
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Microsoft SQL Server 2000 Security Overview
Joe Partlow
July 10, 2002
GSEC option 1, version 1.4

Abstract

 In today’s increasingly networked world, information storage and retrieval
is absolutely vital to the continued success of the Internet. Databases are relied
upon more everyday, but with that reliance comes potential disaster by way of
customer credit or personal information being stolen, corporate trade secrets
being compromised, lost business revenue, or even human lives being
endangered by medical records being altered. All of these worst-case scenarios
are possible if the information in your database is altered, made unavailable or
deleted by accidental or purposeful means. Business demands 100% data
integrity at all times, so properly securing your most valued software asset is a
must. Microsoft’s SQL Server 2000 is many companies’ means of information
storage and retrieval and provides many different ways to minimize this risk, but
only if it has been securely configured and maintained.

 With the default installation of any software package, there are potential
security risks and vulnerabilities. SQL Server 2000 is no exception, but I will
demonstrate how to minimize your exposure and maintain a secure database
server with relative ease. This paper will give a brief overview of SQL Server
2000, how to securely install it, how to securely connect to it, and outline some
current vulnerabilities and ways to help protect against them. Basic knowledge
of SQL Server 2000 is needed to fully understand the severity of these issues.
At the end of the presentation you should be equipped with the basic knowledge
of how to protect and securely maintain your own SQL Server 2000.

SQL 2000 Introduction

 SQL Server 2000 is Microsoft’s flagship relational database management
system (RDBMS) with thousands of installations worldwide. With it’s ease of
use, enterprise-level speed, scalability and relatively low Total Cost of Ownership
(TCO) over other RDBMS such as Oracle, SQL Server 2000 is gaining popularity
and market share quicker than ever and provides many new features and
improvements over it’s predecessor, SQL Server 7.0 2. Some of the major new
improvements over 7.0 include XML support, new data mining features included
in Analysis Services, automatic support of data and network traffic encryption
and meeting the NSA’s C2 security classification. Read more about this
important classification here 9:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

http://www.radium.ncsc.mil/tpep/epl/entries/TTAP-CSC-EPL-00-001.html

Secure Installation

 Before installing SQL Server 2000, make sure your Windows 2000 or NT
server is secured. Installing SQL Server on an unsecured Windows Server is
just as damaging or worse than not securing SQL Server itself. Securing the
Windows 2000 and NT operating system is beyond the scope of this paper, but
an excellent starting point is Microsoft’s Technet security home 3:

http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/prodt
ech/windows/windows2000/staysecure/

Another good starting point is the SANS Securing Windows 2000: Step by step
guide available at:

http://store.sans.org/store_category.php?category=consguides

The first step to securely install SQL Server 2000 is to make sure all SQL
Server system files, data files and logging are installed on a NTFS partition. This
allows access control lists (ACLs) to be applied to all files of the installation to
minimize the chance of unauthorized access.

After choosing the appropriate partition, the next choice is which
authentication method to use when logging into SQL Server: Integrated Windows
Authentication or Mixed Mode Authentication. The default installation choice,
Windows Authentication, uses Windows to authenticate users and establishes a
trusted connection to SQL Server. Logins are tracked via the Windows security
identifiers (SIDs) for trusted connections or SQL Server generated GUIDs for
non-trusted connections. In Mixed Mode Authentication, SQL Server can use
Windows Authentication (if the client and server are both capable of NTLM or
Kerberos authentication) or database access can be granted using a built-in SQL
Server login and password contained in the sysxlogins table in the master
database 10. There are pros and cons to each method and each depends the
specific business needs, but Windows Authentication is generally the safer
method because ‘sa’ passwords can potentially be stored plaintext in the SQL
installation files or in the system tables with weak encryption 10. If Mixed Mode
Authentication is used, be sure to set a strong password for the ‘sa’ account. If
Windows Authentication is used, make sure that the Windows user account is
limited to minimal access on the server. However, if the Windows account
becomes compromised, other Windows services running on the server may also
be compromised instead of just the SQL user’s account access.

 After choosing the authentication mode, the four SQL Server services
(MSSQLServer, SQLServerAgent, Microsoft Search Service and
MSSQLServerOLAPService) must be configured to use one of the following

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

types of Windows accounts: Local User, Local System or Domain User Account.
The safest of these accounts is a Local User Account with logging enabled
because the account can be setup to only access to what is specifically required
by SQL Server and audited for non-SQL access much easier. Local System
Accounts are not recommended 4 because they can give administrative access
to the server if SQL Server is compromised and Domain User Accounts are not
recommended because if the account get compromised, other resources on the
network accessible by that domain account could be compromised as well. It is
actually better to not have the SQL Server in a domain if accessed by external
remote clients or web servers.

After the type of user is chosen, it is imperative that some level of auditing
be enabled for the SQL Server user accounts. Auditing can be configured to
write all successful or unsuccessful logins to the Windows event log or by using
the SQL Profiler to capture all actions performed on SQL Server. SQL Profiler is
a powerful new auditing tool that can capture almost all end user activity
including SQL commands, server shutdown or restart and most other SQL
Server events. The Profiler can capture the information to display real-time and
write to a text file or database table for later analysis.

 After the SQL installation has been finished, there are some other built-in
functions of SQL Server that should be disabled or restricted. The main areas to
concentrate on are the removal or restricting of access to some potentially
damaging extended stored procedures and setting the appropriate user roles on
the server. Many built-in extended or OLE automation stored procedures have
had buffer overflows reported in the past and some have powerful maintenance
functions that are usually not required in a production environment. According to
SQLSecurity.com, some of the most powerful stored procedures that should be
locked down or removed are 1:

Sp_OACreate
Sp_OADestroy
Sp_OAGetErrorInfo
Sp_OAGetProperty
Sp_OAMethod
Sp_OASetProperty
Sp_OAStop
sp_sdidebug
xp_availablemedia
xp_cmdshell
xp_deletemail
xp_dirtree
xp_dropwebtask
xp_dsninfo
xp_enumdsn
xp_enumerrorlogs
xp_enumgroups
xp_enumqueuedtasks
xp_eventlog

xp_perfend
xp_perfmonitor
xp_perfsample
xp_perfstart
xp_readerrorlog
xp_readmail
Xp_regaddmultistring
Xp_regdeletekey
Xp_regdeletevalue
Xp_regenumvalues
Xp_regremovemultistring
xp_revokelogin
xp_runwebtask
xp_schedulersignal
xp_sendmail
xp_servicecontrol
xp_snmp_getstate
xp_snmp_raisetrap
xp_sprintf

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

xp_findnextmsg
xp_fixeddrives
xp_getfiledetails
xp_getnetname
xp_grantlogin
xp_logevent
xp_loginconfig
xp_logininfo
xp_makewebtask
xp_msver

xp_sqlinventory
xp_sqlregister
xp_sqltrace
xp_sscanf
xp_startmail
xp_stopmail
xp_subdirs
xp_unc_to_drive
xp_dirtree

Setting the user roles and database access is often overlooked when
installing SQL Server. A bad habit many sites get into is always using the ‘sa’
account to remotely connect to the database rather than going through the
trouble of setting up users in the correct security roles. Roles are used in SQL
Server similar to the way Windows uses groups and can be server-wide (fixed
server roles) or defined at the database level (fixed database or user-defined
roles). Roles can be nested within another and a user can belong to more than
one role at a time. The SQL Server 2000 fixed server roles are defined below 10:

• Public – The public role is required for each database and contains all default
permissions and users for each database. It functions similar to the “Everyone”
group in Windows.

• Sysadmin – All members are able to perform any SQL Server activity. The local
administrators of the Windows server are included automatically in this role.

• ServerAdmin – This role is able to configure server-wide options and may shut
down the server.

• SetupAdmin – Members of this role may manage linked servers and startup
procedures.

• SecurityAdmin – Any member of this role can manage server-wide security
settings, linked servers, reset passwords and create databases.

• ProcessAdmin – ProcessAdmins can terminate any process running on the
SQL Server.

• DbCreator – This role may create, alter, drop and restore all databases.
• DiskAdmin - This role is permitted to manage all disk files.
• BulkAdmin – BulkAdmins are able to run the BULK INSERT command without

being members of the sysadmin role.

The default SQL Server fixed database roles are:

• db_owner – Performs all database maintenance and configurations.
• db_accessadmin – Able to add or remove access for Windows users and

groups or SQL users.
• db_datareader – Can read all user data tables.
• db_datawriter – Can add, delete or change all data in user tables.
• db_ddladmin – Able to run any data definition language (DDL) command.
• db_securityadmin – Manages roles and permissions.
• db_backupoperator – Able to backup the database.
• db_denydatareader – Explicitly denied read access to the database.
• db_denydatawriter – Explicitly denied write access to the database.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Before deploying SQL Server, the server’s registry should also be
protected. This can be accomplished by removing the permissions for the
‘everyone’ group and adding permissions for the ‘administrators’ group on the
following keys:

• HKEY_LOCAL_MACHINE \SOFTWARE \Microsoft \MSSQLServer (or instance name)
• HKEY_LOCAL_MACHINE \SOFTWARE \Microsoft \Microsoft SQL Server\InstanceName

Some other functions that should be disabled, if not being used, are the
SQL Mail functionality to avoid SMTP vulnerabilities and the SQLXML
functionality to avoid current buffer overflows. As with any software application,
disable any unnecessary services or options to avoid future problems. Just
because something isn’t known as vulnerable today, doesn’t mean someone isn’t
keeping the exploit for private use or working on the next one!

Secure Use and Connections

 Making secure connections to the SQL Server database is just as
important as securing the SQL Server itself. There are many things to look for
when securing applications that connect to a back-end SQL database, but some
of the key areas are securing remote clients or web servers, validating user input,
not using plaintext passwords in database connection strings and connecting on
a port other than 1433. I will go into more detail on these topics below.

One of the most important reasons to validate user input residing on web
pages is to avoid SQL code injection into the form fields. According to an
Information Security magazine definition “SQL injection is the process of
extending normal user input to include database queries 11.” SQL commands
can be injected into input fields by appending or inserting a single quote and a
semicolon(‘;) in the input field followed by the SQL command you wish to run and
two dashes (--) to terminate the existing query without generating an error. For
example, in a logon field type the following:

Login: ‘; drop table users --

This command could cause the users table to be deleted if the SQL Server is not
properly protected against these types of attacks. Another example of injection
could be carried out by simple trial and error to find out the database structure
and entering in a new user by typing in the following:

Login: ‘; insert into users (‘new_username’,’new_password’) --

Additional papers available by NGSSoftware go into much more detail about SQL
injection 6.

When connecting to SQL from Microsoft’s Internet Information Server (IIS) or
any other web server, it is imperative that the web pages be secured in order to

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

avoid accidentally disclosing embedded usernames or passwords. Securing the
web pages against source disclosure can be done by setting the appropriate
NTFS permissions on the files and turning of the debugging messages returned
by the server in case of an error. In IIS, debug messages can be turned off by
going to the Internet Services Manager, properties, home directory, configuration,
App debugging, then checking the box “send text error message to client” or they
can be turned off under the “Custom Errors” tab and setting a custom web page
or URL. Most types of dynamic web pages also use connection strings to access
the back-end databases. Unfortunately, most times these connection strings
have the username and password to the database written in plain text inside of
them. In order to avoid using a hard-coded SQL username and password in
connection strings, it is recommended to use windows authentication instead of
mixed mode authentication for database connectivity. The connection string
would be coded:

"Data Source=USER_DSN;Integrated Security=SSPI;Initial Catalog=USER_DB"

instead of this:

CnString = "DSN=USER_DSN;UID=SQL_USER;PWD=USER_PASSWORD”
Application("strConnect")= CnString

SQL Server 2000, by default, will listen on port 1433 for client
connections. It is recommended to change this port to something other than
1433 to prevent automated attacks from scripts or worms that are hard-coded to
look for this port. While changing the port number will not stop someone from
easily finding out the real port by using a tool such as SQLPing2 (available from
http://www.sqlsecurity.com), it will help shield against automated attacks that
look for this default port. The SQL Server should also be installed in a dedicated
DMZ environment with all traffic to and from the server encrypted with the IPSec
or SSL encryption protocol. Port 1433 and 1434 should also be filtered or ACLs
applied at all border gateways in the DMZ to avoid unauthorized access 3.

Current Vulnerabilities and Exploits

A SQL Server 2000 installation may be open to many damaging
vulnerabilities including buffer overflows, password cracking or denial of services.
It is very important to scan your network frequently to find unknown or rogue SQL
Servers so you aren’t caught by surprise with a compromised SQL Server you
never knew existed. Many proprietary software packages such as voice mail
systems, shipping and manifesting systems and inventory systems use SQL
Server as their back-end database, which can be installed on the machine
without the user ever knowing it. SQL Servers can easily be identified on the
network and enumerated by using a tool such as SQLPing2 or commercial
offerings by Application Security Inc (http://www.appsecinc.com) and
NGSSoftware (http://www.nextgenss.com). For example, SQLPing2 will scan an
IP address range over UDP 1434 and return the SQL Server name, instance

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

name, cluster status, version and any network library support details and even
brute-force password check 1. After this information is gathered, attacks can be
carried out against the SQL Server or it’s vulnerabilities by using the built-in
Query Analyzer (or isql/osql) to access the database, packet sniffers to grab
unencrypted passwords on the network or other brute-force password crackers
like sqldict by Arne Vidstrom, or sqlbf and sqlpoke by xaphan 4. Some other
specific exploits that can be used against SQL Server include:

• Installation log files left on the system with plaintext or poorly encrypted
passwords. If the appropriate ACLs for these files have not been applied,
the passwords can be retrieved by any user on the system.

• An unchecked buffer in SQLXML, if enabled, could allow an attacker to
run code of their choice on the Microsoft IIS Server. It could also allow
scripts to run at a higher privilege on the client’s computer 7.

• SQL worm ‘Spida’ attacking SQL Servers with blank ‘sa’ passwords by
enabling the guest account and adding it to the local or domain
administrators group and compromising the SAM and other SQL Server
settings.

• Buffer overflows in many extended stored procedures and remote data
source queries that can allow code to run in the security context of the
SQL Server or cause the SQL Server service to fail 7.

• Web server source disclosure or SQL injection techniques explained
above that can reveal account passwords or data structures because of
poorly designed web pages.

• If the SQL Server Agent service is running as the ‘localsystem’ user, Dave
Litchfield of NGSSoftware has discovered 12 that key operating system
files can be overwritten by outputting the results of a job scheduled by a
member of the public role, into an existing file. This potentially allows
arbitrary code to be executed or the file to become corrupt.

• One of the most creative exploits against SQL Server is described in the
excellent paper by Chris Anley of NGSSoftware. In his paper, Chris
demonstrates how it is possible to become a sysadmin of SQL Server by
catching C++ exceptions generated by SQL Server and reverse
engineering the code to change the UID to 1 allowing for sysadmin
privileges without detection 6.

If your SQL Server is open to any of the above vulnerabilities, it’s probably
only a matter of time before it is compromised. In order to prevent this, the
following Microsoft patches and updates should be applied 2:

1. http://www.microsoft.com/sql/downloads/2000/sp2.asp (Service Pack 2)
2. http://www.microsoft.com/technet/treeview/default.asp?url=/technet/securit

y/bulletin/MS02-043.asp (Cumulative security updates for SP2)

Patches and updates are a definite, but encrypting SQL traffic between hosts
with IPSec filters or SSL Encryption and enforcing strong account passwords

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

should also be done to protect against password sniffing and brute-force attacks.
If the TCP/IP netlib is the only network library being used, it is also possible to
“hide” the server from enumeration tools such as SQLPing2 by setting the Server
Network Utility ‘Hide Server’ property or changing the following registry key to 1 1:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MSSQLServer\MSSQLServer\SuperSocket
NetLib\Tcp\TcpHideFlag

Physical security is also very important. If the servers are kept in an open
area they could be subject to brute force operating system attacks, forced
shutdown or theft of the server itself. Backup media must also be securely stored
to avoid the databases being copied and re-attached to unauthorized servers!

Security Checklist and Summary

Here is a quick checklist to help securely setup and maintain SQL Server 2000:

• Make sure your Windows 2000 or NT Server installation is secure before
SQL Server 2000 is installed.

• Install data, logs and system files on NTFS partitions with appropriate
ACLs.

• Physically secure the server and all backup media.
• Use Windows Authentication instead of the built-in SQL user accounts

whenever possible.
• Make sure the built-in ‘sa’ and any other SQL accounts have strong

passwords.
• Run the SQL Services under a local Windows 2000 or NT account instead

of the localsystem account.
• Remove or allow only administrative access to extended stored

procedures such as xp_cmdshell and xp_regwrite.
• Remove the ‘guest’ user from all databases (except the required master

and tempdb).
• Limit interactive and ad-hoc query access to the server to avoid easy

escalation of privilege attacks.
• Encrypt traffic between hosts using IPSec or SSL if possible.
• Disable SQL Mail if possible in order to avoid common mail vulnerabilities.
• Block and/or filter port 1433 and 1434 (or alternate SQL ports) at all

possible gateways.
• Secure web servers or other clients to avoid a remote compromise or

source code disclosure.
• Enable logging and auditing of all SQL service and user accounts.
• Download and install all current hotfixes, patches and service packs for

SQL Server as well as the Windows operating system.
• Keep on current vulnerabilities by subscribing to mailing lists by Security

Focus, Microsoft and SANS.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

SQL Server has many security enhancements built-in and available from third
parties to help protect it’s data, and with the addition of regular security auditing
and maintenance it can provide for a solid, secure database platform for any
environment whether it’s on a private intranet or an internet-facing network.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

References

1. SQLSecurity.com
http://sqlsecurity.com/DesktopDefault.aspx

2. Microsoft SQL Server 2000 Home

http://www.microsoft.com/sql/default.asp

3. Product Support Services Informational Alert on SQL Server
http://www.microsoft.com/security/security_bulletins/ms02020_sql.asp

4. Scambray, Joel and McClure, Stuart. Hacking Windows 2000 Exposed

Osborne, 2001
http://hackingexposed.com/win2k/home.html

5. NGSSoftware: Violating database security mechanisms

http://www.nextgenss.com/papers/violating_database_security.pdf

6. NGSSoftware: SQL Injection
http://www.nextgenss.com/papers/advanced_sql_injection.pdf
 http://www.nextgenss.com/papers/more_advanced_sql_injection.pdf

7. Security Focus

http://online.securityfocus.com

8. Using Windows security with IIS and SQL Server 2000
http://www.ntsecurity.net/Articles/Index.cfm?ArticleID=23035

9. SQL Server 2000 C2 Administrator’s and User’s Security Guide

http://www.microsoft.com/technet/treeview/default.asp?url=/technet/prodte
chnol/sql/maintain/security/sqlc2.asp

10. Microsoft Technet Resource Kit – Implementing Security

http://www.microsoft.com/technet/treeview/default.asp?url=/technet/prodte
chnol/sql/reskit/sql2000/part3/c1061.asp

11. Scoudis, Edward. “Cracker Tools and Techniques.” Information Security

Magazine July 2002 (2002)

12. NGSSoftware: Arbitrary File Creation/Overwrite with SQL Agent Jobs
 http://www.nextgenss.com/advisories/mssql-jobs2.txt

