
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GSEC PRACTICAL ASSIGNMENT 1

M I C R O S O F T . N E T F R A M E W O R K S E C U R I T Y

September 2002
Raymond Ng

Abstract: This article takes a look at
Microsoft’s .NET Framework and how
it attempts to improve on security for
the end user, administrator and
developer.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

M I C R O S O F T . N E T F R A M E W O R K S E C U R I T Y
PAGE 1 OF 12

Table of Contents

Table of Contents 1
Scope of this document 2
What is the Microsoft .NET Framework? 2

Common Language Runtime (CLR) 2
Class Libraries................................ 2
Assemblies 3

What does .NET offer in security for end users? 3
The Situation 3
Evidence-based security 4
Code Access Security (CAS) 5
Verification 5

What does .NET offer in security for developers? 6
Security for free 6
Declarative and Imperative Security 7
Strong-Named Assemblies 8
Role-Based Security 9
Cryptography 10
Isolated Storage 10

Summary 10
References 12

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

M I C R O S O F T . N E T F R A M E W O R K S E C U R I T Y
PAGE 2 OF 12

Scope of this document
This document will cover the security aspects of the .NET Framework . This
document will avoid comparisons to other competing products , except where
necessary to aid clarification, and will concentrat e on informing the reader on
the security benefits and issues of the .NET Framework.

This document is targeted for the technical audience – that wish to understand
what .NET security is about and how it achieves it on a technical level.

What is the Microsoft .NET Framework?
According to Microsoft ‘.NET is a set of software techn ologies designed to
connect the world of information, people, systems, and devices ’i and that the
.NET Framework is the ‘programming model that enables developers to build
Web-based applications, smart client applications, and XML Web services
applications which expose their functionality programmatically over a network
using standard protocols such as SOAP and HTTP. ’ii

Before we can delve into the technical a spects of the .NET Fram ework it’s
helpful to understand the three basic components of the Framework. These
are: The Common Language Runt ime, Class Libraries and Assemblies.

Common Language Runtime (CLR)
The CLR is the Virtual Engine that is responsible for executing code. The C LR
must police everything that is run and must also enforce restrictions on any
code that behaves unexpectedly or outside its security boundaries. All code run
within the CLR is known as Managed Code .

The CLR is ‘big brother’ when it comes to security sin ce it implements its own
secure execution model that is independent of the host platform. This means
that it introduces a secure runtime environment to platforms that have never
had it, such as Windows 98.

Class Libraries
The Class Libraries are a collect ion of reusable classes which can be used and
extended by developers when creating .NET applications. These classes are
native to the Framework and implement many important security features, such
as:

• Permissions (FileIO, Environment, etc)
• Authentication
• Cryptography

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

M I C R O S O F T . N E T F R A M E W O R K S E C U R I T Y
PAGE 3 OF 12

Assemblies
An assembly is a program (executable or DLL) that is complied into code that
the CLR understands. The .NET Framework has compilers for most of today’s
major programming languages such as, C++, C#, Java, COBOL, Visual Basic,
etc.

The Framework’s compilers translate the programming language into Microsoft
Intermediate Language (MSIL) , which are the actual assemblies . This gives
developers the freedom to program in their preferred programming language
and still have their code inter-operate with all other assemblies .

What does .NET offer in security for end users?

The Situation
Up to now Microsoft’s approach to security for the home user was simply ‘put
your faith in the company who wrote the software. ’ All too often are users
prompted to install, execute and t rust an ActiveX signed control and many
users do so without even reading the warnings in the prompts.

The alternative was to configure the browser to disable the use of ActiveX
controls altogether. This, however, could limit the experience and functionality
that the user could have.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

M I C R O S O F T . N E T F R A M E W O R K S E C U R I T Y
PAGE 4 OF 12

Evidence-based security
The .NET Framework determines what permissions should be granted before
any code is run. This is known as the code’s evidence . Evidence can be
anything and everything that the system knows about the code. Source of
evidence include iii:

• Cryptography sealed namespaces (strong-named assemblies)
• Software publisher identity (Authenticode)
• Code origin (URL, site, Internet Explorer Zone)

The permissions that any code will be grante d is based on the Security policy.

These permissions can be set by the user or by the administrator. The default
security policy installed with the .NET Framework was designed by Microsoft
intended for the average user.

There are a number of configura ble policy levels for the Security policy iv:

• Enterprise Policy
• Machine Policy
• User Policy
• Application Domain Policy

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

M I C R O S O F T . N E T F R A M E W O R K S E C U R I T Y
PAGE 5 OF 12

The enterprise, machine and user policies are configurable by security policy
administrators. The application domain policy is configurable, programmatically,
by the host. The resulting permissions are an intersection of all evidence that is
available and all policies which apply to it.

After ensuring that the code is granted the minimum permissions specified by
the security policy, the Frame work determines which permissions the assembly
requires in o rder to execute and excludes all permissions that are not required.
For example, if a program does not need any FileIO permissions, these
permissions will not be granted when the assembly is execu ted.

If the assembly requires more permissions than has been granted then it will
fail to run.

Because the code is examined to determine which permissions are required,
any all other permissions are no granted. The .NET Framework has the ability
to prevent code from executing in any unexpected way. An example of this is if
the developer of the code does not specify that the assembly needs the
permission to list the local system’s directory and files, then the .NET
Framework will prevent this action from t aking place.

It is worth noting that the any code executed from the local hard disk which, by
default, is much more trusted than code that is executed from any other remote
locations (Internet/Intranet). So in this scenario the burden is left on the user of
the system to know the difference between code run locally and code run
remotely.

Code Access Security (CAS)
The above section talks about how permissions are granted to any code that is
executed by the CLR. However there may be situations where one as sembly
uses one or more other assemblies to perform tasks. Assemblies which might
be granted more permissions. A hacker may try to write some code that tries to
‘trick’ another assembly in the attempted to bypass security.

Fortunately when such an event o ccurs a stack walk takes place. This process
checks that each assembly in the call -chain has to the appropriate permissions
to perform the function. Note that this does not limit developers since they are
able to override portions of the stack walk operation. This is investigated further
in the section titled ‘declarative and imperative security .’

Verification
Finally, most managed code is verified to ensure type safety as well as the well -
defined behaviour of other properties. This prevents many errors th at occur by
either a developer who has missed a bug or a hacker wishing to exploi t a
weakness in the application. To illustrate how the CLR operates, take a variable
that is allocated a 4 byte of memory space, the CLR will prevent any attempts
to write any value of more than 4 bytes to this space , thus protecting the

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

M I C R O S O F T . N E T F R A M E W O R K S E C U R I T Y
PAGE 6 OF 12

possibility of overwriting the allocated memory space and into another address
outside the bounds of the current program. This is more commonly known as a
causing a buffer overflow error . In addition the CLS used verification to ensure
that a pointer does not access memory that has not been allocated to the
program, therefore ensuring that execution will flow onto to well known
locations.

This is a very powerful feature of the .NET Framework an d means that many of
the common programming errors do not lead to comprised of the system.
Common vulnerabilities such as buffer overruns and the reading of memory of
or bounds are no longer a threat in the safe verified environment of the
framework.

Amazingly, one program can consist of many assemblies, each of which the
CLR will test separately for its evidence, code -access behaviour and will also
be put through the verification process. This locks each individual assembly in
its own environment. Even th ough it could actually be residing in the same CLR
as other assemblies it cannot access other assemblies or behave in any way
not specified by its metadata. (Refer to ‘security for free’ below).

What does .NET offer in security for developers?
The previou s section shows many security advantages of the .NET Framework
and its CLR engine. However it is just as important for developers to have
access to unified, simple, supported and proven security mechanisms, modules
and objects.

Luckily the .NET Framework comes with all of the above and still offers
developers the freedom to use security standards that are not from Microsoft.

This section will go though some of the feat ures given to developers to aim and
encourage them write more secure programs .

Security for free
Just by using the .NET Framework class libraries the developer automatically
inherits some of the security features available. This sounds almost to amazing
to be true, but if the out -of-the-box classes are used for such events like
reading and w riting files and accessing environmental variables the code
generate by these classes are type aware and tell the CLR what permissions
are required for the code to run.

In a section above this article talks about Code Access Security and Evidence -
based security. These both rely on the assembly itself informing the CLR on
what permissions are needed in order for the code to work. When compiling
.NET applications this data is stored with the resulting assembly as metadata.
The metadata contains, amongst othe r things, type data for type -safe
verification and what methods it implements from other classes or interfaces.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

M I C R O S O F T . N E T F R A M E W O R K S E C U R I T Y
PAGE 7 OF 12

The metadata is known as a ‘contract’ since it is an agreement of how the
assembly will access types, classes, interfaces and memory.

The information in the metadata is used to determine if the assembly is type -
safe and how the CLR can expect it to behave. Anyth ing outside the behaviour
of its ‘contract’ causes the CLR to abort the program and alert the user of a
Code Access violation.

Declarative and Imperative Security
Developers are given two methods to modify the run -time security requirements
of their assemblies. These are declarative and imperative .

As the name suggests declarative security enables programmers to specifically
make request for the permissions required. These permission requests become
part of the assembly’s metadata which the CLR uses for evidence and
verification.

Declarative security is useful for static like security requests, when an assembly
requires specific permissio ns. A good example of this is if we needed to write to
a temporary folder, eg. C: \Temp. If this permission is denied then the assembly
can gracefully exit.

Declarative security can also be used to check if other assemblies have strong
names or if they are signed by a specific publisher.

Imperative security is much more polymorphic and should be used where the
security requirements of an assembly change during run -time or are unknown.
This type of security must be implemented directly in code.

With imperative security when a assembly needs to be granted one or more
permissions it uses a method called demand(). This method is used to ask
other modules in the security stack the use permissions that the calling
assembly does not have. For example if a program mer had to interface with a
assembly that was responsible for reading data from a database. The CLR
would not normally allow for this permission. The interface assembly would
receive the request and can either grant or deny based on its own
programmatic ch ecks.

Imperative security is implemented in code and allows for dynamic security
requirements. Unlike declarative security where specific security requirements
are needed, imperative security can catch failed demand requests and handle
them dynamically an d programmatically.

The section title ‘code access security’ talks about a function of the Framework
called the stack walk ; where an assembly could not trick the CLR for more
permissions by interfacing with another assembly with greater permissions.
Imperative security can modify the stack trace, allowing additional permissions
to be granted. Although this is a necessary feature of the Framework it allows a

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

M I C R O S O F T . N E T F R A M E W O R K S E C U R I T Y
PAGE 8 OF 12

easy for a hacker in if this assembly, which demand() is called upon, isn’t
developed with security in mind. Such assemblies must be careful who it grants
permissions to and in .NET this is responsibility is wholly on the developer.

Strong-Named Assemblies
A strong-named assembly is when an assembly is glued to a digital signature,
version number, all d igitally signed with an encrypted checksum (Private Key).
This ensures that if even if one byte of the strongly named assembly (include all
those things that are glued to it) the CLR will detect this instantly and will not
allow any code to be run .

It is not advertised by Microsoft as a anti -tampering security feature but strong -
named assemblies would give traditional viruses a very hard time since it is no
longer as simple as ensuring that the file size or checksum match the original.

Although most prog rams don’t even bother checking the checksum of it self or it
components, since this normally requires additional work from the developer.
The Framework makes it really simple to apply strong names to any assembly
(at least within Visual Studio anyway). Th e .NET Framework SDK comes with a
program to generate private keys for signing assemblies: sn.exe. Once you
have generated the private key there are two attributes that need to be set in
code, these are AssemblyVersion and AssemblyKeyFile. The following
illustrates an example:

<Assembly:System.Reflection.AssemblyVersionAttribute (“1.0.0.1”)>
<Assembly:System.Reflection.AssemblyKeyFileAttribute (“MyKey.snk”)>

Strong Names in the .NET Framework have many uses. From the example
above you will notice that str ong-named assemblies include a version number.
This is useful for applications that use common external DLL’s. When an
assembly references a strong -named assembly the developer can specify
which version of the assembly is expects. If this version is not av ailable when
the program executes it will fail. This allows for multiple copies of the same
DLL, each with a different version number. Shared components can be
managed by the .NET Framework’s Global Assembly Cache (GAC). The GAC
is not covered by this doc ument.

By allowing developers to be picky about the versioning of any external
modules referenced by their assembly they can ensure that their code users
DLL’s they expect. This can ensure that a programs execute is not tampered
with by altering one of it s dependant DLL’s. Also this potentially reduces a lot of
unexpected errors when a program uses a DLL that has not been tested by the
developer.

It is worth noting that strong names themselves do not imply that an assembly
can be trusted (or that it is fr om a trustworthy developer). This is because
anyone is able to create a strong -named assembly and combine it with any
digital certificate. However, a Strong -Named created with the private key from a

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

M I C R O S O F T . N E T F R A M E W O R K S E C U R I T Y
PAGE 9 OF 12

digital certificate from a publicly known, and trusted, p rovider can be used as
proof of an assembly’s origin and ensures that it hasn’t been tampered with.

Role-Based Security
The .NET Framework comes with many inbuilt methods of establishing identity.
The two parts of role-based security are authentication an d authorisation. The
need for authentication and authorisation is increasingly important in today’s
applications. Users are given roles and responsibilities. Depending on these
factors determines what type of permissions and content are granted.

Authentication is the process of examining credentials and establishing an
identity of the principal. Out -of-the-box the .NET Framework provides support
for common authentication protocols , including v:

• Basic
• Digest
• NTLM
• Kerberos
• SSL/TLS certificates

The .NET Frame work also supports many authentication providers, including iv:

• Forms-based (Cookie) Authentication. (Eg. Simple web login page using
a database in the back -end).

• Passport Authentication. This is Microsoft’s centralised authentication
system currently used in Hotmail , MSN Messenger and other online
services.

• Windows Authentication. This allows transparent login and users the
username and password from their current Windows session.

In addition the Framework is capable of impersonation . This is the process in
which a user accesses the resources by using the identity of another user.

Microsoft has given a wide range of choices when it comes to authentication.
For those who have tried to pro gram applications using the Identity and
Principal objects they have t ried to make it as easy as possible without limiting
the developer any functionality as they would with their own custom
authentication modules. In doing so, Microsoft is encouraging developers to
use their Role-Based security model as apposed to that or a third party which
might not offer the same level of support, or worse still a authentication system
written by the developer themselves who has little knowledge on security.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

M I C R O S O F T . N E T F R A M E W O R K S E C U R I T Y
PAGE 10 OF 12

Cryptography
The .NET Framework includes cryptographic functions for encryption , digital
signatures, hashing and random number generation vi. These are all
implemented by well -known and proven algorithms, including vii:

• RSA
• DSA
• Rijndael/AES
• Triple DES, DES
• RC2
• MD5
• SHA1, SHA-256, SHA-384, SHA-512

This helps to ensure that programs will us e these well-proven algorithms and
not risk comprise by using less known or flawed algorithm.

Isolated Storage
Isolated storage is a real powerful feature for programmers. It allows them to be
able to save files to the drive locally without breaking any f ile permissions. This
is achieved by the Framework allocating some space on the disk locally. Where
this space resides is not known by the program at all. The Framework gives no
access to any drive, registry or file information and from the developer’s
prospective it is just an empty area of space that can be used to store files
locally. Each assembly run is allocated its own separate bit of space and
therefore t cannot access any files that another assembly may used to store
information.

Summary
In summary Microsoft’s .NET Framework is an encouraging step forward for
both end users and developers.

End users can feel more secure and safe running programs over the Internet
and this may lead to a new era of rich-based Internet applications. Though it
still remains to be seen how ‘safe’ they feel about such applications. Also
network administrators can roll out all security policies for the Framework from
group policy. This should save many hassles and headaches.

Developers are given granular control on the F ramework’s security modules
and are not limited much by the CLR’s strict control of resource access. There
is a rich variety of out -of-the-box security and cryptography classes and objects
which many programmers should find useful and handy. Role-Based security is
targeted at web and ASP developers and, if used correctly, the principal and
identity objects are a very powerful, yet flexible, way of authenticating and
authorising users.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

M I C R O S O F T . N E T F R A M E W O R K S E C U R I T Y
PAGE 11 OF 12

No other programming platform to date has given developers so much contr ol
and granularity over security. Used correctly imperative security can be a very
powerful way to extend on the Framework’s base security features . Allowing for
assemblies responsible for performing sensitive functions to check the
credentials of the call ing assembly before granting them further access.

With the security feature offered by the .NET Framework, Microsoft is not only
‘talking the talk’ but they are actually ‘walking the walk.’ It is certainly a step
forward and is also encouraging that Micro soft themselves are setting a
benchmark for how software security can be done. Future virtual machines and
the like will, no doubt, follow in the direction that Microsoft is attempting to set.
However, only time can prove how secure the .NET Framework real ly proves
itself to be.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

M I C R O S O F T . N E T F R A M E W O R K S E C U R I T Y
PAGE 12 OF 12

References
GotDotNET. ‘About .NET Security.’
http://www.gotdotnet.com/team/clr/about_security.aspx (Oct 2002)

Watkins, Damien. ‘An Overview of Security in the .NET Framework.’ Microsoft
Press 2002.

Clark, Jason. ‘Code Access Security and Distribution Features in .NET
Enhance Client-Side Apps.’ MDSN Magazine.
http://msdn.microsoft.com/library/default.asp?url=/library/en -
us/dnwebsrv/html/httpsecurity.asp

Microsoft MSDN Whitepaper. ‘Microsoft .NET Fram ework Security Overview.’
http://msdn.microsoft.com/vstudio/techinfo/articles/developerproductivity/frame
worksec.asp (Oct 2002)

Bock, Jason. ‘Protect Your Code Investment.’ .NET Magazine .
http://www.fawcette.com/dotnetmag/2002_10/magazine/columns/security/ (Oct
2002)

Box, Don. ‘Security in .NET.’
http://msdn.microsoft.com/msdnma g/issues/02/09/SecurityinNET/print.asp (Oct
2002)

Foundstone Whitepaper. ‘Security in the Microsoft .NET Framework.’
Foundstone, Inc and CORE Security Technologies (2002).
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/itsolutions/
net/evaluate/fsnetsec.asp

Microsoft Whitepaper. ‘Security with Microsoft .NET: An Overview. ’
http://www.microsoft.com/net/business/security_net.asp

Siddiqui, Mansoor Ahmed. ‘Web Services Security in The .NET Framework.’
http://www.15seconds.com/issue/020312.htm

End Notes
i http://www.microsoft.com/net/basics/
ii http://msdn.microsoft.com/netframework/productinfo/overview.asp
iii List taken from article: ‘Security in the Microsoft .NET Framework ’, page 7.

by Foundstone Inc . http://www.foundstone.c om/
iv List taken from article: ‘An Overview of Security in the .NET Framework’. By Dr Demien

Watkins.
v List taken from article: ‘Security with Microsoft .NET: An Overview ’, page 3.

By Microsoft Corporation. http://www.microsoft.com/
vi http://www.gotdotnet.com/team/clr/about_security.aspx
vii Listen taken from article: ‘Microsoft .NET Framework Security Overview ’, page 8.
 By Microsoft Corpor ation. http://www.microsoft.com/

