
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Steganography and Steganalysis

Waheed Qureshi

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Table of Contents

1 Abstract...3
2 Introduction ..3
3 Steganography, a history ...3
4 Media Types ...4

4.1 Computer File System ...4
4.2 Transmission Protocol...5

4.2.1 Hiding information within an IP header ..5
4.3 Encoding data in text documents..6

4.3.1 Open Space methods...6
4.3.2 Syntactic Methods...7
4.3.3 Semantic Methods...7

4.4 Data hiding in the audio ..8
4.5 Data hiding in the graphic files...8

5 Steganalysis ..11
5.1 Independent Research..12

6 Conclusion..15

Table 4.2.1-1 The IP Header..5
Table 4.2.1-2 Hiding data in the identification field..6

Figure 4-1: Cover Image and Uniform Pixel Area...9
Figure 4-2: Encoded Picture and Decoded Message..10
Figure 4-3: Comparison of cover image with stego in binary...11
Figure 5-1: RGB Color Axis and Luminance Axis..13
Figure 5-2: Zigzag Pattern ...14
Figure 5-3: Block Diagram of JPEG image compression..14

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

1 Abstract

The purpose of this paper is to present an overview of steganography. A brief history of
steganography is provided along with techniques that were used to hide information.
While this document focuses on hidden information in digital images, other mediums will
also be discussed to provide the reader with general understanding of many available
techniques. Finally a number of techniques will be discussed to perform steganalysis.

2 Introduction

Steganography is usually confused with cryptography. While related in many aspects,
steganography and cryptography are not the same. The existence of a cryptographic
message can easily be noticed by a casual observer as the messages are scrambled to hide
the original content. Whereas, steganography hides the original message in other innocent
messages to protect the information from prying eyes. The existence of the hidden
message is not obvious to an ordinary observer and cannot be detected by naked eye in
most cases.

Perhaps the biggest advantage that steganography has over cryptography is the fact that
transmission of secret information is non-observable. However, unlike cryptography,
steganography requires a magnitude of overhead to hide small amount of information.
Compression techniques along with encryption can be applied to make a steganography
system more productive and secure. Most of the current steganography software
applications use these techniques to provide a robust system. This is necessary as once a
steganographic system is discovered it is rendered useless.

Digital watermarks play a role by placing information within digital media. This
information may constitute registration of ownership for copyright or a means to locate
an image that has been distributed. For example commercial applications are available to
search the web for images that contain watermarks. Once these watermarked images are
found their presence is reported back to the registered owner of the image [11]. This
document will not explore digital watermarks any further. Interested readers are
encouraged to consult links provided at the end of this document.

3 Steganography, a history

While steganography has received a tremendous attention recently, its application goes
back to Greek times. According to Greek historian Herodotus, the famous Greek tyrant
Histiaeus, while in prison, used unusual method to send message to his son-in-law. He
shaved the head of a slave to tattoo a message on his scalp. Histiaeus then waited until the
hair grew back on salve’s head prior to sending him off to his son-in-law [10].

Wax cover tablets were also used by ancient Greeks to hide messages. The sender of the
message would scrape off the wax from the tablet to write the message on the wood.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Once the message was written the wooden tablets were waxed again to hide the existence
of the message. [14]. Steganography evolved over time and became very popular during
World War II (WWII), where invisible inks were used to write in-between the lines of an
innocent message to hide the information.

Germans used null ciphers or unencrypted messages to hide information in text
document. For example a German spy sent the following null cipher message during
WWII. [14]

Apparently neutral’s protest is thoroughly discounted and ignored. Isman hard hit.
Blockade issue affects pretext for embargo on by-products, ejecting suets and vegetable

oils.

After decoding this message to extract the second letter in each word, the hidden message
appeared to be as follows:

Pershing sails from NY June 1.

Methods other than invisible ink and null cipher were developed later on to pass sensitive
information. Some of these methods are discussed in the next sections of this document.
Throughout the history different media types have been used to hide information. With
advancements in computer industry this number is only increasing. Some of the media
type that I will cover in this paper includes: Computer file system, transmission
protocols, audio files and images. While this documents discusses briefly all of these
media types, details would be provided for systems that use images as cover.

4 Media Types

4.1 Computer File System

Where it stores normal data, a computer file system can also be used to hide information
between innocent files. For example a hard drive while showing the visible partition to a
computer user may contain hidden partitions that can carry hidden files inside them. For
example sfspatch is a kernel patch, which introduces module support for the
steganographic file on a Linux machine. Sfspatch employs encryption along with
steganographic techniques to hide information on the disk so it is not visible to a casual
user [3].

FAT 16 system on Microsoft Windows hosts allocate 32 kilobytes of disk space to each
file. If the file size is only a few kilobytes, the rest of the space can be used to hide
information.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

4.2 Transmission Protocol

Transmission Control Protocol (TCP) and Internet Protocol (IP) are some of the few
protocols that can be used to hide information inside certain header fields. Some TCP/IP
fields are either changed or stripped off by packet filtering mechanisms or through
fragment re-assembly. However, there are fields that are less likely to change or altered.
These fields include: Identification field, Sequence Number field and Acknowledge
Sequence Number field [16].

4.2.1 Hiding information within an IP header

Table 4.2.1-1 depicts an IP header.

The Identification field within an IP header provides network devices with a unique
number to identify packets that may require reassembly. As presented by Neil F. Johnson
in INFS 762 class at George Mason University (GMU), replacing the identification field
with the numerical ASCII representation of the character to be encoded provides an easy
way to hide information within this field. In his example, Johnson selects an unsigned
integer to be transmitted as the identification field. The ASCII value of this integer can be
achieved by dividing the integer by 256.

At the transmitting end client host construct a packet to include the desired identification
number along with source and destination address. In the following example I have
chosen 18432, 18688, 17408 and 17664 as the four identification field values for the four
IP packets. This process is depicted in Table 4.2.1-2.

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Version IHL TOS Total length

Identification Flags Fragment offset
TTL Protocol Header checksum

Source IP address
Destination IP address

Options
 Padding

Table 4.2.1-1 The IP Header

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Sending Host Receiving Host
21:55:35.763195 IP www.source.com.80 >
www.destination.com.1444: S
788196017:788196017(0) ack 2449684694
win 32640 (ttl 64, id 18432)

….(ttl 64, id 18432/256) ASCII 72 = H

21:55:34.754811 IP www.source.com.80 >
www.destination.com.1442: S
1093146807:1093146807(0) ack 2449313332
win 64240 (ttl 64, id 18688)

….(ttl 64, id 18688/256) ASCII 73 = I

21:55:33.711164 IP www.source.com.80 >
www.destination.com.1439: S
1092753896:1092753896(0) ack 2448919278
win 64240 (ttl 64, id 17408)

…..(ttl 64, id 18688/256) ASCII 68 = D

21:55:32.304123 IP www.source.com 80 >
www.destination.co.1436: S
1092243953:1092243953(0) ack 2448416550
win 64240 (ttl 64, id 17664)

…..(ttl 64, id 18688/256) ASCII 69 = E

Table 4.2.1-2 Hiding data in the identification field

Once the ASCII value of the identification field is calculated at the destination, the
decoded message is found to be the word “HIDE.”

Similar techniques can also be used to encode information in the Sequence Number field
of a TCP packet.

4.3 Encoding data in text documents
According to Bender et al [17] softcopy text is one of the most challenging places to hide
data. One reason for this is the lack of redundant information in the text files. Bender et al
discusses three different techniques of hiding information in text files. These methods
are: Open space method, Syntactic methods and Semantic methods.

4.3.1 Open Space methods

There are couple ways to employ the open space in text files to encode the information.
This method works because to a casual reader one extra space at the end of line or an
extra space between two words does not prompt abnormality. However, open space
methods are only useful with ASCII (American Standard Character Interchange) format
[17]. Bender et al presents three methods to exploit the white space for encoding
purposes.

Inter-sentence space method encodes a “0” by adding a single space after a period in
English prose. Adding two spaces would encode a “1”. This method works, but requires a

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

large amount of data to hide only little information. Also many word processing tools
automatically correct the spaces between sentences.

End-of-line space method exploits white space at the end of each line. Data is encoded
using a predetermined number of spaces at the end of each line. For example two spaces
will encode one bit, four spaces will encode two bits and eight spaces will encode three
bits and so on [17]. This technique works better than the inter-sentence space method,
because increasing the number of spaces can hide more data. One disadvantage of this
technique is to lose the encoded information if only a hard copy of the data is provided.

Finally, right-justification of text can also be used to encode data within text files.
Calculating and controlling the spaces between words encode data in innocent text files.
One space between words represents a “0” and two spaces represent a “1”. However, this
approach makes it difficult to decode the data as it becomes impossible to distinguish a
single innocent space from an encoded one. For this purpose Bender et al used
Manchester coding to group the bits. Hence “01” is interpreted as “1” and “10” is
interpreted as “0”. Whereas “00” and “11” are considered the null bit strings.

4.3.2 Syntactic Methods
Syntactic methods as suggest by Bender et al, exploit the use of punctuation and structure
of text to hide data without scientifically altering the meaning of the message. For
example the two phrases “bread, butter, and milk” and “bread, butter and milk” are
grammatically correct but differ in the use of comma. One can employ this structure
alternatively in a text message to represent either a “1” if one method is used and to
represent a “0” if the other method is employed.

4.3.3 Semantic Methods

Semantic methods assign two synonyms a primary or secondary value. These values are
then translated into a binary “1” or “0”. Bender et al use an example where word “big” is
assigned a primary and “large” is assigned secondary. Therefore, decoding a message
would translate the use of primary to be “1” and secondary to a “0”. Bender et al
mentions a potential problem with this approach where synonyms cannot be replaced as it
may change the meaning or structure of the sentence. For example calling someone
“cool” has a different meaning than calling him or her “chilly” [17].

Other methods of encoding information in text documents can also be found in paper
written by J. Brassil, S. Low, N. Maxemchuck, and L.O’Graman. There paper titled
“electronic marking and identification techniques to discourage document copying”
discusses many interesting techniques to achieve this goal.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

4.4 Data hiding in the audio

Bender et al consider data hiding in audio signals to be especially challenging. This is due
to the fact that Human Auditory System (HAS) operates over a wide dynamic range. But
as they discuss in their paper there are still some possibilities to exploit a few available
“holes.” Prior to encode data in audio files one needs not only to keep in mind the
sensitivity of HAS, but also the fact that audio signal travels between encoding and
decoding. It could either travel to a storage media or transmitted over a medium. When
these audio files are represented digitally, sample quantization method and temporal
sampling rate also become a critical factor. Some of the techniques suggested by Bender
et al to hide data into audio files include low-bit encoding and Phase coding.

In low-bit encoding data is embedded by replacing the Least Significant Bit (LSB) of
each sampling point by a coded binary string. This results in a large amount of data that
can be encoded in a single audio file. For example if the ideal noiseless channel capacity
is I Kbps then the bit rate will be 8 Kbps given an 8 kHz sampled sequence. While the
simplest way to hide data in the audio files, low-bit encoding scheme can be destroyed by
the channel noise and re-sampling [17].

Phase coding when it can be used has proven to be most effective coding techniques in
terms of signal to noise ratio [17]. In this method the phase of the original audio signal
is replaced with the reference phase of the data to be hidden. Bender et al discovered that
a channel capacity of approximately 8 bps can be achieved by allocating 128 frequency
slots per bit with a little background noise. Bender et al also discuss methods for
improving audio signal encoding under different communication channels. However,
focus of this document is on hidden information in graphic files and interested readers are
encouraged to visit “Techniques for Data Hiding” by Bender et al. A hyperlink to this
document is provided at the end of this document.

4.5 Data hiding in the graphic files

With advancement in computer technology the field of steganography has grown rapidly,
specifically when it comes to image files. There are a number of easy to use tools
available on the Internet to hide information in image files. Most of the tools that I
downloaded are fairly simple to use and do not require a prior background or expertise in
steganography. For the purposes of this document I limited myself to S-Tools and Jsteg
as these are some of the widely used. While very user friendly, S-Tools and Jsteg perform
complex operations in the background to accomplish the goal of hiding information.
Selecting different encryption and compression techniques can further complicate this
process.

However, for users with minimal knowledge of digital image format and coding
techniques, these tools only become an interface. To better understand and appreciate
some of the processes used by these tools some understanding of digital image processing

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

becomes essential. This information also helps in performing steganalysis, the art of
detecting the presence of hidden information. Without having much exposure to digital
image process myself, I read many documents and searched for tools to better understand
the overall process.

While searching, I found a number of interesting tools that helped me in understanding
digital images, coding schemes and use of colors in digital images. Keeping the length
requirement of this document in mind, I would only discuss one of such tools. Written by
Steve Tenimoto and his team at the University of Washington, pixel calculator is a very
interesting tool. Pixel calculator is not only helpful in understanding digital images and
use of pixels, but provides a neat feature of achieving some very basic steganography.
Again, due to the length requirements, I will try to keep the use of images to as minimal
as possible.

Pixel calculator is equipped with two basic tools. A zooming tool is provided to learn the
exact pixel value by zooming into an image until the pixel values are visible. A calculator
tool is then used to change or modify pixel values. Learning the pixel values and
changing them using the calculator is the key in hiding the information inside an image.
Figure 4-1 depicts the image file I used as cover to hide the information.

Following the instruction provided at pixel calculator web site [4], I used the calculator
tool to manipulate some pixel values. Since the calculator only works with 256 grayscale
images, instructions led me to divide the whole image by integer value of “2.” Next step
was to multiply the whole image by integer value “2.” Combined together both of these
operations remove all of the odd numbered gray values in the image. I then used the
zooming tool to find an area of interest where neighboring pixel values are close to each
other. These values are visible in Figure 4-1.

Figure 4-1: Cover Image and Uniform Pixel Area

As per instructions, I chose an odd number gray value that was close to the pixel values I
was going to manipulate. I will refer to this value as “magic number” in this document.
Using the calculator tool, I started to replace the pixel values in the image with the
“magic number.” I repeated this process until I was done typing the hidden message.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Figure 4-2 shows the image with a hidden message on the left hand side and the decoded
message at the right hand side. The red circle on top of the mountain peak represent the
area where the message is hidden. To decode the message, calculator tool is used again to
convert bits lower than the “magic number” to “0” whereas, the higher ones are
converted to “255.”

This process converts rest of the image black and white, while revealing the hidden
message in gray color. The quality of the hidden message used with pixel calculator is
nowhere close to what S-Tools and Jsteg provide, but it helps in understanding some of
the basics of image processing.

Figure 4-2: Encoded Picture and Decoded Message

S-Tools and Jsteg use different techniques than those used by the pixel calculator. S-
Tools hides information in lossless images like Bitmap (BMP) and Graphic Interchange
Format (GIF). S-Tools employs the LSB insertion method to hide the information within
an image. Changes introduce by LSB insertion are imperceptible to human eye. For
example if three 24-bit pixels are represented as below:

(00100111 11101001 11001000)
(00100111 11001000 11101001)
(11001000 00100111 11101001)

Than interesting letter “A”, which is represented by (10000011) in binary, will result in
the following: [14]

(00100111 11101000 11001000)
(00100110 11001000 11101000)
(11001000 00100111 11101001)

I used a program called FileRay, to compare the binary values of two image files that
were operated on using S-Tools. Image78.gif was used as the cover medium to hide
Image79.gif. The original images are not provided in this document to save the space.
The resultant file was named hidden.gif. Comparison of the original image to the stego

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

data reveals changes in the LSB. Figure 4-3 shows the comparison between the two
image files. The original image is shown in the bottom pane and the stego image is
reflected in the top pane.

Figure 4-3: Comparison of cover image with stego in binary

Jsteg hides information in lossy image files and produces an output file with a Jpge
extension. To accomplish this Jsteg employs algorithms and transformation techniques to
change the Discrete Cosine Transform (DCT) coefficient in digital images. I spent more
time in researching Jsteg and understanding Joint Photographic Expert Group (JPEG)
images than other tools and graphic formats. More on Jsteg and Jpeg is presented in the
Steganalysis section of this paper.

5 Steganalysis

As the techniques to hide information get more complicated and computationally
involved, the detection of such cover medium has become considerably more challenging
as well. However, given time, dedication and technology it is possible to detect the
presence of hidden information in some stego mediums. A few tools have known
signatures that may predict the presence of hidden information. Techniques like
encryption and compression are used to make it difficult to decipher the hidden
information. However, knowing the fact that there is hidden information present in the
cover destroys the purpose of steganography.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Different mechanisms are used to detect the hidden information. In this paper I will
explore a variety of such mechanisms. Some of these techniques are specific to a given
tool, while others are more robust and are concerned with the statistics of medium versus
the tool that were used to hide the information.

For example research work done at George Mason University (GMU) shows that some
well-known tools like S-Tools have known signatures and can be recognized if proper
techniques are used. S-Tools works by reducing the number of colors of the cover image
to 32, but expands them over several color palette entries, if the palette is then sorted by
luminance, blocks of colors appear to be the same, but actually have a one-bit variance.
This type of variance pattern is extremely rare in a natural image [12].

As mentioned earlier, instead of focusing on steganographic algorithm, patterns in normal
images can be understood to determine the abnormalities in images that deviate those
properties. One such method is to understand the first order or the higher-order statistics
of natural images and then discover the alteration caused by the hidden message in these
statistics.

In his work at Dartmouth College Computer Science department, Hany Farid has
developed techniques to determine the presence of embedded messages into digital
images by understanding the higher-order statistics of natural images. To achieve this
goal he used the low-pass and high-pass filters to decompose the images to split the
frequency space into multiple scales and orientation [15].

After decomposing the image he collected a set of statistics to understand the natural
images. He then used programs like Jsteg, EzStego and OutGuess to compress and hide
information into natural images. His results show 97.8% detection rate for a 256x256
image embedded using Jsteg. EzStego, OutGuess- and OutGuess+ provided a detection
rate of 86.6%, 80.4% and 77.7% respectively. A small percent of false positives were
also generated.

In their research work Andreas Westfeld and Andreas Pfitzmann contradict the idea that
the least significant bits of luminance values in digital images are completely random and
could therefore be replaced [1] They developed a java application to experiment visual
attacks on images hidden using tools like EzStego, S-Tools and Steganos. In their paper
Andreas and Andreas explain mechanism used by EzStego to embed the data in digital
images. Later they used this knowledge to develop filters to remove all parts of image
covering hidden message. Results presented in this paper are remarkable.

5.1 Independent Research

I have been working to develop a mechanism to determine hidden information in Jpeg
images. This research is not done yet, but some of the findings are presented in this
paper. To perform this research I first had to understand Jpeg images and the coding
techniques behind them. As the topic of this document is not graphical coding schemes, I

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

will present only a short description of how Jpeg images are coded. This information is
necessary in understanding the information provided in the next section.

JPEG is a lossy image compression method, where during the compression some of the
information that human eyes are not sensitive to is dropped. In contras to lossy
compression method there exists a lossless compression method, which preserves most of
the information present in the original image.

In general computer graphic cards use red, blue and green as the primary colors to
generate the colorspace. These three colors form the axis of a Cartesian coordinate. The
JPEG coding procedure however, divides an image into 8x8 blocks of pixels in the
Luminance, Red Chrominance, and Blue Chrominance (YUV) colorspace. Luminance
axis is one where RGB have equal values. The relation between RGB color space and
YUV color space is depicted in Figure 5-1 [6].

Figure 5-1: RGB Color Axis and Luminance Axis [6]

To translate between the two color spaces the following equations are used.

Y = 0.299 R + 0.587 G + 0.114 B
U = -0.1687 R - 0.3313 G + 0.5 B + 128
V = 0.5R - 0.4187 G - 0.0813 B + 128

The Research has shown that Human Visual System (HSV) is more sensitive to
luminance then chrominance. Therefore, when pixel blocks are run through a two
dimensional discrete cosine transform (DCT) the resulting frequency coefficients are
scaled to remove ¾ of the chrominance information. The DCT coefficients are calculated
using the following relationship [8].

While JPEG is a lossy compression technique, one important thing to recognize is that
the overall process is split into two stages. The lossy stages use a discrete cosine
transform and a quantization step to compress the image data; the lossless stage then uses

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Huffmann coding to further compress the image data. To reduce the noise and corruption
risk steganography data is data is inserted between these two stages.

Prior to any encoding the DCT coefficients are unfolded into a one-dimension array using
the zigzag pattern as shown in Figure 5-2 [8]. The low frequencies are ordered first in the
one-dimensional array following the high frequencies most of which are set to zero to
improve compression.

Figure 5-2: Zigzag Pattern [8[

Once the steganography data is loaded into the JPEG image, the lowest-order bits of all
non-zero frequency coefficients are replaced with successive bits from the steganographic
source file, and these modified coefficients are sent to the Huffmann coder [7].
JPEG compression process is depicted in Figure 5-3 [5]

Figure 5-3: Block Diagram of JPEG image compression [5]

I used the Jsteg program to hide information to produce an output files in JPEG format.
After acquiring basic understanding about JPEG images, I used a proprietary program to
fetch the DCT coefficients out of the stego image file. As mentioned earlier these
coefficient values are the ones modified to hide information within JPEG images. This
process provided me with an Nx1 matrix of DCT coefficients. I collected a 64x64 sample
(4096 coefficients) of this matrix to perform some preliminary research.

Next I used the Matlab program, by mathworks, to order the Nx1 matrix (4096
coefficients) into an array of 64x64. Again using the Matlab program I converted these
coefficients in a zigzag pattern as mentioned earlier in this document. The luminance and
chrominance coefficients were distinguished via the following encoding scheme
considering that luminance was sampled at full resolution.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

According to this scheme, typically, but not always the horizontal and vertical sample
factors for Luminance are 2 and horizontal and vertical sample factors for both of the
chrominance components is 1[6].

Next step involved comparing the neighboring low order frequencies to determine a
relationship among them. I have yet to write code to compare such frequencies, but
performing some work using calculator showed a close relationship among neighboring
frequencies. This could be an indication of data hidden within a JPEG image, as the
natural JPEG images do not necessarily have low-order frequency values that bare a close
relationship with their neighbors. This is a work in progress and updates and results will
be posted on the Internet later on this year.

6 Conclusion

Steganography has a rich history backing its strength and robustness. However, the
advancements in computer technology have impacted steganography as equally, if not
less, as many aspects of our daily life. While having different purposes than
cryptography, steganography is complemented by cryptography in most current software
tools.

The tools available to perform steganography are getting very sophisticated and user
friendly yet providing strong means to hide the data. Increasing knowledge in digital
signal processing and image format compliments the knowledge of algorithms and
techniques used by steganography tools in detecting hidden information.

Software tools, such as Stegdetect, are easy to use tools in performing steganalysis, but
are known to generate many false positive [9]. Many institutes and individuals are
working towards improving steganography and steganalysis techniques and one if fair in
saying that sky is the limit for Steganography.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

References

1. Andreas Westfeld, Andreas Pfitzmann: Attacks on Steganographic Systems.
Information Hiding, 3rd International Workshop, Proceedings, Dresden
September/October 1999, LNCS 1768, Springer Verlag, Berlin 2000, 61-76

2. Twin Peaks: The Histogram Attack to Fixed Depth Image Watermarks.

Information Hiding, 2nd International Workshop, IH’98 Portland, Oregon, USA,
April 1998, pp 291-305

Internet Sources

3. The Steganographic File System:
 http://www-users.rwth-aachen.de/peter.schneider-kamp/sources/sfs/

4. The Pixel Calculator website:
http://www.cs.washington.edu/research/metip/software/pixel.html

5. Welcome to JPEG Tutorial: http://www.ece.purdue.edu/~ace/jpeg-
tut/jpegtut1.html

6. JPEG Compression page by Elmo: http://web.usxchange.net/elmo/jpeg.htm
7. Steganography archive:

http://www.theargon.com/archives/steganography/DOS/jsteg%2Etxt
8. Jpeg basics at http://www.rasip.fer.hr/research/compress/algorithms/adv/jpeg/
9. Niels Provos, Peter Honeyman: Detecting steganography content on the internet

http://www.citi.umich.edu/techreports/reports/citi-tr-01-11.pdf
10. Duncan Sellars: An Introduction to Steganography

http://www.cs.uct.ac.za/courses/CS400W/NIS/papers99/dsellars/stego.html
11. Neil F. Johnson: In Search of the Right Image: Recognition and Tracking of

Images in Image Databases, Collections, and the Internet
http://www.jjtc.com/pub/csis_tr_99_05_nfj/

12. Neil F. Johnson and Sushil Jajodia: Steganalysis of Images Created Using Current
Steganography Software

13. http://www.jjtc.com/ihws98/jjgmu.html
14. Neil F. Johnson, Sushil Jajodia: Exploring Steganography: Seeing the Unseen

http://www.jjtc.com/pub/r2026.pdf
15. Hany Farid: Detecting Steganography Messages in Digital Images

http://www.cs.dartmouth.edu/~farid/publications/tr01.pdf
16. Lecture Notes: Neil F. Johnson: Presented in INFS 762 at GMU
17. W. Bender, D. Gruhl, N. Morimoto, A.Lu: Techniques for Data Hiding

http://www.research.ibm.com/journal/sj/mit/sectiona/bender.html

