
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Intrusion Detection – Evolution beyond Anomalous Behavior and
Pattern Matching

Paul J. Barry
Security Essentials Version 1.4
October 11, 2002

Abstract

Intrusion Detection (ID) is a useful tool for a Security Professional. Although advances
have been made in ID software, a distinct gap exists between the latest malicious code,
which the program is designed to detect and the rules used in the detection. The two
main methods for Intrusion Detection are anomalous behavior and pattern-matching.
This paper will focus on various techniques, which can be used to improve capabilities
of Intrusion Detection software in either capability or performance. In order to keep
pace with the latest malicious code, future Intrusion Detection software will have to
evolve to a level that not only includes anomalous behavior and pattern-matching, but
will required to implement multiple techniques such as Artificial Intelligence, Neural
Networks, Artificial Immune Systems, temporal signatures and other learning behaviors.

Background

ID stands for Intrusion Detection, which is the art of detecting inappropriate, incorrect, or
anomalous activity [1]. Intrusion Detection as defined by Dirk Lehmann of Siemens
CERT is the art of detecting inappropriate, incorrect, or anomalous activity. There are
four different types of Intrusion Detection Systems according to Paul Innella of Tetrad
Digital Integrity, LLC [2]. The four major types of ID are: 1) Network Intrusion Detection
(NID); 2) Host-based Intrusion Detection; 3) Hybrid Intrusion Detection and 4) Network-
Node Intrusion Detection (NNID).

James P. Anderson published the first study on Intrusion Detection in April of 1980. In
the study, Anderson refers to a Surveillance program which can process Session/Job
Records along with Exceptions and apply statistics to these logs along with baseline
settings for particular user in order to detect any type of malicious activities. Anderson
stresses the fact that the log information from a particular job or session must be
presented to the Surveillance program contiguously instead of intermixing information
based on an arbitrary timestamp. Utilizing a user’s profile, the surveillance system can
detect misuse of computer system. Anderson’s system was the outline for the first
generation of Host-based Intrusion Detection software.

Dorothy E. Denning and Peter Neumann were early pioneers in the Intrusion Detection
arena. In 1987 they had provided the framework for an intrusion-detection expert
system, which was called IDES (Intrusion Detection Expert System) [4] based off of the
1985 paper Requirements and model for IDES – A real-time intrusion detection
system[5].

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

The intrusion detection was based on these six components:
• Subjects: Initiators of activity on a target system- normally users.
• Objects: Resources managed by the system-files, commands, devices, etc.
• Audit records: Generated by the target system in response to actions

performed or attempted by subjects on objects-user login, command
execution, file access, etc.

• Profiles: Structures that characterize the behavior of subjects with respect to
objects in terms of statistical metrics and models of observed activity. Profiles
are automatically generated and initialized from templates.

• Anomaly records: Generated when abnormal behavior is detected.
• Activity rules: Actions taken when some condition is satisfied, which update

profiles, detect abnormal behavior, relate anomalies to suspected intrusions,
and produce reports.

This research was important for future generations of Intrusion Detection Systems
which implement these six components in varying degrees. The IDES system did not
take into account vulnerabilities in targeted systems which would make the processing
of rules too slow. The objective was to alert Security Operators who in turn could
investigate possible vulnerabilities with the targeted system. Another Intrusion
Detection system was the MIDAS system [6] which primarily focused on attack
signatures from the audit data versus the normal patterns used in the IDES system.
Halme and Kahn [7] proposed a method to use a system which is based on both
anomalous behavior as well as patterns in order improve the efficiency of the capturing
of Intrusion events.

The IDES lead to NIDES (Next-Generation Intrusion Detection Expert System) [8] from
SRI, International. The NIDES system is based on two approaches: (1) intrusions,
whether successful or attempted, can be detected by flagging departures from
historically established norms of behavior for individual users, and (2) know intrusion
scenarios, known system vulnerabilities, and other violations of a system’s intended
security policy (i.e., a priori definition of what is to be considered suspicious) are best
detected through use of an expertsystem rule base. The IDES and NIDES have lead to
many other Intrusion Detection Software systems.

Another IDS around the same era as IDES and NIDES was the Haystack [8] system
which became available in 1988. They Haystack system was designed to help the Air
Force Security Officers monitor their Unisys 1100/2200 mainframes for misuses in
“unclassified but sensitive” data processing. The Haystack system provided information
in the following manner: 1) Notable Events were generated as singe events for review
by the Security Officers. The security state of the system was reported with a success
or failure message; 2) Special Monitoring was captured by the system. Security
Officers could tag either “subjects” or “objects” which could be monitored and events
generated by these tagged items; and 3) Statistical Analysis was performed on the audit
data. There were two types of statistical analysis performed on the data. The first was
the “suspicion quotients” which were used to detect how closely a given user’s
aggregate session behavior matched one of the target intrusion behaviors. The second

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

kind of statistic used in the program was to perform statistical analysis on the user’s
behavior by looking at the user’s trends in previous sessions to the current session.

The next step in Intrusion Detection Systems came with the advent of the Distributed
Intrusion Detection System (DIDS) [9]. The DIDS system combined distributed
monitoring and data reduction with a centralized data analysis unit. The components of
the DIDS are the DIDS director, a single host monitor per host, and a single LAN
monitor for each broadcast LAN segment to be monitored in the network. In order to
facilitate the monitoring of each user throughout the system the DIDS employed a
Network-user identification (NID) which was assigned to the incoming user and used
throughout the system to track a particular user’s activities. The LAN monitor would
build its own “LAN audit trail” which it will then analyze this data using heuristics to
determine the likelihood that this activity is abnormal and should be flagged as an event.
The Host monitor’s purpose is to analyze the log detail and determine if this log line
should be forwarded to the expert system. The DIDS uses a rule-based (or production)
expert system. The rules are based on a hierarchical Intrusion Detection Model (IDM).
The IDM is based on six layers (defined in Table 1).

Level Name Explanation
6 Security State Overall network security level
5 Threat Definition of categories of abuse
4 Context Event placed in context
3 Subject Definition and disambiguation of

network user
2 Event OS independent representation of user

action (finite number of these)
1 Data Audit or OS provided data

Table 1 – Intrusion Detection Model
The IDM levels start out with all of the data from the audit records. More information is
gathered and correlated as you reach each subsequent level until the sixth level is
reached. At this point, a rating from 0 to 100 is given to the overall network with a high
rating implying that the network is less secure.

The IDS systems listed above is not meant to comprise an exhaustive list of all research
conducted in the Intrusion Detection field, rather it represents a short glimpse of some
of the more prominent Intrusion Detection systems and a brief history of Intrusion
Detection systems.

Intrusion Detection Methods and Enhancements

According to Lawrence R. Halme and R. Kenneth Bauer in the “AINT Misbehaving: A
Taxonomy of Anti-Intrusion Techniques” article [10], the following categories are
mentioned in the paper which are: 1) Anomaly Detection; 2) Misuse Detection and 3)
Hybrid Misuse / Anomaly Detection.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Their article further breaks down these main categories into subcategories as follows.

• Anomaly Detection

• Threshold Monitoring
• User Work Profiling
• Group Work Profiling
• Resource Profiling
• Executable Profiling
• Static Work Profiling
• Adaptive Work Profiling
• Adaptive Rule Based Profiling

• Misuse Detection

• Expert Systems
• Model Based Reasoning
• State Transition Analysis
• Neural Networks

• Hybrid Misuse/Anomaly Detection

Intrusion Tolerance

Software based on these categories will be necessary to keep Intruders under a
watchful position. Not only does the evolution of Intrusion Detection Software depend
on these categories, but they must also be able to elevate to higher levels in order to
keep pace with new Intruder techniques. The paper on “Characterizing Intrusion
Tolerant Systems Using a State Transition Model” [11] provides another approach to the
Intrusion Detection arena. Instead of specifically using the well-known attack
signatures, it is designed around the functions and services required for protection. The
SITAR project (a DARPA-funded research project) [12] is a scalable Intrusion Tolerant
Architecture. Figure 1 depicts the basic model used by the Intrusion Tolerant system
which was proposed as the framework to describe the dynamic behavior of the system.
The basic model describes how the system oscillates between the Good State and the
vulnerable state. The Security Officer’s duties are to minimize the time that a system is
in the vulnerable state. The system is determined vulnerable if a user is able to read,
modify, grant or deny information without proper authorization. The Intrusion Tolerant
system is mainly designed to focus on the attack vector on a system rather than a
particular security exploit used to gain unauthorized access to the system. The
Intrusion Tolerant basic model can be used to provide various levels of protection (i.e. If
a system requires to protect against a denial of service attack, then the system would
want to switch to the degradation state GD, versus protection against file corruption
which the system would want to switch to the fail-secure state FS).

Speak the Common Language

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Switching focus from the intrusion detection to intrusion tolerance was one method
which could be used by intrusion detection software to alarm Security Operators of
intrusion events. Another useful method in the State-based Intrusion Detection arena is
the definition of an attack language such as STATL [14]. The STATL language was

Figure 1 - State Transition Diagram for ITS[13]

developed out the necessity of filtering out the domain or particular environment for an
attack signature. Other systems depend heavily on their particular environment and are
not well suited for extension to other environments. STATL defines the domain-
independent features of attack features of attack scenarios and it also provides
extensions to allow customization for specific attack signatures. STATL formed its base
from the State Transition Analysis Technique (STAT) system. The STATL specification
provides a method to completely describe the attack event in the language itself. The
STATL language provides the necessary means of representing an attack in terms of
states and transitions. The language was designed to track the attack throughout the
various stages on a system. Although every aspect of the attack cannot be tracked (i.e.
tracking all physical or virtual memory), files or resources that change due to the attack
method can be described in the language. The STATL specification is one tool, which
can be used by Intrusion Detection systems in their arsenal to describe an attack. The
STATL language is simple, yet extensible. In the study, they were able to develop 18
attack scenarios for USTAT, 10 attacks for WinSTAT and 20 attacks for the NetSTAT
tool. They found that in encoding the various attacks, they did not encounter any
limitations in the language. The STATL language can be applied to Snort Rules as
outlined by the “Translating Snort Rules to STATL Scenarios” paper presented by
Eckmann [15]. The snort2statl translator program was developed from this paper and
was a step at applying the STATL language to an Intrusion Detection program.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Another attack language which is a little older than STATL is the Graph-based Intrusion
Detection System (GrIDS) language. The GrIDS language was developed in 1996[16].
GrIDS is similar to STATL in that it tracks activity (or transitions in STATL). GrIDS also
uses hosts as well as activities to track attacks. GrIDS was designed to monitor
network activity between hosts via activity graphs. The aggregated information from
these activity graphs is representative of the network activity between hosts. Identifying
attacks can be based on thresholds of various activity graphs. Network activity which
occurs between hosts in a given timeframe is considered part of the activity graph. In
terms of large-scaled networks, GrIDS has potential in the following network attack
types: 1) A sweep (like Doorknob rattling); 2) Coordinated attacks and 3) Worms.
Since the GrIDS system is based on a graph, it will build one based on network traffic
between hosts and it takes into consideration factors such as attributes of the node
(host) or edge (traffic). These attributes will provide a mechanism to rapidly identify an
attack. The attributes for the graph nodes or edges are not necessarily generated
internally by the GrIDS system and the values may be generated externally by other
IDSs, or any other device or program which can transport their output to the GrIDS
system. The GrIDS system will also allow external correlation functions to be
implemented in the language. In addition to external correlation functions, GrIDS will
maintain multiple graph spaces (because each attack vector may require their own type
of graph in the future) as well as a rule set for each graph. When new information
enters the GrIDS system for either the node or the edge, it is analyzed by the
appropriate rule set and then a given action is taken. Depending on the rule set, graphs
may collapse, others may be created, or none of the information may apply to any
graphs currently in the GrIDS system. A given rule set will apply to that particular node
and all descendants of that node to ease the use of generating several similar rules.
GrIDS will also contain aggregation of data before passing information to the next
graph. The aggregation of data is based on modeling departments and then data sent
from one department through the use of reduced graphs (i.e. a reduction in the number
of nodes). In addition to rule sets, a Policy language is built-in, which allows the
definition of unacceptable network behavior. These policies can be compiled into the
rule sets of the graphs. The primary goal of the project was to make the aggregation
mechanism scalable and to allow the system to be dynamically configurable so that it
could be easily deployed to a large-scaled network. There was not a significant amount
of time spent on securing communication between GrIDS and other IDS. It was
mentioned that GrIDS may not detect intrusions which are small, slow or both. This
could be used with other IDSs to assist in large scaled networks. It is not the final
solution, however it does present another language to try and define attack methods.

Progressive Signatures and Patterns

Not only does Intrusion Detection Software use a language, but it also must use
signatures to detect an attack. One of the newer methods of an attack signature is the
paper written by Jones and Li on “Temporal Signatures for Intrusion Detection” [17].
Normal anomaly detection is performed by comparing any type of “normal” activities to
network behavior and if this behavior exceeds a statistically significant value, then that
activity is tagged as an anomaly and that event is reported. The temporal signature is

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

based on call sequences for a given application during its normal execution phase and
a Hamming distance is computed between the “normal” call sequences and the current
call sequences to determine abnormal behavior. The temporal signatures were based
on work at the University of New Mexico which used the sequences of system calls with
the incorporation of timing properties to these sequences of calls. The timing is based
on the amount of time between system calls with other factors such as context swap or
sleep time deducted from the amount. A multitude of samples are taken on each
application with the computation of the time distributions from all of the results are then
stored in a “temporal signature” database. The temporal signature method of Intrusion
detection could be one of the methods chosen by newer Intrusion Detection Systems.
The temporal signature method would take some time to populate the “temporal
signature” database; however this method may provide Security Officers with another
method to track the attackers.

Although there are some drawbacks to temporal signatures, the next system was
designed with high-performance in mind. Sekar, Guang, Verma and Shanbhag
proposed a High-Performance Network Intrusion Detection system [18]. The High-
Performance Network Intrusion Detection system is said to sport the following
characteristics:

• Concise, easy-to-develop intrusion specifications.
• High-speed, large-volume monitoring.
• Robust and extensible.
• Comprehensive evaluation of performance.

This system’s basic language consists of variable and type declarations accompanied
with a list of rules. The rules consist of a pattern and then an appropriate action.
Patterns in this language can be simple or complex and the pattern language is referred
to as regular expressions over events (REE). This language also provides the
important aggregation component of intrusion detection. One of the aggregation
components is the counters which have an aging function which can assign priorities
based on historical events, thresholds for the counters and upper and lower limit
functions based on the thresholds. The other aggregation component is the table which
keeps information similar to a histogram. The tables also contain a purge function for
‘stale’ entries in the tables. Tests were performed on this system and it was 96%
effective on intrusion detection and was able to sustain intrusion detection at the rate of
15s/GB, or 500Mb/s using a 450MHz Pentium II running RedHat Linux 5.2. The key
feature of this system was the domain-specific language for capturing patterns on a
stream of normal as well as abnormal network packet sequences. The system is said to
have been time insensitive to the number of rules which would make this system highly
scalable. Since the language is extensible, it makes it a prime candidate for
implementing new intrusion detection patterns.

The High-Performance Network Intrusion Detection system is one way to squeeze extra
performance in the intrusion detection arena, and another method which could be
implemented is the Nearest Neighbor Algorithm as described by Wetzel [19]. Wetzel
explains the use of Case based reasoning (CBR) in artificial intelligence (AI) to find a
match rather than performing an exact match. CBR focuses on memory rather than a

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

set of rules. The similarity matching produced by CBR may increase the number of
false positives; however it may provide a mechanism which can be used to quickly
identify patterns without having all of the overhead of keeping the rules in memory.

Not only does evolution of intrusion detection software have to identify patterns and
anomalies, it also has to start using machine intelligence to learn the behavior of the
network. Mr. Nugen [20] discussed machine intelligence in his presentation “Artificial
Intelligence in Information Security”. The beginning of the presentation by Mr. Nugen
discussed the efforts made by programmers to try and make the machine intelligence
emulate human intelligence. He then explained Information Security as the disciplines
and processes protecting the confidentiality, integrity and availability of information
(intellectual property) and resources that are used to manage and protect this
information. There were six different levels discussed by Nugen which are: 1)
Awareness; 2) Inspect; 3) Protect; 4) Detect; 5) React and 6) Reflect. The intrusion
detection software needs to keep cycling through these stages after having learned
lessons, when new threats arise, there are new business needs or when new
environments (i.e. terrorism, unknown third-party vendor has a link into your company’s
network) become active. An expert system’s rules could be implemented in the
network-based intrusion detection system to determine acceptable and unacceptable
user behavior. There is an opportunity to utilize neural networks which could learn the
normal behavior of humans interacting on the network (especially useful when there is a
shortage of expertise to describe the behavior). The various facets of AI were
discussed along with a brief description of how they could be used in the information
security realm. The Case-based reasoning (CBR) was discussed in the presentation
where the best-match is used in searching for a conclusion. The Explanation-Based
Learning (EBL) is another facet and it is the generalized from a single example and it
was noted that this takes quite a bit of domain knowledge to implement. The Genetic
Programming area got its inspiration from the biological evolution with the execution
speed of machines. One of the more frightening points made by Nugen was that
current hackers probably have access to multi-node machines and have been testing
their software on these machines before releasing them onto unsuspecting networks.
He stated that it makes it tougher for intrusion detection software because the response
time to detect these signatures is a very limited and therefore the intruder has the
advantage of time on their side. This limited timeframe stresses the requirement of
intrusion detection software to be fast as well as the capability to learn from intruders
and provide detection without all of the possible false alarms. Utilizing expert systems
and neural networks can be one way of learning about possible attacks.

Doyle, Kohane, Long, Shrobe and Szolovits [21] propose a richer language that
subsumes and extends signature and anomaly methods. They state that the weakness
of the signature method is the fact that they are too special and that the anomaly
methods are too general in nature. The signature and anomaly methods both have
strengths and weaknesses, but together they cannot overcome the weakness in the
other method. This new language seeks to provide a method to characterize events.
Their are: 1) Landmark times (the significant points in the life of the event); 2) Temporal
intervals (periods which may indicate significant subevents); 3) Temporal relations (the

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

shorthand method of expressing relationships to other events); 4) State constraints (the
characteristics of objects during the temporal intervals) and 5) Regression functions
(these model the criteria for matching templates against data). The latest work on the
MAITA system [27] has a goal to extend the TTL in many ways. One of the ways is to
augment the range expression for temporal relationships with more general probability
distributions of the frequency of landmark times. Linear and Quadratic regression
models make up the current constraint language for numeric data, absolute and relative
numerical constraints on functions of the data with logical combinations and
descriptions and propositions. The paper concluded that most signature and anomaly
methods are limited by the reliance on inability of the language to properly express
significant patterns. The ability to utilize a language that is based on multilevel
abstractions and the capability of expressing uncertainty in the characterization of
events allows one to express regularities with the enhancement of abnormalities as part
of the language. This enhanced language is meant to increase the likelihood of
capturing the intruder by increasing the difficulty level of evading signature or
anomalous behavior.language is based off of Haimwitz and Kohane [22], [23], [24], [25],
and [26] who developed “trend templates” which were referred to as TTL. The key
elements of TTL

Evolutionary techniques for Intrusion Detection

Although advances in pattern matching and anomaly detection are important, examples
from other disciplines may provide insight into new intrusion detection methods. Take
for example the work performed by Kim and Bentley [28]. Kim and Bentley investigated
the use of an artificial immune system for network intrusion detection. One of the key
benefits of an artificial immune system is the ability to adapt to a changing environment
and dynamically learning the “self” and predicting the “non-self” patterns. A dynamic
clonal selection algorithm (DynamiCS) was introduced. The DynamiCS’s goal is to
distill only the crucial components that yield adaptability to the system. The DynamiCS
algorithm was introduced in the paper as a stepping stone towards an artificial immune
system that can cope with real environments where self behaviors change after a
certain period and a small subset of self antigens is visible at a particular time. The
significant features of the human immune system, which provided these desired
properties, were discovered. The key properties were central tolerisation, distributed
tolerisation, constimulation, affinity maturation, and life span and memory detectors.
The DynamiCS was able to implement these with the introduction of the three new
parameters of tolerisation period, activation threshold and life span. The experimental
results concluded that the system could incrementally learn the globally converged
distributions only when a small subset of antigens was injected at each generation. The
system performance measured by the antigen detection and self-tolerance rates
showed that the number of detector activation’s in total primarily controlled this, and that
this was directed by the values from the three new parameters mentioned above. At
least the study of the artificial immune system may yield new techniques or procedures
which could be deployed to an intrusion detection system in the future.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

The artificial immune system could be one technique used by future intrusion detection
systems and another more powerful system may be the one introduced by
Janakiraman, Waldvogel and Zhang [29]. They have proposed the Indra system, a
distributed scheme which is based on the sharing of information between trusted peers
in a network which would guard against intrusion attempts. The Indra system takes a
proactive as well as a peer to peer approach on network security. Usually an intruder
will try exploits on several machines until they have compromised a machine. The Indra
system can take this information and deliver the attempt across multiple peers which
then in turn can react either proactively (e.g., applying patches, temporarily
disconnecting the server or both) or retroactively (e.g., disconnect machines that may
have been compromised in order to limit further damage). This system runs a special
security daemon, the Indra daemon that watches for intrusion attempts and enforces
access control to the peer to peer network. In the work performed on Indra, the
prototype version relied on trusted key-servers from which Indra gets certificates for its
peers. It was stated that this would probably change in the future to a variant on the
Web of trust model from PGP [30]. The functionality of Indra is composed of the
following modules: 1) Watchers (first level daemons which keep a watchful on
suspicious activity); 2) Access Controllers (daemons which provide access control to
resources); 3) Listeners (daemons which listen for watchers); and 4) Reporters
(daemons responsible for reporting with other hosts, receiving warnings from other
hosts, aggregating warnings, and passing warnings to other hosts). Indra provides the
ability to add plugins. The report concluded that Indra is a work-in-progress and that the
emphasis of Indra was to provide a framework that compliments intrusion detection
devices and provides this in a massively networked environment. Indra is reported to
offer a scalable solution by providing the security plugins which can be loaded
dynamically onto thousands of machines by in an administrative domain.

Conclusion

Network Intrusion Detection systems have always been trying to catch or alert Security
Officers of intruders in the network. The growth of technology has increased the
complexity of capturing the elusive intruder. Some of the methods mentioned above
such as temporal signatures, defining a rich language to handle intruders, making use
of artificial intelligence and other techniques may provide the necessary boost for
intrusion detection systems to handle the next generation of intruders. Another
technique such as tagging network packets so that multiple sensors can correlate a
single intruder will be required so that one can easily correlate intrusion events. The
use of artificial intelligence, neural networks, fuzzy logic and other learning behaviors
may need to be incorporated in order to provide the necessary logic to detect intruders.
The artificial immune system provides a new mechanism to detect intruders.
The Indra system may prove to be a solid framework on which network intrusion
detection can evolve to the next generation by using the infrastructure to not only
detection intrusions but to also prevent unauthorized behavior in a network. All of these
new methods could be implemented in order to capture and tag offending intruders
today as well as in the future.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

References:

[1] Intrusion Detection FAQ , URL:

http://www.sans.org/newlook/resources/IDFAQ/what_is_ID.htm
[2] Innella, Paul, “The Evolution of Intrusion Detection Systems,” Tetrad Digital Integrity,

LLC, last updated November 16, 2001, URL:
http://online.securityfocus.com/infocus/1514.

[3] Anderson, James P., “Computer security threat monitoring and surveillance,”
Technical Report Contract 79F26400, James P. Anderson Co., Box 42, Fort
Washington, PA, 19034, USA, February 26, revised April 15 1980.

[4] Denning, Dorothy E., “An Intrusion-Detection Model,” IEEE TRANSACTIONS ON
SOFTWARE ENGINEERING, VOL. SE-13, NO. 2, FEBRUARY 1987, 222-232.

[5] Denning, Dorothy E., and Neumann, Peter E, “Requirements and model for IDES-A
real-time intrusion detection system,” Technical report, Computer Science
Laboratory, SRI International, Menlo Park, CA, USA, 1985.

[6] Sebring, E., Shellhouse, E., Hanna, M., and Whitehurst R., "Expert Systems in
Intrusion Detection: A Case Study," Proceedings of the 11th National Computer
Security Conference. Washington DC. October 1988.

[7] Halme, L., and Kahn, B., "Building a Security Monitor with Adaptive User Work
Profiles," Proceedings of the 11th National Computer Security Conference.
Washington DC. October 1988.

[8] Anderson, Debra, Frivold, Thane, Valdes, Alfonso, “Next-generation Intrusion
Detection Expert System (NIDES) A Summary,” Computer Science Laboratory, SRI-
CSL-95-07, May 1995. URL: http://www.sdl.sri.com/projects/nides/reports/4sri.pdf

[9] Snapp, S., Brentano, J., Dias, G., Goan, T., Heberlein, L., Ho, C, Levitt, K.,
Mukherjee, B., Smaha, S., Grance, ,T., Teal, D., and Mansur, D., "DIDS
(Distributed Intrusion Detection System) - Motivation, Architecture, and an Early
Prototype," Proceedings of the 14th National Computer Security Conference.
October 1991.

[10] Halme, Lawrence R., Bauer, R. Kenneth, “AINT Misbehaving: A Taxonomy of
Anti-Intrusion Techniques,” Arca Systems, Inc., 2450 North First St., Suite 301, San
Jose, CA 95131-1016. URL:
http://www.sans.org/newlook/resources/IDFAQ/aint.htm

[11] Goseva-Popstojanova, K., Wang, F., Wang, R., Gong, F., Vaidyanathan, K.,
Trivedi, K.S., Muthusamy, B., "Characterizing Intrusion Tolerant Systems Using a
State Transtion Model," Proc. DARPA Information Survivability Conference and
Exposition II (DISCEX-II), Anaheim, California, June 2001.

[12] Want, F., Gong, F., Sargor, C., Goseva-Popstojanova, K., Trivedi, K.S., Jou, F.,
"SITAR: A Scalable Intrusion-Tolerant Architecture for Distributed Services," Proc.
2nd Annual IEEE Systems, Man, and Cybernetics Informations Assurance
Workshop, West Point, New York, June 2001.

[13] Wang, F., “SITAR: A Scalable Intrusion Tolerant Architecture for Distributed
Services,” Advanced Networking Research, MCNC, OASIS Winter PI Meeting
Presentation, Feb. 13, 2001. URL: http://www.anr.mcnc.org/projects/SITAR/SITAR-
norfolk-2001.pdf

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

[14] Eckmann, Steven T., Vigna, Giovanni, and Kemmerer, Richard A. “STATL: An
Attack Language for State-based Intrusion Detection,” In Proceedings of WIDS (held
in conjunction with ACMCCS 2000), Athens, Greece, November 2000.

[15] Eckmann, Steven T., “Translating Snort rules to STATL scenarios,” Proceedings
of Fourth International Symposium on Recent Advances in Intrusion Detection,
RAID2001, October 10, 2001, Davis CA, USA.

[16] Staniford-Chen, S., Cheung, S., Crawford, R., Dilger, M., Frank, J., Hoagland, J.,
Levitt, K., Wee, C., Yip, R. and Zerkle, D., “GrIDS A Graph-Based Intrusion
Detection System for Large Networks”, Proceedings of the 19th National Information
Systems Security Conference, Mar. 4, 1996.

[17] Jones, Anita, Song, Li, “Temporal Signatures for Intrusion Detection,” 17th Annual
Computer Security Applications Conference, Dec. 10-14, 2001, New Orleans, LA.

[18] Sekar, R., Guang, Y., Verma, S., Shanbhag, T., “A High-Performance Network
Intrusion Detection System,” Proceedings of the 6th ACM conference on Computer
and communications security, Singapore, 1999.

[19] Baylor, Wetzel, “Build a Smarter Search Engine,” JAVAPro Magazine, October
2002.

[20] Nugen, Stephen, M., “Artificial Intelligence in Information Security,” Infotec 2002
ST4, Omaha, NE, April 23, 2002.

[21] Doyle, Jon, Kohane, Isaac, Long, William, Shrobe, Howard and Szolovits, Peter,
“Event Recognition Beyond Signature and Anomaly,” Second IEEE-SMC Information
Assurance Workshop, West Point, New York, June 5-6, 2001.

[22] Haimowitz, ,Ira, J. and Kohane, S., “An epistemology for clinically significant
trends," in Proceedings of the Eleventh Nation Conference on Artificial Intelligence,
Washington, DC, 1993, pp. 176-181.

[23] Haimowitz, Ira J. and Kohane, Isaac, S., “Automated trend detection with
alternate temporal hypotheses,” in Proceedings of the Thirteenth International Joint
Conference on Artificial Intelligence, Chambery, France, 1993,,pp. 146-151.

[24] Kohane, I., S. and Haimowitz, I. J., “Encoding patterns of growth to automate
detection and diagnosis of abnormal growth patterns,” Pediatric Research, vol. 33,
pp. 119A, 1993.

[25] Haimowitz, I. And Kohane, I., “Hypothesis-driven data abstraction,” in
Symposium on Computer Applications in Medical Care, Washington, DC, 1993.

[26] Haimowitz, I., J., Facker, J. and Kohane, I., S., “Knowledge-based data display
using TrenDx,” in AAAI Spring Symposium: Interpreting Clinical Data, Palo Alto,
1994, AAAI Press.

[27] Doyle, Jon, Kohane, Isaac, Long, William, Shrobe, Howard, and Szolovits, “Agile
monitoring for cyber defense,” in Proceedings of the Second DARPA Information
Security Conference and Exhibition (DISCEX-II). IEEE, May 2001, IEEE Computer
Society.

[28] Kim, J. and Bentley, P. J., "Towards an Artificial Immune System for Network
Intrusion Detection: An Investigation of Dynamic Clonal Selection," the Congress on
Evolutionary Computation (CEC-2002), Honolulu, pp.1015 - 1020, May 12-17, 2002.

[29] Ramaprabhu Janakiraman, Marcel Waldvogel, Qi Zhang, “Indra: A peer-to-peer
approach to network intrusion detection and prevention,” Washington University
Technical report #WUCS-01-30, 2001.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

[30] Stallings, William, Pretty Good Privacy. ConneXions, 8(12):2-11, December
1994.

