
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

The Quest for Root – Hacker Techniques and UNIX Security
Michael A. Scott
September, 2002
GSEC Practical v.1.4b

ABSTRACT

The holy grail to the UNIX hacker is to obtain superuser or root account status. In this
achievement, there is the likelihood of system compromise with complete control over
processes, users and file structure. The ever-increasing implementation of UNIX
servers connected to the Internet will inevitably lead to increased security compromises.
The general techniques used to gain and maintain root access including use of trust
relationships, abuse of setuserid programs, trojan horses and rootkits are discussed.
An analysis of a newly discovered rootkit, Tuxkit, shows clear signatures that can be
used for intrusion detection and we set out general strategies for security hardening
our systems from these types of attack.

INTRODUCTION

A brief history of UNIX and security

The development history of UNIX operating systems (OS’s) is complex due to the
multitude of various versions and their hybridisation. A thorough treatment can be
found in Salus [1]. Regardless of the exact system, all UNIX flavours whether
commercial e.g., HP-UX, AIX, or the popular ‘free’ distributions e.g., Linux, FreeBSD etc
all have roots tracing back to the two monumental efforts in the early 1970’s by
academics at Berkeley and Bell Labs in their development of the BSD and SYSV
systems, respectively.

Back in 1965, Bell Labs worked on the mammoth and ambitious Multiplexed Information
& Computing Service (MULTICS) system which is a modular OS designed to be
continuously operable rather like a utility with inherent strong security features [2].
Largely due to defence related development, the MULTICS security model was
necessarily restrictive having a high level of assurance provided by the Access Isolation
Mechanism. This mechanism enforced classification of information based on multilayers
of confidentiality and in 1985, some 15 years prior to it’s demise, MULTICS was granted
a B2 security rating by the US government [3]. Frustrated by the restrictions of the
project, the Bell Labs developers wanted to create a new flexible operating system that
had a freer security model with multi-user and file sharing capabilities aimed to support
open software development. Hence, UNIX was born.

In contrast to the MULTICS multilayer restrictive security model, UNIX fundamentally
has a ‘binary’ all or nothing approach - the ‘superuser model’. The UNIX filesystem is
the most basic tool for enforcing security and controls the nature of information storage
and access privileges. Administrative tasks are performed by the superuser or root
whilst all other ‘normal’ users have restricted access and should be unable to access

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

critical files and system processes. This conforms well to the principle of least privilege
that users should have minimum privileges for the tasks they need to perform.

In the early days, UNIX was the operating system of choice for the academic, research
and computing industries where there was only a small number of interconnected
machines, for example, in a laboratory environment. Security was not a great concern
and a sense of complacency developed in UNIX circles in these small ‘trusted’ networks.
In contrast, nowadays we are routinely connected to large, complex networks of which
the Internet is a superset and complacency regarding network security is no longer
tolerable. UNIX users had wake-up calls to network security through two very different
but equally famous attacks, the ‘Morris Internet Worm’ (1988) and the ‘Mitnick Attack’
(1994).

In contrast to Windows and Macintosh systems, viruses haven’t had a large presence on
the UNIX circuit. Viruses need both user interaction and ‘host’ programs to activate
them and the well-defined privilege and file structure in UNIX protects the system
against substantial virus propagation and damage.

A more significant threat to UNIX security are self-replicating worms that when released
in the wild automatically propagate full working versions of themselves across local and
networked machines without user interaction. Unlike contemporary and hostile worms
like Code Red, the Internet worm was designed to be relatively benign. The details
and consequences of the Internet worm are well documented elsewhere, however, in
summary it’s successfully replication exploited vulnerabilities in fingerd and in the
DEBUG method of sendmail [4]. In essence it was an experiment by Morris to
measure replication across the Internet. The worm did not actually alter files or cause
direct system damage but a bug in the code increased the intended replication rate and
some 6,000 VAX and SunOS machines were infected across the USA. At this time, that
was a massive scale availability attack on hosts within the fledgling Internet.

The famous Mitnick attack was the antithesis of the Morris worm. Instead of targeting
many systems on the Internet, infamous hacker Kevin Mitnick launched a well-planned
series of attacks against on the systems of Tsutomu Shimomura, an accomplished
security professional [5]. We will outline the details of the attack later in our discussion
of UNIX root account attacks.

More recently, in early 2001, we saw a boom time for UNIX exploits with the discovery of
the Adore, Lion and Ramen worms [6,7,8].

The increased rate of UNIX attacks with time is due to the fact that UNIX systems are
often set-up as servers (e.g., file and webservers) and are connected to the Internet. In
the default install setup, there are normally a myriad of services running that, from a
security standpoint, need to be reviewed carefully. Since the probability of successful
attacks increases with the number of open ports and number of discovered
vulnerabilities, we will continue experience a continued rate of increase in the number of
systems affected.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

The open-source UNIX variants

In recent years, there has been an explosion of interest in ‘open-source’ variants of
UNIX such as Linux and OpenBSD. The philosophy of the open-source software
initiative is the free distribution of application and source code. By free we mean both
liberated and without charges.

At present, we are seeing an exciting and promising rapid adoption of Intel-powered
Linux systems by home users and hard core businesses. Aside from the obvious
financial benefits of open-source UNIX, the impetus is that users benefit from the
flexibility and stability of the OS whilst harnessing the powerful processing of the Intel
architecture. Indeed, HP and Sun are giving a determined market push towards Intel-
based Linux servers aimed at large enterprises who want to migrate from conventional
UNIX mainframes. Early adopters include the large seismic services company
Western Geco and Morgan Stanley [9,10]. Other promising boosts for UNIX are the
continued successful implementation and development of the Apple Inc.’s OSX which is
derived from Berkeley’s BSD UNIX and the release onto the Personal Desktop
Assistant (PDA) market of Sharp’s Zaurus wireless Linux system [11,12].

From a security viewpoint, the advantages of open-source software development are the
opportunity for the community to patch potential security vulnerabilities or to extend the
original capabilities of the software. On the other hand, this introduces a ‘double-
edged sword’ scenario with potential for exploitation of unpatched security holes and
embedding of malicious code into legitimate applications by less benevolent
programmers.

The root user and hacking UNIX

An analogy can be made between implementing network security and a carefully
planned military strategy. It is crucial that we understand the enemy, the threats and
methods used and to learn from the lessons of history. The latter is very important as
the popular open-source distributions have shared ancestry with the older more
established ‘flavours’ of UNIX. As a result, a vulnerability found to affecting one
system may also affect others and many previously tested and solved security issues
have returned to haunt the ‘new’ systems. This ‘old wine in new bottles’ scenario is
likely to present ever-increasing security issues. Indeed, recently, Bruce Schneier has
postulated that the biggest threat to network security into 2003 will be the “ever-
increasing tsunami of old attacks that continue to do the damage” [13].

It is dangerous to have preconceived ideas about the hacker’s skill, background and
intentions but, generally speaking there are two main hacker genres in the Black Hat
community. There is the proficient ‘professional’ hacker who carefully footprints and
targets specific companies or groups of companies and uses a judicious combination of
tools and stealth to execute his/her attack. On the other hand, there is the ‘script kiddie’
who is indiscriminate and trawls the Internet searching for victim servers having specific
vulnerabilities to which he/she can apply exploit code. The more skilled script kiddie is

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

capable of analysing and writing their own source code though the majority use readily
downloadable and pre-packaged exploits to perform attacks, sometimes rather crudely
and ‘noisily’. As security professionals, we can use these attack signatures to detect
exploits in the wild and help avoid further compromises.

Regardless of the hacker genre, the common motivations include some or all of the
following:

(1) Use of the victim’s network bandwidth and/or processor time e.g., download

software and run unauthorised processes
(2) Pilfering and the corruption of data e.g., web page defacement, stealing of

‘corporate jewels’
(3) Storage of illegal files e.g., media files, warez
(4) To gain a platform for attacks on other systems e.g., distributed denial of service

(DoS) attacks

The framework of an idealised hacker attack on server victim is depicted in Figure 1.
Firstly a series of reconnaissance probes is run against the target and potential
vulnerabilities sought. Once a suitably vulnerable system is found the hacker executes
known exploits against the vulnerable service and may gain administrator level access
to the system. Having achieved this, the hacker has complete control of the system.
The choice is then to either keep a low profile and install packet sniffers to monitor
network traffic for interesting events or to launch a full scale information warfare attack.
By information warfare we mean the offensive corruption or exploitation of information
systems in order to gain advantage over ‘the enemy’.

In UNIX systems, to achieve any of the above goals, the ‘Holy Grail’ to the hacker is to
obtain root user status either directly or by a multistep process. By obtaining root,
he/she becomes the superuser with UserID (UID) of 0 and has the highest level of
privileges on the entire system. Such privileges include: unconditional access to
system resources; user account administration; ability to kill and renice
processes; file manipulation and device control [14]. Consequently, it is of utmost
importance that the root account be secured as tightly as possible.

From the attacker’s perspective, obtaining and maintaining root access is tricky,
requiring skill and stealth. Indeed, it is essential throughout the entire attack lifecycle
that their presence on the victim’s server goes unnoticed and that they use suitable
methods to ensure a covert return to the compromised machine.

The aim of this paper is to assess the security issues that surround gaining root
access and also how the attacker can covertly hide and maintain his presence. Finally
in the light of these methods we describe ways that we can help to secure our UNIX
systems from attack.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

METHOD

A test local area network was setup to perform security assessments and consisted of
two PC’s connected to a 10/100Mbps Linksys Workgroup hub (Model EFAH05W).
Although the studies concentrate on the Linux system, the concepts described herein
are relevant to other UNIX based systems. The main system goodguy was running
Red Hat Linux 7.3 and was secured hardened whilst victim was used for security
assessments and was running Red Hat Linux 7.2.
Throughout the testing process, victim was isolated from the wide area network and
some important services were left running from the default install. These included
telnet, finger, ssh and rlogin. In cases where original source code was used,
the GNU C compiler gcc was used to produce binary executable files.

ABUSING ROOT

1. Exploitation of trust relationships

System administrators frequently have to work remotely between servers and for this
purpose, UNIX provides us with a handy set of tools: the r-commands that were
developed in Berkeley’s BSD UNIX and include remote shell (rsh), remote executable
(rexec) and remote login (rlogin). The advantage is that systems can be configured
so that the root user on a remote host running a service at a privileged port (port

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

below 1024) is trusted and can connect at any time without re-authentication. In
practice this is achieved by adding trusted hosts IP or names to the .rhosts file or
/etc/hosts.equiv.

History provides us the best examples of security problems associated with the r-
commands and both the Morris Internet worm and Mitnick’s attack exploited the trust
relationship concept to breach system security. The Internet worm checked for trusted
hosts in the above files on each system it infected and, if possible, tried to use the
rexec and/or rsh commands to infect further machines [4].

The Mitnick attack was a full scale Confidentiality, Integrity and Availability (CIA) attack
on Shimomura’s systems and data. Excellent descriptions of the intrusion are given in
Northcutt and the extract of Shimomura’s original tcpdump posting on
comp.security.misc [15,5]. The attack was founded on the discovery of a trust
relationship between two of Shimomura’s Solaris systems , server and x-server.
A summary of the main sequence of the attack events and is the best example possible
to discuss the exploitation of trust relationships to gain root access.

(i) Reconnaissance
In accordance with Fig. 1, Mitnick performed substantial reconnaissance on the victim’s
systems from the root account on external host toad.com using finger, showmount
and rpcinfo commands. He established that the login port was vulnerable and that
there was a trust relationship between the two systems. Armed with this knowledge,
he knew that if he could pretend to be x-server then he could then login to server
without re-authenticating as explained above.

(ii) IP Spoofing
A DoS attack was used to silence the now trusted host server. Mitnick spoofed the
address of a random, deliberately unused IP address (130.92.6.97) to initiate a SYN
flood attack on port 513 (login) of server. The repeated bombardment of TCP SYN
packets produced a rapid series of half-open connections since the normal TCP three-
way handshake could not be completed [16]. The SYN-ACK replies could not be
acknowledged by the offline system with the spoofed IP and the server connection
queue table was filled using eight TCP packets producing a denial of this service and
effectively gagging server.

(iii) Sequence Number Prediction
Having silenced server, any SYN-ACK packets sent from x-server would still return
to the silenced trusted host IP and Mitnick was ‘flying blind’, i.e., he could not see these
replies. In order to maintain his connection, he had to predict the initial sequence
number (ISN) behaviour of x-server and craft correct ACK packet replies. Cleverly,
to achieve this, Mitnick used another connection from apollo.it.luc.edu to send repeated
SYN’s with incrementing ISN’s to find that there was a predictable difference of
∆=128,000 between each ISN of the of the x-terminal shell SYN-ACK packets.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

(iv) Session hijacking using root
By successfully masquerading as the trusted host he sent a remote shell packet
equating to the command:

server # rsh x-terminal “echo + + >> /.rhosts”

which allows trusted root user permissions to all users and hosts without re-
authentication. He then reset all the half-open connections caused by stage (ii)
by sending RST packets from the spoofed IP address.

Having successfully gained access to the root account, Mitnick stole and transferred
some files to the well.com domain and Shimomura’s subsequent discovery of the attack
helped lend to Mitnick’s arrest [17].

2. Setuserid (SUID) processes and shells

Setuserid (SUID) is an extremely useful and unique feature of the UNIX system that
enables normal users to elevate their privileges and execute commands that they would
not normally be allowed. This transiently relaxes the constraints of the superuser
security model somewhat and adheres to the principle of least privilege. This ensures
that the user should not be logged into the root account simply because they need to
run a couple of commands with privilege.

A SUID process is indicated by ‘s’ at the file permission owner execute bit. When the
process is executed, the effective userid (UID) of the program becomes that of the
owner of the file. The well known passwd command is an example of a SUID
command:

$ l –l /usr/bin/passwd
-r-s--x--x 1 root root 15104 Mar 14 01:44 /usr/bin/passwd

we see that the SUID bit is set and the owner of the process is root. Any user
changing their password transiently runs that process with root privilege. Most SUID
programs are owned by root and we will refer to hereafter as ‘SUID root’. SUID
presents one of the biggest security threats in the UNIX OS and it is very important that
we monitor the files are carefully.

Shells can also be made SUID root and normally shells that are owned by root have
file permissions rwxr-xr-x. However, we can easily make SUID root copies providing
we can access a root account in the first place.
The following example shows how to make a copy of the Bourne Again Shell (bash)
from root on Linux and place it deep within the file structure of the system. The
inconspicuous header filename Xms.h is given to the shell to mask it’s true nature:

cp /bin/bash /usr/X11R6/include/X11/extensions/Xms.h

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Then the file access mode is changed by setting the SUID bit

chmod 4755 /usr/X11R6/include/X11/extensions/Xms.h

Hence we have an innocent looking SUID root shell that can be run by the normal
user and used for returning attacks. Hackers often hide files deep within ‘busy’
directories including /dev in the hope that the security or system administrator misses
the rogue file amongst the legitimate system files.

The same technique can be applied to root-owned files. We can also make SUID
root copy of the vi editor called mal-editor using the same methods above. This
file runs as root and allows to reading of root privileged files for reading. For example,
the following command run as normal user lab

[lab@goodguy /]$ /tmp/mal-editor /etc/shadow
"/etc/shadow" [readonly]…
root : $1$73EnHydfsdLitE…:11841

allows one to view the encrypted shadow password file that would have been previously
‘permission denied’ to the normal user.

Clearly whether a program or a shell, the ability to make SUID root copies is attractive
to hackers as it provides a mechanism for gaining future root privileges from a normal
user shell without resorting to drastic measures like adding extra user accounts to
/etc/passwd.

Since creating SUID root executables requires root access in the first place, the hacker
could use a variety of diverse methods to get root. Examples of tried and tested
techniques include taking advantage of a careless system administrator who leaves an
open root shell while taking a break, using social engineering to coax account
passwords or by using exploits across a network to spawn a root shell.

In common with other UNIX systems, the version of Linux used in the present study
allows only those system binaries that are listed in the file /etc/shells to run as
shells. Nevertheless, the new shell created in the above steps can be used to run scripts
as root and potentially cause grave damage to the system.

3. Trojan horses, backdoors and rootkits

Since the earliest days of system hacking, attackers have tried to develop methods
termed backdoors that allow them access back into previously compromised systems.
The impetus is that having already done the hard work in exploiting a security hole to
get root, the attacker needs a easy method of getting back into a machine even if the

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

sysadmin changes account passwords. Ideally the backdoor should be a quick and
covert method that avoids being logged. Enter trojan horses and rootkits.

The methods described in section 2 to maintain root access are rather unsubtle,
though commonly used by inexperienced hackers and those that are already inside the
network. It would take an inexperienced or unwary system administrator not to notice
the presence of the new files on the system. A much more elaborate and cunning
method of maintaining access and fooling the sysadmin is to use trojan horses.

A trojan horse is a class of malware that on the outside appears to be a normal valid
application but when executed does something completely different to the original
intention whilst appearing normal to the user. Many different trojans exist, perhaps the
most famous being the client-server remote control trojans SubSeven and NetBus
affecting Windows [18,19]. In these trojan programs, system security is circumvented in
the background and the victim has been previously infected by the server version of the
trojan code allowing remote network connections form the client and remote control of
his system.

In UNIX the biggest trojan threat are those that replace legitimate system binary files but
covertly sabotage system security and are termed ‘trojaned binaries’. Trojaned binaries
are most commonly packaged within a rootkit which is a suite of tools used by the
hacker once he gains root access to ensure future system entry with minimal logging
[20]. Typically, rootkits come as tarballed source code that the hacker would download
in the background using the freely available GNU wget - a persistent web browser.
These files would then be compiled locally as root using the GNU compiler.

During the course of this research study, the author discovered a relatively new Linux
rootkit has been observed globally in the wild by perplexed sysadmins. The rootkit
called ‘Tuxkit’ has not been substantially investigated and was released by the Tuxtendo
group in the Netherlands in December 2001 [21]. In this following analysis we look at
the characteristics of this rootkit and in order to help aid intrusion detection and removal.

3.1 Analysis of the Tuxkit Linux rootkit

A simulated rootkit attack was replicated on my victim server. Firstly the tarballed
version 1.0 rootkit, tuxkit-1.0.tgz, was downloaded from the Internet and
unpacked. It was clear from the README file that this rootkit was designed for the fast
and easy kill and aimed at less proficient hackers. The unpacked tarball yields further
zipped files tools.tgz, bin.tgz, cfg.tgz, lib.tgz, ssh.tgz which contain a series of
precompiled binaries and not source code.

The total tarball filesize is 2.6MB of which 60% of which is taken up by utilities. These
include dos/virii.c a denial of service script which performs a DoS attack on
address <IP> within a time delay of <x> seconds. Additionally, to facilitate password and
network traffic monitoring ADMsniff, a packet sniffing program is included which puts
the specified ethernet device into promiscuous mode to monitor ethernet traffic.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

The packet sniffer was executed and ifconfig shows correctly that the PROMISC
flag is set and packet capture is possible.

It appears the main purpose of the rootkit is to facilitate access from multiple hosts on
the Internet to the victim system. This is evidenced by the array of Internet Relay Chat
(IRC) tools found in this rootkit (BitchX, Mirkforce and psyBNC) for remote connection
and to potentially to launch attacks on other systems from the victim server. BitchX is a
heavily modified IRC client, Mirkforce creates IRC virtual hosts from a server using
unused IP addresses in the subnet whilst the psyBNC bouncer program allows a
persistent IRC connection using a vanity host [22,23,24]. In addition, a precompiled
program called suidsh produces a SUID root shell so that the hacker does not need to
create on their own by methods outlined in section 2.

Prior to executing the rootkit, the trojan binaries were unpacked and the file attributes
(filesize and datestamps) were compared with the real binaries as shown in Table 1 of
Appendix A. In general, we can see that the trojans are smaller and have different
timestamps than the real binaries as one would expect. Message digest (md5)
checksums were then recorded of the critical binaries on my system using md5sum
command and are shown in Table 2 of Appendix A.

The Tuxkit rootkit was then executed as follows:

./tuxkit <passwd> <port1> <port2>

where the user-defined values were passwd = ‘hack3r’, port1 = 6789, and port2 = 6969
and the resultant screendump show in Fig. 2.

The slogan “We hope to please you kiddies!” confirms the intended audience for the
rootkit. After creating the /dev/tux directory and trojanising critical system binaries
including crontab, ifconfig, netstat, ps, syslogd and sshd, psyBNC is set
to automatically listen on port 6969. The syslog daemon is killed which masks the
presence of Tuxkit from the log files. We should note that unlike the t0rnkit, this rootkit
runs under user-defined ports not defaults and is more tricky to predict [25].

The author checked the root mail account as routine and noted there were repeated
attempts to mail two recipients with the IP address of the victim server, backdoor SSH
login password and listening ports.

The installation of the trojaned secure shell ssh daemon is used as a backdoor. By
executing ssh at port1 and providing the backdoor password root access , a root
shell can be obtained. The main goal of the trojaning is to mask the existence of the
rootkit and the backdoor ssh in netstat, file system commands and logs. The startup
scripts are modified to ensure that the ssh backdoor is run on boot.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Analysing the /lib directory shows that system process monitoring is subverted through
trojaning of the libproc.so.2.0.7 library file. This file is a symbolic link to
libproc.so file and is part of the procps RPM that monitors important system
processes. These include ps, free, vmstats, skill and uptime [26]. We test the
trojaning by running ps command:

PID TTY TIME CMD
17984 pts/2 00:00:00 su
17988 pts/2 00:00:00 bash
18022 pts/2 00:00:00 ps

and we have a clearly very sanitised picture of the reality.
However, running ps with –ef options produces a more detailed listing

UID PID PPID C STIME TTY TIME CMD

root 783 1 0 Aug24 ? 00:00:02 /usr/sbin/sshd
:
root 847 1 0 Aug24 ? 00:00:00 crond
xfs 899 1 0 Aug24 ? 00:00:00 xfs -droppriv -
lab 2157 2155 0 Aug24 ? 00:00:00 nautilus --sm-
root 13590 13586 0 Aug30 pts/1 00:00:01 bash
:
:
root 13717 13590 0 Aug30 pts/1 00:00:00 ./ADMsniff eth0

and we clearly see the presence of the ADMsniff packet sniffer and the trojaned ssh
running.

Probing active network connections using netstat –an shows nothing out of the
ordinary and has been trojaned well. Instead list open files, lsof, was run with pattern
matching for listening ports, lsof | grep LISTEN

xsf 274 root 3u IPv4 565 TCP
*:6789 (LISTEN)
portmap 586 root 4u IPv4 896 TCP
*:sunrpc (LISTEN)
:
:
xinetd 816 root 8u IPv4 1173 TCP
*:telnet (LISTEN)
X 957 root 1u IPv4 1326 TCP
*:x11 (LISTEN)
psybnc 1678 root 3u IPv4 7577 TCP
*:6969 (LISTEN)

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

xsf 16549 root 3u IPv4 508237 TCP
*:6688 (LISTEN)

The listing clearly shows that psybnc and the rogue ssh are in listening states for
connections and that the rootkit authors did not trojan the important tool lsof. Editing
the crontab file show that psybncchk is set to run every minute, daily. The
trojaned ifconfig shows

eth0 Link encap:Ethernet HWaddr 00:50:8B:92:44:00
inet addr:192.168.0.51 Bcast:192.168.0.255 Mask:255.255.255.0
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

and the promiscuous mode of the ethernet interface is hidden despite the fact we know
it is active after running the packet sniffer ADMsniff.

Running ls hides the presence of the rootkit and associated files very effectively. It
was noted that the rootkit removes the original tarball and that the main signature of the
Tuxit is the presence of the /dev/tux directory that is hardcoded into the binaries.

Apart from the active network signatures of the rootkit, the main tool on the side of the
security professional is file integrity analysis. After installation, the file sizes and
time/date stamps of the trojaned binaries are exactly the same as the originals and
could fool sysadmins. This is presumably the function of the extra program, sz, found in
the /bin directory. When executed, sz asks for two filenames and presumably
equates the file sizes possibly by zero-padding the difference, if necessary.. However,
by running md5 checksums on the trojaned files and comparing with the original values
in Appendix A Table 2, we can see that the discrepancies indicate that md5sum has not
been trojaned. This provides us with a crucial way to detect the intrusion.
Finally, a covert connection to victim was initiated from goodguy

[root @ goodguy root]# ssh 192.168.0.51 –l root –p 6789

with the password hack3r entered at the prompt. This gave the root prompt with
complete remote access to victim.

It was observed that chkrootkit v0.36, the popular and useful rootkit checker, does
not specifically detect this rootkit [27]. It recognises known rootkit signature files within
some of the trojaned binaries and tags them as ‘INFECTED’ but not the trojaned ls or
login. Moreover, it wrongly signals possible Loadable Kernel Module (LKM) rootkit
infection. LKM rootkits are outside the scope of this study but more information can be
found in ref. [28]. It is noteworthy that, on their website, the rootkit authors state the
intention to release the next version of Tuxkit as an LKM rootkit .

A schematic summary of the processes run under Tuxkit v1.0 are shown in Figure 3.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Figure 2: Screendump of the Tuxkit rootkit v1.0 running under Linux

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

DISCUSSION

In this paper we have described various methods in which attackers can use to gain and
maintain access to the superuser or root account in UNIX systems. In particular, we
described that by exploiting the weak IP-dependent authentication in the Berkeley r-
commands and trust relationships we can gain root access at anytime without re-
authentication. Exploiting trust in the way that the Internet and Mitnick attacks did is
highly effective, albeit rather unsubtle by today’s standards of security. Even now
though, system administrators need remote access and often the convenience of the r-
commands takes precedence over security. These classic attacks are a stark reminder
to us about the risk of relying on trust relationships and clear text authentication.
Instead, it is far better to use the secure shell (ssh) which uses encrypted network traffic
, thereby improving security. Additional assurance is obtained by making sure that
systems are up-to-date with patches especially critical vulnerabilities and kernel
updates.

Since these early days, the size of networks has exploded and there has been greatly
increased awareness for the need to maintain good network security practice. Any
good security strategy would employ the use of perimeter defences including a filtering
router or firewall to block incoming connections from risky services such as the ‘r-
commands’. A correctly configured firewall would have blocked access to spoofed IP
address packets of the type sent by Mitnick.

To add to our general strategy for UNIX security we should routinely run the vulnerability
probes on our own networks as this is exactly what the hacker does in the initial stages.
Using the indispensable nmap vulnerability and port scanner, even in vanilla (TCP only)
scan mode we can see what services are running and what ports they map to [29].
Moreover, combined with using the Security Administrator's Integrated Network Tool
(SAINT) provide a good baseline for identifying potential vulnerabilities and patching
them [30]. The golden rule is to turn off the services that we don’t need.

We examined the commonly abused SetUserID (SUID) commands and shells. It is
obviously very important to know exactly what SUID root programs exist on a given
machine and therefore be able to demarcate new files. Using the command below will
to check all files with the SUID bit set

find / \(-perm –004000 \) >> suidfiles

and output to the ASCII file suidfiles. Appendix B shows the SUID root files on
the test Linux system, goodguy, used in this study. Once the SUID programs have
been evaluated it is a good idea to store them securely perhaps on a CD-ROM. The
process is useful as it allows you to audit the privileges on a particular system and
remove the SUID bit if the command does not need to run SUID and conform to the
principle of least privilege. Garfinkel and Spafford give a very thorough review of
SUID files as well as SetGroupID files (SGID) compensating for different vendors of

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

UNIX [14]. It is also good security practice to turn off SUID when mounting from foreign
filesystems with the nosuid option e.g.

mount –o nosuid machine:filesystem /dir

File integrity checking of the OS is an absolute must and should be employed before
the server is connected to the network and ideally after installation to ensure accurate
data. This, as we have seen in the analysis of rootkits, provides an essential
mechanism for detecting file changes once an attacker has compromised the system,
particularly where trojaned binaries are used. A secure, remote log of the checksums
should be kept or better still, the use of file integrity programs such as Tripwire to
database the checksums and routinely check system file integrity should be used [31].
Tripwire, if baselined correctly provides an excellent means of auditing file system
change.

To check specifically for rootkits, chkrootkit is a useful tool and is capable of
detecting a variety of rootkits, trojaned binaries and whether the interface is running in
promiscuous mode [27].

The author considers a host-based intrusion detection program to be another essential
for our security arsenal and uses Portsentry v.2.0 for Linux by Psionic software on the
security hardened system, goodguy [32]. This program monitors a specified set of
TCP/UDP ports for portscans and Portsentry is configured to run when the ethernet
interface is up and to e-mail root whenever an attack alert occurs. The remote IP
address is added to TCP wrappers’s /etc/hosts.deny so one must be careful to
ignore internal network scans and also make sure that Domain Name Servers and
trusted IP’s are excluded. Otherwise there will be a denial of service.

The type of rootkit studied provides an convenience with pre-packaged trojans that do
not even require to be compiled. Both Tuxkit and t0rnkit are showing that these
dangerous types of convenience rootkits can cause a great deal of trouble. The
increased number of less security aware individuals will make themselves targets for
script kiddie’s armed with these kits.

A combinational strategy to security is essential and using the tools at our disposal,
knowing our enemies methods and implementing good network security designs will
prevent our root accounts from being sabotaged by the badguys.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

APPENDIX A: File attributes of trojaned and normal binaries in Tuxkit rootkit

Filename Size / bytes

(normal)
Time & Date
(normal)

Size / bytes
(trojan)

Time & Date
(trojan)

df 26812 August 9 27112 December 26
dmesg 4252 July 31 3640 December 26
login 17740 July 31 3980 December 26
ls 45948 August 9 42952 December 26
vdir 45948 August 9 42952 December 26
netstat 83132 July 31 58228 December 26
ifconfig 51164 July 31 36356 December 26
syslogd 26972 July 31 28324 December 26
crontab 21280 June 25 29052 December 26
dir 26972 August 15 42952 December 26
killall 12096 July 21 14400 December 26
locate
(symlink)

7 August 23 9144 December 26

pstree 12284 July 21 14532 December 26
top 34924 August 28 37844 December 26
updatedb
(symlink)

7 August 23 4394 December 26

find 47516 June 25 55220 December 26
tcpd 24844 June 25 18660 December 26
du 25788 August 9 25592 December 26
ps 63180 August 28 62748 December 26

Table 1 – File attributes of selected critical binary files and the trojan versions
before rootkit installation (all date years are 2001)

Filename md5 checksum (normal) md5 checksum (trojaned)
df f70b403e05ab12b4cec4b0c

4c53228ce
1ed369095b0ecece319c47d66b6b66c1

dmesg e7000edfb73b09b659555e9
902650f7b

c67f34eeab989275618742caf3086dca

login c877f8a0595513ee68d857e
6e9754a3f

f2cc26e4c0ca7083c35780d8015a2961

ls 69ee580c4bd6afa63aed490
76c535f62

83ea81b1b39e593d3387633f25104eae

vdir 65e9e2159a40569d79fd656
d8c8311c9

2d76827d4a4bb465fc7ef18d4147bcc0

netstat f7d2bf3b53ee2c9145afff5
f2edecc45

32bb3d9fd18b50708f01c52a7b28a0e6

ifconfig 415980d501beaa167f33dab
16d80a817

8cb5f402bfda848bcb684a2cd7e68bb8

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

syslogd 3b9a74413eaf20061d85527
0d64e78c4

0df53866813d70acce2cbbbe9d54e2d4

crontab e94bdec4e91efab48a47294
389a1c54d

8715009f40538ff7b734783c834457c8

dir 03d1235a03bc6ce8322bcfe
de328fa92

4e1e0354019075fe10b03c647dbe05a9

killall 952e3ae67b2b77d9073a7c6
6c4219cf1

9265f715e7d0a23c2e93a4f3d6fbc34a

locate 4de85260e08fd5e1f8e27a0
139e591ff

3c656ef9803a7badda439321c4ffa784

pstree a8608f8c824d05df1876a0e
a3164c2f4

4f887e6728e76fcd7c9e1a2f86d37dcb

top d71d83ad4c4af666e5fc49f
270d88403

40f56e0752c1890f186db9c3f7533c6c

updatedb 4de85260e08fd5e1f8e27a0
139e591ff

4ed4fffa4e904e9f3eb5de74ca234f0c

find 31d920f052841d5a2504960
36ea176c4

bb35340fc4bc49683c76f32e85bb325f

tcpd 9b31c04dbd430656f822253
c7565b6c5

6fa1a757b57cb38363553d8b953b2d41

du d295a486e04f96d928a8b15
a9833b3a6

378a08f3f042a91fcf654b08922da003

ps 6d3abf4efc9235e4eb5dc54
0d61d42fa

f4dc73fa2c474acfbdd6273e8a82dfd9

Table 2 – md5 checksums of critical binary files and the trojan versions after
executing the Tuxkit rootkit

APPENDIX B: List of SUID root programs on test Linux system victim

/usr/sbin/ping6 /usr/sbin/traceroute6
/usr/sbin/sendmail.sendmail /usr/sbin/userhelper
/usr/sbin/usernetctl /usr/sbin/userisdnctl
/usr/sbin/traceroute /usr/sbin/suexec
/usr/X11R6/bin/XFree86 /bin/ping
/bin/mount /bin/umount
/bin/su /sbin/pwdb_chkpwd
/sbin/unix_chkpwd /usr/bin/chage
/usr/bin/gpasswd /usr/bin/at
/usr/bin/passwd /usr/bin/chfn
/usr/bin/chsh /usr/bin/newgrp
/usr/bin/crontab /usr/bin/lppasswd
/usr/bin/ssh /usr/bin/rcp
/usr/bin/rlogin /usr/bin/rsh

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

/usr/bin/sudo /usr/lib/mc/bin/cons.saver
/usr/sbin/ping6 /usr/sbin/traceroute6
/usr/sbin/sendmail.sendmail /usr/sbin/userhelper
/usr/sbin/usernetctl /usr/sbin/userisdnctl
/usr/sbin/traceroute /usr/sbin/suexec
/usr/X11R6/bin/XFree86 /bin/ping
/bin/mount /bin/umount
/bin/su /sbin/pwdb_chkpwd
/sbin/unix_chkpwd

REFERENCES:

[1] Salus, Peter H. A Quarter Century of Unix. Addison Wesley, 1994.

[2] Van Vleck, Tom (Editor). "Multics – General Info and FAQ" , 31 Oct 2000
 URL: http://www.multicians.org

[3] National Computer Security Center
 TCSEC Criteria Concepts Trusted Computer System Evaluation Criteria (TCSEC)
 URL: http://www.radium.ncsc.mil/tpep/process/faq-sect4.html#Q18

[4] Page, Bob. “A Report on the Internet Worm” , November 7 1998
 URL: ftp://coast.cs.purdue.edu/pub/doc/morris_worm/worm.paper

[5] Gulker Chris. “Technical Details of the Attack”, September 17 2001
 URL: http://gulker.ra.com/ra/hack/tsattack.html

[6] SANS GIAC Global Incident Analysis Center. “Adore Worm

Version 0.8”, April 12, 2001
URL: http://www.sans.org/y2k/adore.htm

[7] SANS GIAC Global Incident Analysis Center. “Ramen Worm

Version 0.4”, April 12, 2001
URL: http://www.sans.org/y2k/adore.htm

[8] Vision, Max. “Lion Internet Worm Analysis”. 2001
 URL: http://www.whitehats.com/library/worms/lion/

[9] “Businesses turn to open-source system as vendors add offerings”

URL: http://www.informationweek.com/story/IWK20020207S0018

[10] Linux Journal. “Reuters Supports Adoption of Linux in Financial Services Industry”.

May 17 2002
URL: http://pr.linuxjournal.com/print.php?sid=104

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

[11] Apple Computer, Inc. “Mac OSX and the power of UNIX”. 2002

 URL: http://developer.apple.com/unix/

[12] Lehrbaum, Rick. “Sharp's Zaurus SL-5500 Linux PDA”. May 13, 2002
 URL: http://www.linuxdevices.com/articles/AT2134869242.html

[13] Schnieier, Bruce. “Know your Enemy - Threat: The Ever-increasing Danger of Old

Attacks.” Computer Weekly 23 May (2002): 42-44.

[14] Garfinkel, Simson and Spafford, Gene. Practical UNIX & Internet Security. Second

Edition, O’Reilly, 1996.

[15] Northcutt, Stephen. Network Intrusion Detection: An Analyst's Handbook . New

Riders ,1999. 1-16.

[16] Naugle, Matthew G. “The Three-Way Handshake” Illustrated TCP/IP, Wiley
Computer Publishing, John Wiley & Sons, Inc. 1998. Ch. 196

[17] Gulker Chris. “The Kevin Mitnick/Tsutomu Shimomura affair”, September 17 2001

URL: http://gulker.ra.com/ra/hack/index.html

[18] Crapanzo, Jamie. “Deconstructing SubSeven, the Trojan Horse of Choice”
 URL: http://www.sans.org/infosecFAQ/malicious/subseven.htm, January 8, 2001

[19] PCHelp. “NetBus – BO’s Older Cousin.”
 URL: http://www.nwinternet.com/~pchelp/nb/netbus.htm, November 25 1998

[20] Dittrich, Dave.”Root Kits and hiding/files/directories/processes after a break-in”.
 URL: http://staff.washington.edu/dittrich/misc/faqs/rootkits.faq, January 5 2002

[21] Tuxtendo group – source of the Tuxkit rootkit
 URL: http://www.tuxtendo.nl/index.html
 rootkit Tuxkit v1.0 was downloaded for security assessment purposes at
 URL: http://archive.tuxtendo.nl/rootkit/

[22] BitchX IRC client, 2000

URL: http://www.bitchx.com

[23] ”Mirkforce / Hack reporting site”
 URL: http://hackreport.magicnet.org/mirkforce-info.html

[24] Jestrix, “Introduction to psyBNC “, 2002

URL: http://www.netknowledgebase.com/tutorials/psybnc.html

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

[25] Miller, Toby. “Analysis of the t0rnkit rootkit”
URL: http://www.sans.org/y2k/t0rn.htm

[26] Linux From Scratch: Version 3.3, “Installing Procps-2.0.7”
 URL: http://www.tldp.org/LDP/lfs/LFS/chapter06/procps.html

[27] chkrootkit, “Locally checks for signs of a rootkit”
 URL: http://www.chkrootkit.org/

[28] Zovi, Dino Dai. “Kernel Rootkits”, July 4 2001.
 URL: http://rr.sans.org/threats/rootkits.php

[29] “NMAP - Free Stealth Port Scanner For Network Exploration & Security Audits”
 URL: http://www.insecure.org/nmap/

[30] “SAINT scanning engine”
 URL: http://www.wwdsi.com/products/saint_engine.html

[31] Stancin, Alexander. “Installing and Running Tripwire”, October 5 2001
 URL: http://www.vrlteam.org/home.asp?vrl=library&adv=78

[32] Psionic Technologies, PortSentry v2.0
 URL: http://www.psionic.com

