma, that pushed the development of 
electronic computers in the first place.   

Throughout much of the 20th century there has been a sort of arms race between 
the developers of advanced encryption algorithms and the developers of advanced 
computing hardware that attempted to break those algorithms.  Until the 1970s, 
however, all of the algorithms, machines and ciphers had the same basic problem as 
the Vernam cipher. Namely: How does Bob transfer his random key data to Alice 
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without having that data “leak” to Eve?  Further: How does Alice store the key data in 
such a way that Eve cannot access it? 

In 1976, Whitfield Diffie and Martin Hellman published a paper called “New 
Directions in Cryptography” [7] in which they presented the principles of Public Key 
Cryptography (PKC).  In the original version of PKC, Bob and Alice each pick a pair of 
algorithms.  The algorithms are complementary so that one can decrypt messages 
encrypted by the other. Then, they each make their chosen encryption algorithm public, 
but keep the decryption algorithm private. Bob and Alice can use these algorithms to 
send each other secret messages – without having to exchange secret keys in advance 
[3]. 

PKC was refined (and made practical) through research done by Ronald Rivest, 
Adi Shamir and Leonard Adleman at MIT in 1977 [2].  The Rivest-Shamir-Adleman 
(RSA) PKC algorithm neatly eliminated the need for Alice and Bob to share secret 
information prior to exchanging messages, but relies on the computational difficulty of 
figuring out the key from the encrypted message.  Since the RSA cipher (as well as 
other PKC algorithms) uses a key that is shorter than the original message and is 
reused, it can be broken – given enough computational power and/or clever 
mathematics [GSEC Security Essentials, day 4]. 

The end result of all this is that the encryption arms race is forcing us to use 
longer and longer key lengths in both DES/AES type (private key) and RSA type 
(public/private key pair) algorithms to avoid being compromised by more powerful 
computer systems.  Hence, one day we may find ourselves right back at the beginning 
again where Bob and Alice will need to share a fully random, one-time use key each 
time they want to exchange secret messages. 

Again, we come to the question:  
How do Bob and Alice share a secret key in such a way that Eve cannot 

intercept it while it is traveling from Bob to Alice? 
Unfortunately, classical physics does not provide a way in which keys can be 

transported between Alice and Bob without the possibility of Eve intercepting it and, 
subsequently, decrypting Alice and Bob’s private communications.  That is, no matter 
what method Alice uses to package the key for transport to Bob, there will always be 
some sort of sensor (or plain-old social engineering) that can read the key while it is in 
transition. 

Quantum physics, on the other hand, does not hold such restrictions. 

Ideal Quantum Key Distribution 
Quantum physics is based on several theories of uncertainty.  The most well 

known is the Heisenberg uncertainty principle which states that “The more precisely the 
position is known, the less precisely the momentum is known” [8].  In essence, the 
uncertainty principle means that the process of measuring one aspect of a quantum 
system changes that system and prevents you from knowing what the other aspects 
were prior to the measurement.   

In about 1970, Stephen Wiesner wrote a paper entitled “Conjugate Coding” [6] in 
which he explored the possibility of using quantum physics to merge messages together 
so that you could read one or the other – but not both.  Even though his paper was 
originally rejected (and remained unpublished for over 10 years), his idea of using 
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quantum physics was picked up by Charles Bennett and Gilles Brassard [2,9] and was 
eventually refined into a working prototype. 

The original key distribution protocol used 2 orthogonal sets of photon 
polarizations1 as the quantum basis for the distribution.   That is, the polarization states 
in one set (horizontal or vertical), are distinct from those of any other set (clockwise or 
counter-clockwise).  In their 1984 paper, Bennett, et al, used rectilinear and circular 
polarizations [9] for their sets, while in the later Scientific American article [2] the chosen 
polarizations were rectilinear and diagonal.  For this paper, I have chosen rectilinear 
and diagonal polarizations for the examples.   

Regardless of the polarizations chosen, the basic principle is the same: the 
detector for measuring one polarization set can only pass through photons that are 
polarized to a member of that set.  Thus, photons that are, say, circularly polarized will 
be randomly re-polarized to either vertical or horizontal polarization if they pass through 
a rectilinear detector.  For example, if Bob sends a photon that is polarized to 90º and 
Alice has her detector set to rectilinear, then the 90º polarization will be preserved.  If, 
however, she has her detector set to measure diagonal polarizations, then the photon 
will be randomly re-polarized to either 45º or 135º and the original 90º polarization will 
be forever lost. 

Similarly, if Eve attempts to measure any of Bob’s photons while they are in 
transit and chooses the wrong polarization, then the original polarization will be lost 
when the photon passes through her detector.  Thus, when Eve attempts to duplicate 
the photon for retransmission to Alice (since the original photon was consumed by the 
detector), she has a high probability of getting the polarization wrong.  These wrong 
guesses will show up as errors in Alice’s data. 

 

 
Figure 2: Example exchange between Bob and Alice (similar to illustration in [2]) 
 
Figure 2 shows the steps in an idealized exchange between Bob and Alice.  The 

first step is for Bob to send a random series of photons with polarizations of 0º, 45º, 90º 
                                                             
1 Photons are packets of energy that have both wave-like and particle-like behavior.  Polarization 
refers to the angle of the photon’s wave-like motion.  Since photons are created with a random 
polarization, filters are used to choose photons with the specific polarization desired.  For 
example, the lenses of Polaroid glasses have very thin lines engraved or printed on them.  These 
lenses block photons that are vibrating perpendicular to the lines and, thus, filter out everything 
but a specific polarization.  One interesting trick is to take 2 polarizing lenses and place one atop 
the other.  Rotating the top lens 90º from the bottom lens will block any light – even though there 
are areas not covered by the lines on either lens [2].   
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or 135º (the top row of Figure 2).  For each photon that she receives (not all of the 
photons that Bob generates will reach Alice), Alice randomly chooses to measure either 
rectilinear polarizations or diagonal polarizations (middle row).  Alice jots down her 
measurement results but does not disclose them (bottom row). 

Next, Alice publicly tells Bob which polarization set she used for each photon and 
Bob tells her which ones were correct.  For this example, Alice received all of the 
photons sent by Bob, except for number 4, and picked the same polarization set for 
photons 1,2,5,6,7,8 and 10.  Both Bob and Alice then discard all of the photons for 
which the polarization sets did not match (3 and 9 for this case).   

Finally, the correct photons are converted to a binary sequence using a 

previously agreed upon method.  For this example and are 0 while and 

are 1.  For Bob and Alice, the end result is the string 0010110. 
Bennette, et al, refer to the above steps as the raw quantum transmission [9] 

since no error correction or testing for eavesdropping has been done on the “raw” bits.  
In the ideal protocol, Bob would publicly disclose the actual polarizations for a random 
subset of the photons he sent to Alice (the photons in this subset would then be 
discarded since they would now be known to Eve).  If there were no discrepancies in 
the subset, then Alice and Bob could reasonably assume that Eve did not attempt to 
eavesdrop on the transmission2. 

The remaining bits form the secret key that is shared between Bob and Alice. 
This key is used to encrypt/decrypt any messages exchanged between them using the 
Vernam cipher, Triple-DES, RSA or some other cryptographic algorithm. 

Validation 
 
In practice, there are two problems with the ideal approach to validating the raw 

quantum transmission:  the first is that it is quite difficult to produce a one-photon pulse 
using current technology; the second is that photon detectors will always introduce 
some amount of random noise that will show u pas errors in the measurements [8]. 

All of the actual implementations of QKD use a beam of very dim flashes of 
polarized light rather than individual photons.  The average number of photons per flash 
is typically less than 1, but the possibility still exists for Eve to be able to split Bob’s 
beam (so that part goes to her detector and the remainder goes to Alice).  If the number 
of average photons per flash increases, then the chances of successful beam splitting 
also go up.   Thus, Bob and Alice must always assume that Eve may know a subset of 
the raw quantum transmission. 

                                                             
2 An important underlying assumption in the entire protocol is that Eve cannot impersonate either 
Bob or Alice for the public messages and that she cannot corrupt any of those messages.  
Otherwise, Eve could pretend to be Alice or Bob and wind up with a key that is shared with Bob 
and a key that is shared with Alice.  Eve could then use those keys to decrypt/re-encrypt the 
secret messages and neither Bob nor Alice would know [9].  To counter this, Bob and Alice can 
authenticate each other by publicly exchanging a few bits from their shared key with each 
transmission. Since these sacrificial bits are then known to Eve, they are discarded. 
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One published scheme [9] to minimize the impact of errors (from either Eve or 
from random detector noise) is to do parity checking on the raw data.  For this process, 
Bob and Alice first randomly shuffle the bits around to distribute any errors (Bob and 
Alice’s copies of the key are shuffled identically to each other).  They then split the key 
data into smaller blocks of size k – with k being small enough to minimize the chances 
of having more than one error in any one block.   After splitting the key data, Bob and 
Alice compute and then compare the parity of each block.  If the parity checks don’t 
match, then the offending block is further split into sub-blocks and parity checked.  The 
process is repeated until the error is found and corrected (by deleting the bad bit).  

To avoid giving Eve any hints, Bob and Alice should drop one of the bits in each 
of the publicly discussed blocks (thus changing that block’s parity).  Once Bob and Alice 
have found all of the errors, they should randomly shuffle the bits in the key and then 
repeat the whole process.  This will help find cases where there might have been an 
even number of errors in any one block.  As a final check, they can pick a random 
subset of all of the remaining bits and do parity checking on it.  By repeating this last 
check several times, Bob and Alice can be reasonably sure that they have a shared key 
that does not have any errors in it3[9].  

One thing that they cannot be sure of, however, is the percent of this key that is 
known by Eve.  To compensate for this, Bob and Alice use the principle of privacy 
amplification.  This procedure calls for Bob and Alice to choose mathematical functions 
(such as hashing, parity, transposition, etc) to repeatedly transform the partially secret 
key into one that Eve know almost nothing at all about [2,9].    

Other Protocols 
The QKD protocol outlined here (often referred to as BB84 since it was first 

introduced by Bennette and Brassard in 1984 [2]) is certainly not the only one to have 
been developed thus far.  A few of these other methods are: 

1. Using only 2 polarization states [1: ref. 6] 
2. Using the phase modulation of photons instead of polarization [1: ref. 7] 
3. Using bright light [1, ref. 11] 
4. Using Einstein-Podolsky-Rosen (EPR) entangled photon pairs [1, ref. 5]  

In addition to being an alternative transmission protocol, EPR pairs also have the 
potential (theoretically [2]) to solve the problem of securely storing encryption keys.   

It is beyond the scope of this paper to go into details about these other methods, 
but further information is available in the papers referenced both here and in the 
referenced bibliography. 

                                                             
3 In [2], Bennett, et al, dispenses with the idea of randomly shuffling and splitting the key into 
fixed blocks of size k and, instead, relies entirely on choosing random subsets of the data for 
parity checking.  They further suggest that since randomly selected subsets have a 50% 
probability of detecting the error, than one could perform the same random block parity 
repeatedly to find all of the errors.  With 20 rounds of testing, the probability of having 
undetected errors in the final key drops to < .0001%. 
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Implementations 
Several working prototypes for QKD have been developed.  The first was 

developed using the BB84 protocol and was able to distribute keys over a free-space 
distance of 32cm.  

As shown in Figure 3, the photon source for this system was dim flashes of light 
from a green LED.  The light was focused through a lens and pinhole to provide a 
collimated beam and then was sent through a filter to horizontally polarize it.  Pockels 
cells were used next to provide a way of rapidly changing the polarization from 
horizontal to vertical and to the two diagonal polarizations.  At the other end of the 32cm 
air gap, the encoded beam was sent through another Pockels cell so that it could be 
rotated by 45º (to measure diagonal polarization), or not rotated (to measure rectilinear 
polarization).  Once the beam had been through the receiving Pockels cell, it was sent 
through a calcite crystal, which split it and sent the vertically polarized photons to one 
detector and the horizontally polarized photons to the other [2]4.   A PC that played the 
part of both Bob and Alice controlled each Pockels cell.  The PC used a file of pre-
generated random numbers to provide the random series of polarizations for the 
quantum transmission.  Although it is not depicted in Figure 1, the prototype also had 
the capability of simulating Eve’s activities [9]. 

 
LED
Light
Source

Lens

Pinhole
Apertures

Pockels Cells

Collimating
Filter Horizontal 

Polarizer

Calcite Prism

Horizontal Detector

Vertical Detector

32 cm Air Gap

 
 
Figure 3: BB84 Prototype Quantum Key Distribution System (based on drawing in [2]) 

 
According to Bennett’s 1991 paper [9], one of the runs of this system in February 

1991 took about 10 minutes to perform the quantum transmission.  In this run, Bob 
transmitted about 715,000 pulses of light and, of those, Alicecorrectly received about 
2,000 pulses.  After validation, error correction and privacy amplification, Bob and Alice 
wound up with a 754 bit long secret key. 

When the run was repeated with a simulated Eve, Bob still correctly received 
2,000 of the 715,000 pulses sent by Alice.  Eve managed to intercept 336 bits of raw 

                                                             
4 A core component the original prototype was a prism made from calcite.  This prism 
was (and still is in more recent prototypes) used to differentiate between horizontally 
and vertically polarized photons.  The crystal prism will deflect photons that are 
vertically polarized, while horizontally polarized photons will pass straight through.  The 
result is that the two rectilinear polarizations can be fed to separate detectors. 
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data, but also managed to raise Bob’s error rate fro 3.9% to 8%.  The error correction, 
validation and privacy amplification resulted in 105 bits of shared data for Bob and Alice 
and an estimate of far less than 1 bit of data for Eve [9].  

Since then, there have been many other prototype systems that have been 
implemented.   While some of them have also been based on the BB84 protocol, a few 
have been based on the EPR model [1: ref 5] and others on the phase modulation 
protocol.  In addition to trying out other protocols, these later prototypes have also been 
able to extend the range to quantum transmission to 10 kilometers (over optical fiber). 

Yet another recent variation on the BB84 protocol [10] uses 4 separate lasers to 
generate the 4 polarization states (rather than a Pockels cell).  The authors focused on 
increasing the quality and reliability of the transmission over long distances and 
managed to transfer 20 Kbit keys over 30 kilometers of optical fiber with very low error 
rates. 

Practicalities 
There are several issues that prevent QKD from being practical for general 

usage.  These include: 
• The distances are still limited to 10 to 30 kilometers 
• It can take several minutes to transfer and validate just one key  
• The current systems are large, bulky, delicate and very expensive 
• Two systems cannot share the same optical fiber at the same time 

Also, none of the protocols deal with the problem of authentication.  That is, there 
is no way for Bob to know that he is really talking to Alice and vice-versa. A technique 
called oblivious transfer could solve this last problem, but it is rather unwieldy and can 
consume thousands of photons each time Bob and Alice try to use it [3]. 

Distribution Vs Cryptography 
The term Quantum Cryptography in this context is somewhat of a misnomer 

since none of these systems or protocols are useful for actually doing cryptography.  
Thus, we will still need to rely on current well-known cryptographic algorithms such as 
AES and Triple-DES to do the encryption/decryption of messages.  This is not to say, 
however, that quantum mechanics is not useful for cryptography—just that the label 
Quantum Key Distribution is probably the more accurate term.   

The use of quantum computers in large number factorization and/or code 
breaking is discussed in the Physics Today article [11].  Dr. Gottesman proposes the 
possibility of a somewhat bleak future for public key cryptography where quantum 
computers have rendered them obsolete.  However, he also thinks that QKD might help 
to provide some security through private key, Vernam-type ciphers. 

 

Conclusion 
The art and science of cryptography has changed tremendously over the last 

several thousand years from simple transposition algorithms to today’s highly complex 
mathematical ciphers.  Even with all of these changes, however, the basic idea has 
remained the same: Bob and Alice need to share a bit of secret information between 
them that they can use to obfuscate messages that they exchange over public 



©
 S

A
N

S 
In

st
itu

te
 2

00
0 

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll 

ri
gh

ts
.

 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 
 

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

channels.  This obfuscation is needed whenever Bob and Alice need to prevent Eve 
from reading any messages that she has managed to intercept.   

Eve’s tools for breaking the algorithms used by Bob and Alice, of course, have 
also changed over the years.  These computational tools allow Eve to break apart ever 
more complex ciphers and force Bob and Alice to use longer and longer randomized 
keys; keys that also need to be refreshed much more frequently. 

  The use of quantum transmission to distribute cryptographic keys is an elegant 
solution to this problem of needing longer and more frequently generated keys to deal 
with Eve’s increased computational capabilities.  These transmissions rely on the 
fundamental quantum physics principle of uncertainty to make it incredibly difficult for 
Eve to intercept enough of the exchanged keys to be able to use them to decrypt Bob 
and Alice’s messages. 

Current QKD systems are still experimental and are not yet practical for general 
usage.  However, the field is advancing rapidly and today’s prototypes are able to 
generate and transfer longer keys over distances of 10 to 30 kilometers or more.  Proofs 
have also been published recently that validate the absolute security of QKD methods 
[12].  Even with these advances, however, and the absolute security provided by QKD, 
it is still only useful for transferring keys between two parties who already know each 
other.  That is, if Alice and Bob do not already know (or trust) each other, then methods 
other than QKD must be used to establish that trust. 

Lastly, quantum mechanics itself is a double-edged sword.  For all of the security 
benefits of using QKD to exchange keys, the use of quantum computers also holds the 
potential to break all known public key ciphers (and most private key ciphers as well).  
“Only time will tell who benefits more from quantum cryptography: the code-makers or 
the code-breakers.” [Dr. Gottsman in 11]  
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