
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Security Scenarios in Analysis and Design
Dwight A. Haworth
GSEC Practical Assignment 1.4b
September 16, 2002

Abstract

This article addresses the issue of designing security into systems rather than
trying to add it to systems after development. It is found by surveying teaching
materials that security is only given brief acknowledgement as a concern in
software development and that security is not well integrated into development
life cycles used in schools.

It is proposed that initial security requirements be addressed at the end of the
requirements analysis phase and that update and refinement of security
requirements continue through the design phase. This would be achieved by
making the security administrator a major stakeholder in each and every system
being developed. This would be implemented through a library of security
scenarios that would be applied to each use case where appropriate. The
management of the scenario library is discussed and the resource requirements
are addressed.

Background

For the past thirty years, it has been understood that security concerns need to
be addressed early in the system life cycle. Schell, Downey and Popek clearly
speak to this issue in 1973 saying “Most contemporary shared computer
systems are not secure because security was not a mandatory requirement of
the initial hardware and software design” (I-1). Nearly thirty years later, Pipkin
observes “It is nearly impossible to effectively add security to a system after it is
designed” (71).

Ghosh devotes several pages to a discussion of failure to consider security
requirements early in development (189-202). His comments carry a clear
implication that such failures continue today. Such an implication leads to the
question "What is being taught to students about security and the design of
software today?"

Current Education

College book representatives of the major publishers were contacted to
ascertain which books were their top selling textbooks in systems analysis and
design. The goal was to form a list of the best selling textbooks and then review
each textbook to determine how security considerations are addressed in each,
if at all.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

The returns from the textbook representatives produced a list of six textbooks:
Systems Analysis and Design by Dennis and Wixom (2000);•
Modern Systems Analysis and Design by Hoffer, George, and Valacich •
(1999);
Systems Analysis and Design by Kendall and Kendall (1999);•
Systems Analysis and Design in a Changing World by Satzinger, Jackson, •
and Burd (2000);
Systems Analysis and Design by Shelly, Cashman, and Rosenblatt (2001); •
and
Systems Analysis and Design Methods by Whitten, Bentley, and Dittman •
(2001).

Each of the textbooks in the list was searched for security, authorization, and
authentication. Brief summaries of the coverage of each are given in the
following paragraphs.

Hoffer, George and Valacich discuss security needs at a general level (578-80).
They mention user views and give an example of authorization rules for
databases; further, they have brief presentations on encryption and
authentication. Significantly, they mention these items as important in
designing user interfaces.

Kendall and Kendall discuss security needs at a general level, as well (847-49).
They do not address security requirements and the relationship of those
requirements to the design phase, preferring to give the impression that a
firewall, encryption, passwords, and system logs are all that is needed to secure
a system.

Dennis and Wixom address security at the architectural design level, but not at
the software design level (263-67). They outline threat and risk analysis and
remedies, among those are firewalls, call-back modem systems, strong
passwords and encryption. They address neither the Internet nor security at the
Web server.

Shelly, Cashman, and Rosenblatt discuss security needs at the system and
architecture level (927-29). They mention intrusion detection and devote a page
to several screens from a commercial third party product. They do not discuss
security requirements and the relationship of those requirements to the software
design phase, only requirements as related to system architecture.

Satzinger, Jackson, and Burd devote seven pages (out of more than 600) to
security issues, including an introductory description of the problem of
managing user access, and they identify these considerations as design phase
issues (400-07). However, their discussion ends there, with no detail about how
to integrate security issues into the overall system analysis and design process.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Whitten, Bentley, and Dittman speak briefly about authorization and
authentication, using a display of a certificate to give the student an idea of a
method for user authentication at the browser level (587-88). However,
considering security requirements in the design of software is not mentioned.

As these textbooks represent current teaching, it is easy to generalize that the
concern with functional requirements overshadows all else and that little is
being done to emphasize the need for security requirements to be addressed.
Indeed, when the space devoted to security is usually only two or three pages in
a book of more than 500 pages, one may conclude that the subject is hardly
being mentioned.

A survey of software engineering books produces a little more. Pressman
discusses a security metric briefly but concedes later that security
considerations are beyond the scope of his book (97, 774). Pfleeger lists
several security requirements of a general nature (143). She also devotes two
lines to security testing but does not specifically address security in the design
of software (402). Sommerville gives a process for identifying security
requirements in a chapter on critical systems (387-88). He separately discusses
denial of service considerations (367). As a result his discussion is fragmented
and becomes an add-on to his overall analysis and design process. It is no
surprise to find students being instructed at the design phase of a term project,
“Security Requirements. You are not required to do a lot on this aspect of the
system, since it may be a major job in its own right” (Brabazon).

Moving out of the mainstream of systems analysis and design literature,
Schneider and Winters refer to login and password failure scenarios (95).
Further, they describe in name an attempting-a-prohibited-function scenario in
the context of a login subsystem (95, 118). They also mention the need to find
exception scenarios, but they do not specifically cite security deviations as being
in the domain of exception scenarios (40). Wilkinson states that the analysis
phase is devoted to uncovering requirements from the application domain (82).
In discussing the design stage, she says "...certain real-world constraints must
be considered and incorporated.... The impacts of these constraints, in such
areas as environment, language, supporting software components, and
performance requirements, are discussed next" (106). She cites security as one
of the constraints and lists login authentication and the need for encrypted
storage as two examples of security concerns (110). Wilkinson specifies that
security considerations enter at the design stage, but leaves the discussion of
security at that (110). Although security constraints are last in the list of
constraints, they are exactly the kinds of constraints, alluded to in the quote
above, that should condition the selection of platform, language, and supporting
software components.

In the end, Wilkinson clearly leads one to the concept of addressing security in
the documented scenarios that are input to the design phase. Exactly how this

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

is to be accomplished is left unstated. The purpose of this paper is to describe
a method that will address security at the design stage. First, a conceptual
model of security scenarios is presented. Second, the application of security
scenarios to the development process is outlined. An example of security
scenarios and their application is presented. Finally, administrative implications
of the model and its application are addressed.

Conceptual Model

The primary reference for establishing security requirements must be the
organizational security policy. Security requirements must take account of the
data being manipulated by the system under design and the organizational
policy relative to that data. This evaluation will determine security requirements
for the system under design, and this evaluation cannot be undertaken until the
data that will used by the system under design has been identified. It follows
that security requirements cannot be addressed until late in the analysis phase
when the data that will be manipulated by the system under design is known.

Not so obvious but of equal consideration is the other data on the platform on
which the system will run. Even though the system under design may not deal
with particularly sensitive information, the system must be implemented in such
a fashion that other data on the server cannot be compromised through clever
manipulation of the system under design. Therefore, the security requirements
for the system under design must be as stringent as those required for the most
sensitive data on the deployment platform. Anything less may place the
sensitive data in jeopardy.

If the system under design deals with particularly sensitive data, the decision of
platform is also important. Care must be taken to insure that the platform on
which the system is placed is secure enough to protect the data of the system
under design. The security of platform is determined by the security of those
applications already resident on that platform. There will be little gain if a very
secure system is placed on a platform on which reside other applications with
little or no security. The decision of platform must be made first in the design
phase to deal with the two-way nature of this decision.

To determine the level of security required, the data that the system will
manipulate and the other data that will reside on the platform must be
evaluated. First, this evaluation must identify the security policy (or policies) that
applies to the data to be manipulated by the system. Requirements for
encrypted storage, encrypted transmission, access restrictions, user
authentication, user authorization, automatic backup, and activity logging must
be integrated into the scenarios that will be input to the design phase. These
are not exception scenarios; rather these are the mainline transaction scenarios
that describe how the system will perform normally, hereinafter referred to as
Catagory I scenarios.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Second, this evaluation must identify the level of protection that must be
maintained with respect to the other data on the platform. Requirements for
intrusion detection, access control, and preventing exploitation of known
vulnerabilities in the platform, language, and supporting software components
emerge at this point. These will be embodied in exception scenarios.

Two categories of exception security scenarios are possible. What happens if
an attempt is made to violate aspects of security policy relative to the data
manipulated by the system under design, and what happens if an attempt is
made to exploit a vulnerability in the platform, language, database management
system (DBMS), or graphical user interface (GUI)?

The first exception category deals with security policy relative to the system
under design. These scenarios deal with the users of the system under design
and their permissions to view and update data. These scenarios also deal with
ensuring that attempts at violations are known and that the system under design
responds appropriately. Examples of this type of scenario are "What happens if
a user attempts to update a field for which he/she has only view permissions?"
and "What happens if an unauthorized person attempts to use the system?"
These scenarios will be referred to as Category II scenarios.

The second category of exception security scenarios is concerned with attempts
to gain access outside the system under design. Examples of this type of
scenario are "What happens if the user embeds a system command in the input
string?" and "What happens if the user attempts a buffer overflow?" These
scenarios, hereinafter referred to as Category III scenarios, are typical of
attempts to compromise the entire platform through vulnerabilities in the
platform, language, or supporting software. These attempts have little or
nothing to do with the logic of the application domain; they are governed by the
platform, language, and supporting software. The system under design would
serve only as a conduit for the intrusion, but nevertheless it must be secured
against such attempts.

Thus, a group of scenarios will be constructed to implement security policy in
the areas of access, authentication, and authorization (Categories I and II) and
to protect against attempts to exploit the identified vulnerabilities of the platform,
language, and GUI to be employed (Category III).

Scenario Application

For the purpose of the present discussion, software development is regarded as
proceeding from an analysis phase to a design phase and then to coding and
testing. To insure that security is "designed in" rather than "added on", security
issues must begin to be addressed at the end of the analysis phase. At this
point, requirements and requirements-oriented scenarios make it possible to
determine the data that will be handled by the system under design.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Category I security scenarios must be added to the documentation package as
soon as sufficient information is available to judge which security policies are
applicable to the system under consideration. Category I security scenarios are
developed by the analysis team in collaboration with the security administrator.
The security administrator must be regarded as a major stakeholder in the
system under development and must be represented on the analysis and design
team. The combination of requirements-oriented scenarios and Category I
security scenarios expresses the normal behavior of the proposed system and
becomes part of the input to the design phase.

Decisions about platform, language, and supporting software are made, if
required, early in the design phase (Wilkinson 106). The combination of
application requirements and security requirements and choices of platform,
language, and supporting software determine the Category II security scenarios
that will be applied. The choices about platform, languages, and supporting
software as well as knowledge about the other data and systems on the
platform become part of the input to development of Category III scenarios.
Finally, the entire documentation package (application domain scenarios,
Category I, II, and III security scenarios, and choices of platform, language, and
supporting software) becomes input to the rest of the design phase.

It must be emphasized that at this phase of the development process not all of
the potential vulnerabilities are known. Design decisions may introduce
additional vulnerabilities; for example, a decision to employ user input to
generate a file retrieval or a database search may expose the system under
development to a new exploit. The vulnerability and the need for one or more
scenarios to test for the vulnerability may not be obvious until a design decision
is made. For that reason, the security administrator must remain a concerned
participant in the design process throughout.

An Example

Consider the situation in which Internet access to a Human Resources
Management System (HRMS) is being implemented. In this situation, there is
an existing HRMS with its associated databases. The functional requirements
for the Internet interface have been defined. It is now appropriate to add security
scenarios to the documentation package that will be input to the design stage.
These will be treated as Wilkinson recommends, "Scenarios should be very
specific..." (56).

Category I

These scenarios describe normal operations of the system. The examples
below are meant to representative of security scenarios. Although the first
example is clearly focused on security issues, the other two examples are

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

simply augmented scenarios of normal application requirements. The
development of such examples, that integrate security considerations into
normal operational requirements, is the reason to include a security
administrator on the design team.

"What happens when John Smith (a valid user) attempts to access the
system?" This scenario will elicit the normal access procedures, including
check of userid and password, and methods to display the opening menu.

"What happens when John Smith (an employee and valid user) attempts to view
his personal data which is encrypted?" This scenario will elicit a check of the
user's access permissions and normal retrieval and display procedures,
including decryption processes.

"What happens when Mary French (a valid user) enters a new address (an
encrypted field) into her record?" This scenario will elicit the normal interaction
of the system components, including a check of the user's permissions to
update the address, any edits on the address, and the encryption needed for the
field or fields to be updated.

"What happens when James Wright (an authorized programmer) adds a new
report program to the user menu for the HR system?" This scenario is typical of
a group of scenarios that must be developed to embody the configuration
management rules for the system.

These examples typify Category I scenarios. Their numbers must be expanded
to account for all possible normal operations of the proposed system. Many of
these scenarios can by created by adding security characteristics and
qualifications to the scenarios that define the functional requirements of the
system. When the configuration management rules are included, these
scenarios may be more numerous than the functional scenarios.

Category II

Category II scenarios deal with attempts to violate policies that govern the
normal operations of the system under development. These exceptions may be
derived from the Category I scenarios, but they will be more numerous because
they must deal with all possible violations of permissions to create, access,
update, and delete data, and also to execute programs. Because of this
dependence on the capabilities of the file management system or the database
management system, these scenarios cannot be developed in full until
decisions about the platform and, if one, database management system have
been made.

"What happens if John Smith (an authorized user) attempts to view the birth
date of Mary French for which he does not have view permission?" This and

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

other similar scenarios must be constructed to account for all of the data that
will have restricted access.

"What happens if Robert Jones (an authorized user) attempts to update his pay
rate for which he does not have update permission?" This and other similar
scenarios must be developed to account for all of the data that will have
restricted update permissions.

Other access exceptions are represented by the following scenarios. "What
happens if David Adams (an authorized user) attempts to add an employee
record when he does not have permission to add records to the database?"
"What happens if David Adams (an authorized user) attempts to delete an
employee record when he does not have permission to delete records from the
database?" "What happens if John Smith (an authorized user) attempts to
execute a program that he does not have permission to execute?"

"What happens if Mike Early (an authorized user who does not have permission
to delete program files) attempts to delete a program from the system?" This
scenario represents the class of scenarios that will identify the response of the
system to violations of configuration management rules.

Depending on the system under consideration, there may be many
combinations of field, record, and file access permissions. To manage such
complexity, a matrix of field, record, and file permissions and permission
combinations may be constructed. This matrix can be used to identify the
different classifications of system users, and scenarios can then be constructed
for each classification of system user. Such a matrix will also allow analysts to
assess the completeness of the defined access controls and may be useful in
developing security controls for some commercial packages.

Category III

Given that an existing HRMS is being extended to provide Internet access,
decisions about the DBMS and the database server are given. Decisions about
the Web server and language for CGI processes have to be made. For the
purposes of this paper, it will be assumed that the server has a Unix operating
system, that the Web server is Apache, and that Standard C is being used for
CGI processes. These scenarios will address specific vulnerabilities of the
platform.

"What happens if the user attempts to embed ';who' in an input field?" This
scenario is an example of many that will be needed to test the vulnerability of cgi
scripts to metacharacters described by CERT Advisory CA-1997-25 Sanitizing
User-Supplied Data in CGI Scripts. Although the particular command included
above is not pernicious, its successful execution would indicate that the script is
vulnerable to exploitation.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

"What happens if the user enters a string of 65536 non-whitespace characters
in a character field?" This scenario must be applied to every character field that
the user is allowed to enter. If the software handles a 64K string correctly, it will
not be vulnerable to the buffer overflow described by Farrow.

“What happens if the user attempts to embed ‘<SCRIPT>’ in an input field?”
This scenario represents a number of scenarios that must be applied to every
input that is used to dynamically form output, and the filter must eliminate all of
the potentially exploitable characters identified by CERT CC Understanding
Malicious Content Mitigation for Web Developers.

These Category I, II, and III scenarios must be applied to all applications in the
system under development. They constitute the security requirements for the
system, and they will become the basis for security testing during development.

Administrative Implications

Security requirements derive both from the data and the processing
environment. After a level of security has been established for a given platform,
based on the requirements of the most sensitive data in that environment, it is
unlikely that data requiring a higher level of protection would be placed in that
environment. To do so would require that all applications running in that
environment be reviewed to determine whether they can support the higher
security. Such an action would amount to more of the after-the-fact security
engineering that Pipkin, Ghosh, and other authors have deplored. Such
considerations suggest that the scenarios themselves may be relatively static
and may be reapplied to new applications.

A computer environment may be compromised by any application that runs in
that computer environment. This means that all applications that run in a given
environment must enforce the same policies, and these policies are dictated by
the highest requirements of the data that is stored and processed in that
environment. It follows that the scenarios that apply to one application must be
applied to all other applications that run in the same environment to assure a
consistent policy and level of security is attained.

The foregoing observations lead to the concept of a scenario library so that each
scenario is cataloged according to its platform, language, DBMS, GUI, or other
vulnerable component. When a system is under development or update, one
may select from the library the applicable scenarios to be applied in design and
testing. Assuming that the chosen platform reflects the protection that must be
afforded the data used by the system, the selection of scenarios would depend
on the platform, language(s), DBMS, user interface, and other components
being used in the application.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Further, because security scenarios are dictated by policy, they do not have to
be developed specifically for each application; they may be drawn from a library
of security scenarios that have been developed to support each security policy
as that policy is promulgated. Such a library will assure consistent
implementation of policy and reduce the likelihood that a specific vulnerability is
overlooked.

Beyond the scenarios themselves, the library could also include names of
subroutines or functions or class methods that implement specific checks or
filters implied by the Category III scenarios. Developing reusable modules that
implement the requirements of scenarios will insure quality and consistency and
will make the implementation of security requirements less burdensome on the
development team. Moreover, the employment of tested reusable modules will
help prevent programmers' oversights that sometimes introduce new
vulnerabilities.

A scenario library that categorizes scenarios based on platform, language,
DBMS, GUI, and other components will also aid in keeping security updated
when new vulnerabilities are announced. One of the duties of the security
administrator would be to keep the scenario library current. Knowledge of the
scenarios and the reusable modules that implement the protections implied by
Category III scenarios will support an efficient review of existing systems when
new vulnerabilities are reported.

If the scenario library were implemented with a cross reference to the systems
where each scenario was applied, quick remediation could also be achieved.
The problem of finding all of the programs affected by a change in a given
scenario would be reduced to a search of the library for the cross-references.
Jennifer Myers acknowledges being aware of one set of metacharacters and
discovering that the newline belongs in that same set (1). Consider the security
administrator who discovers himself in a similar position. With a library of
scenarios with cross-references to the systems where the relevant scenarios
have been applied, remediation is greatly simplified by knowing which programs
are involved. Remediation would be even easier if reusable modules were
employed in development and cross-referenced to relevant scenarios.

The scenario library system will require resources, including a librarian who
catalogs and adds new scenarios when they are developed, monitors security
advisories to determine if a cataloged scenario requires update or a new
scenario is needed, and maintains the cross-reference list of systems in which
scenarios are employed. Knowing the scenario library well, the librarian might
also serve on development teams in place of the security administrator.

Conclusion

Security considerations have not been included in the analysis and design

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

process. To insure security is given adequate consideration in analysis and
design, it is proposed that the security administrator or a knowledgeable
representative be included in all analysis and design teams.

To support the added workload placed on the software development team, it is
proposed that a system of security scenarios be used to express security
requirements. Category I scenarios define security requirements in normal
operations. Category II scenarios define responses to attempts to violate of the
security requirements of normal operations. Category III scenarios define
responses of the system under development to attempts to exploit vulnerabilities
in the system itself, the platform, DBMS, or other software components. It is
further recommended that a library of scenarios be assembled and cross-
referenced to facilitate reuse and maintenance of the scenarios. It is believed
that such measures will facilitate the inclusion of security considerations early in
the software development life cycle.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Bibliography

Brabazon, Kevin. Phase III of the Term Project. 18 August 2002
<http://pages.stern.nyu.edu/~kbrabazo/PhaseIII.htm>.

CERT Advisory CA-1997-25 Sanitizing User-Supplied Data in CGI Scripts. 13
February 1998. Carnegie Mellon Software Engineering Institute CERT
Coordination Center. 8 September 2002
<http://www.cert.org/advisories/CA-1997-25.html>.

CERT CC Understanding Malicious Content Mitigation for Web Developers. 2
February 2000. Carnegie Mellon Software Engineering Institute CERT
Coordination Center. 14 September 2002
<http://www.cert.org/tech_tips/malicious_code_mitigation.html>.

Dennis, Alan and Barbara Wixom. Systems Analysis and Design. New York,
NY: John Wiley & Sons, 2000.

Farrow, Rik. Network Defense. 9 September 2002
<<http://www.spirit.com/Network/net0999.txt>>.

Ghosh, Anup. E-Commerce Security. New York, NY: John Wiley & Sons, 1998.

Hoffer, Jeffrey, Joey George and Joseph Valacich. Modern Systems Analysis
and Design, 2nd ed. Reading, MA: Addison-Wesley Longman, 1999.

Kendall, Kenneth and Julie Kendall. Systems Analysis and Design, 4th ed.
Upper Saddle River, NJ: Prentice Hall, 1999.

Myers, Jennifer. CGI Security Holes. 6 February 1996. Newsgroup: comp.
security.unix. 18 September 2002
<http://bau2.uibk.ac.at/matic/cgi2.htm>.

Pfleeger, Shari. Software Engineering Theory and Practice, 2nd ed. Upper
Saddle River, NJ: Prentice Hall, 2001.

Pipkin, Donald. Information Security: Protecting the Global Enterprise. Upper
Saddle River, NJ: Prentice Hall PTR, 2000.

Pressman, Roger. Software Engineering: a practitioner’s approach, 5th ed. New
York, NY: McGraw Hill, 2001.

Satzinger, John, Robert Jackson and Stephen Burd. Systems Analysis and
Design in a Changing World. Boston, MA: Course Technology, 2000.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

5,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2005 Author retains full rights.

Schell, Roger R., Peter J. Downey and Gerald J. Popek. Preliminary Notes on
the Design of Secure Military Computer Systems, MCI-73-1, The MITRE
Corporation, Bedford, MA 01730 (Jan. 1973).
<http://seclab.cs.ucdavis.edu/projects/history/CD/
index.html#sche73>.

Schneider, Geri and Jason P. Winters. Applying Use Cases: A Practical Guide.
Reading, MA: Addison-Wesley, 1998.

Shelly, Gary, Thomas Cashman and Harry Rosenblatt. Systems Analysis and
Design, 4th ed. Boston, MA: Course Technology, 2001.

Sommerville, Ian. Software Engineering, 6 ed. Reading, MA: Addison-Wesley,
2001.

Whitten, Jeffrey, Lonnie Bentley and Kevin Dittman. Systems Analysis and
Design Methods, 5th ed. Boston, MA: McGraw-Hill Irwin, 2001.

Wilkinson, Nancy. Using CRC Cards. New York, NY: SIGS Books, 1995.

