
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Hunting and Gathering with PowerShell

GIAC (GSEC) Gold Certification

Author: Troy Wojewoda, tdwoje@gmail.com

Advisor: Christopher Walker, CISSP, CISA, CCISO, GCED

Accepted: March 10, 2019

Abstract

PowerShell has been used extensively over the years by both malware authors and
information security professionals to carry out disparate objectives. This paper will focus
on the latter by detailing various techniques and use-cases for digital defenders. There is
no "one-size fits all" model that encompasses a dedicated blue-team. Roles and
responsibilities will differ from organization to organization. Therefore, topics covered will
range from system administration to digital forensics, incident response as well as threat
hunting. Using the latest in the PowerShell framework, system variables will be collected
for the purpose of establishing baselines as well as useful datasets for hunting
operations. The focus will then shift to use-cases and techniques for incident responders
and threat hunters.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Hunting and Gathering with PowerShell 2

Troy Wojewoda, tdwoje@gmail.com

1. Introduction

PowerShell has existed for over a decade and since its introduction has provided

system administrators with extensive access to Windows operating system internals. The

object-oriented scripting language goes far beyond a next-generation interactive shell.

It’s built on .NET and can also access COM objects (“PowerShell Overview”, 2018).

With the launch of Windows 7, Microsoft started including PowerShell in its operating

system builds, making it the de facto tool used to perform administrative tasks in

Windows environments.

Since its release by Microsoft in 2006, PowerShell has seen several major

updates. This evolution extended its usefulness to applications such as Exchange, MS

SQL and SharePoint to name a few. In an attempt to further its practicality, Microsoft

open-sourced PowerShell in 2018 as PowerShell Core - a cross-platform version

compatible on Windows, Linux and macOS operating systems (“PowerShell Core”,

2019).

As PowerShell became more integrated into Windows OSes, its popularity grew

to a greater audience. Malware authors quickly realized the potential with incorporating

PowerShell into their arsenal. The ubiquitous operation within a Windows environment,

coupled with its fileless behavior, make this tool and framework a perfect storm to use in

attacks (Cruz, 2017). For this reason, PowerShell is considered a “dual-use” tool by the

anti-malware community (Wueest, 2018).

Conversely, the utilization of these “living off the land” techniques should not be

limited to malicious adversaries. Computer Security Incident Response Teams (CSIRT)

need to be armed with the latest tools and technologies to defend against an ever growing

attack surface. This introduces challenges for enterprises as many of these tools incur

overhead costs. Open source and freeware tools can also present a number of issues such

as supportability, scalability as well as hidden-costs (Ingram, 2017); let alone

complications within strict application whitelisting environments. Incident handlers

should not ignore the pervasiveness PowerShell has to offer their CSIRT from a cost-

effective, flexible and sustainable solution.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Hunting and Gathering with PowerShell 3

Troy Wojewoda, tdwoje@gmail.com

PowerShell version 5.1 now comes preinstalled on Windows 10 and Windows

Server 2016 operating systems (“Windows Management Framework”, 2018). Incident

response teams can add this extensive capability to their suite of tools to perform a

variety of tasks. Such tasks may involve: enumerating accounts in an environment,

performing an inventory of installed software and services, or perhaps to check if critical

patches are installed. These gathering efforts can also help in building baselines;

however, baselines are meant to provide a standard inventory or snapshot of a given

system and thus will only contain common components that scale for comparative

analysis across an environment.

The gathering of system artifacts goes far beyond building baselines. This effort

can produce data that aids in the investigation of an incident or can help validate findings

from disparate event sources. For instance, consider the scenario in which a network

intrusion detection system (NIDS) alerts on malicious traffic beaconing every 10 minutes,

originating from the same host on the internal network. Using PowerShell to gather

scheduled tasks from the suspect host may reveal the offending source. A more generic

example might involve the use of an incident response script encapsulating several

PowerShell cmdlets. When launched against a given host, the script collects user account

activity, active network connections, running processes, services and so on. Furthermore,

artifacts can be used to build datasets for threat hunting operations.

Threat hunting is the process in which a human analyst searches for signs of

adversarial presence within a computer environment. The necessity for CSIRT members

to hunt for indicators of compromises stems from the premise that an attack may have

been missed by currently deployed sensors or countermeasures. This feat requires

“active, unstructured, and creative thoughts and approaches” (Bejtlich, 2011). In short,

threat hunting is a methodology that is “analyst-centric” and relies on neither rules nor

signatures (Beadle, 2018). Analysts using PowerShell have access to a wide array of

system information as well as a powerful scripting language to support their threat

hunting engagements.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Hunting and Gathering with PowerShell 4

Troy Wojewoda, tdwoje@gmail.com

1.1. Getting Started with PowerShell

PowerShell is a scripting language that can either be used at a command line

interface via an interactive shell or as an executable script. There is also a hybrid option,

to use PowerShell ISE - Integrated Scripting Environment. PowerShell ISE provides a

graphical user interface with the ability to test, debug and run scripts. This utility also

provides developer aids such as: tab completion, syntax coloring, selective execution and

a context-sensitive menu (“Windows PowerShell ISE”, 2018). It’s important to note

however, that Microsoft will not support the ISE past PowerShell 5.1 as their

recommendation for graphical support is to move to Visual Studio Code for newer

versions of PowerShell (“Windows PowerShell ISE”, 2018).

1.1.1. PowerShell Scripts

Scripts serve as a useful approach for automating many repetitive tasks. They can

also be used to add both logic and process flow for hunting and gathering efforts. It is

not the intention to cover all best practices here, but the following are some important tips

to consider when working with PowerShell scripts:

1. Prior to writing a script, use the interactive shell to learn and explore which

cmdlets are to be used.

2. For each cmdlet used, understand the input parameters and how outputted results

are to be handled.

3. Consider error and exception handling in your scripts.

4. Never put login credentials in a script! This also applies to any readable file the

script may reference.

5. Test the script against a handful of machines prior to running against an entire

enterprise.

6. Execution of PowerShell scripts are blocked by default.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Hunting and Gathering with PowerShell 5

Troy Wojewoda, tdwoje@gmail.com

As for the last item, there are several ways to work within the confines of this

constraint. The most straightforward approach is to simply change the execution policy

from something other than “Restricted”. Below is a listing of all current settings

supported by this policy with a brief description (“Set-ExecutionPolicy”, 2018).

● Restricted - Does not load configuration files or run scripts. Restricted is the

default execution policy.

● AllSigned - Requires that all scripts and configuration files be signed by a trusted

publisher, including scripts that you write on the local computer.

● RemoteSigned - Requires that all scripts and configuration files downloaded

from the Internet be signed by a trusted publisher.

● Unrestricted - Loads all configuration files and runs all scripts. If you run an

unsigned script that was downloaded from the Internet, you are prompted for

permission before it runs.

● Bypass - Nothing is blocked and there are no warnings or prompts.

● Undefined - Removes the currently assigned execution policy from the current

scope. This parameter will not remove an execution policy that is set in a Group

Policy scope.

To view the current state of this policy, use the Get-ExecutionPolicy cmdlet:

PS C:\> Get-ExecutionPolicy
Restricted

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Hunting and Gathering with PowerShell 6

Troy Wojewoda, tdwoje@gmail.com

To change an execution policy, start a session by launching PowerShell as an

“Administrator” (only system administrators can change this setting). Then run the Set-

ExecutionPolicy cmdlet with the desired policy setting:

1.1.2. Determining the PowerShell Version

Microsoft has made substantial updates to PowerShell throughout the years.

Knowing the version of PowerShell installed on the analyst machine is an important

housekeeping step in ensuring successful use. The following details two different

techniques for determining the version of PowerShell:

1. Use the built-in variable $PSVersionTable

2. Use the Get-Host cmdlet

It may be common that more than one version of PowerShell exists across an

environment. Therefore, having a version check added to your scripts will ensure

interoperability when run on different systems. See use-case 1 in the Appendix.

PS C:\> $PSVersionTable.PSVersion

Major Minor Build Revision
----- ----- ----- --------
5 1 14393 2636

PS C:\> Get-Host | Select-Object Version

Version

5.1.14393.2636

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Hunting and Gathering with PowerShell 7

Troy Wojewoda, tdwoje@gmail.com

2. Gathering with PowerShell

The collection of system artifacts will depend on both the environment and the

scenario at hand. PowerShell enables access to a plethora of Windows artifacts that can

serve useful during an incident response or merely as an approach for a system

administrator to understand more about his/her environment. It is not possible to list all

significant data points, nor is it feasible to know every scenario. Nevertheless, the

concepts detailed in the following section should serve as examples for digital

investigators to build upon.

2.1. Accounts and Groups

2.1.1. Local User Accounts and Groups

Beginning with PowerShell 5.1, Microsoft added new features to query and

manage local groups and user accounts. To get a listing of local users on a given system

the Get-LocalUser cmdlet can now be used:

Suppose gathering efforts were only interested in local accounts that are currently

“enabled”, the following logic can be applied:

 PS C:\> Get-LocalUser

Name Enabled Description
---- ------- -----------
DefaultAccount False A user account managed by the system.
Luser True luser Account
Admin123 False Built-in account for administering the computer/domain

PS C:\> Get-LocalUser | where Enabled -eq $True

Name Enabled Description
---- ------- -----------
luser True luser Account

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Hunting and Gathering with PowerShell 8

Troy Wojewoda, tdwoje@gmail.com

To get a listing a local groups on a given system, use the Get-LocalGroup

cmdlet:

 And finally, to get members of a given group, use the Get-LocalGroupMember

cmdlet:

The Get-LocalUser, Get-LocalGroup and Get-LocalGroupMember cmdlets

do not work against remote computers unless PowerShell Remoting is enabled (“Running

Remote Commands”, 2018). See appendix for additional techniques on how to gather

this information from remote computers.

2.1.2. Domain Accounts – users | groups | computers

In a Windows Active Directory environment, the collection of local groups and

their members will unavoidably lead to the discovery of domain users and groups.

Querying these environment variables is straightforward with PowerShell. To obtain a

list of all users that are marked as “enabled” in AD:

Obtain a list of accounts from a group in AD which are categorized as “user”

accounts:

PS C:\> Get-LocalGroup

Name Description
---- -----------
Access Control Assistance Operators Members of this group…
Administrators Administrators have c…
Backup Operators Backup Operators can…
Cryptographic Operators Members are authorize…
Distributed COM Users Members are allowed t…
Event Log Readers Members of this group
Guests Guests have the same

PS C:\> Get-ADUser -Filter 'Name -Like "*"' | where Enabled -eq $True

PS C:\> Get-ADGroupMember Administrators | where objectClass -eq 'user'

PS C:\> Get-LocalGroupMember Administrators

ObjectClass Name PrincipalSource
----------- ---- ---------------
User PLABPC\Luser Local
Group PLAB\Admins ActiveDirectory

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Hunting and Gathering with PowerShell 9

Troy Wojewoda, tdwoje@gmail.com

Computers managed in AD are essentially accounts as well. To get a listing of all

“enabled” computers with their associated operating system:

2.2. Installation of Software

2.2.1. Programs

There are a number a ways to gather a list of installed programs on a given

system. From the perspective of PowerShell, two useful cmdlets come in play: Get-

WMIObject and Get-CimInstance. Both cmdlets can use the win32_product WMI

class which “represents products as they are installed by Windows Installer” (“Retrieving

a WMI Class”, 2018).

The Select-Object cmdlet can be used for a more refined output. The following

example shows how to select a desired list of objects associated with each installed

program:

PS C:\> Get-ADComputer -Filter "Name -Like '*'" -Properties * | where Enabled
-eq $True | Select-Object Name, OperatingSystem, Enabled

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Hunting and Gathering with PowerShell 1
0

Troy Wojewoda, tdwoje@gmail.com

 Not all installed programs can be collected with the win32_product class.

Taking a closer inspection at where the operating system stores programs with uninstall

features, we look to the Windows registry; in particular, under the HKLM\Software hive

(“32-bit and 64-bit Application Data in the Registry”, 2018). If the program installed as a

64-bit application, the listing will be found under:

HKLM:\Software\Wow6432Node\Microsoft\Windows\CurrentVersion\Uninstall\

 Otherwise, if the program is installed as a 32-bit application, the listing will be at:

HKLM:\Software\Microsoft\Windows\CurrentVersion\Uninstall\

Note above: using the ‘where’ clause with a fuzzy match on DisplayName object

for brevity.

2.2.2. OS Build and Hotfixes

Being able to identify when and what patches are installed is essential for

defenders performing risk reduction in their environments. As seen in the previous

section, getting a list of installed programs with their respective version number is a step

in the right direction. This effort can be expanded upon by inspecting both the OS build

number as well as installed hotfixes.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Hunting and Gathering with PowerShell 1
1

Troy Wojewoda, tdwoje@gmail.com

 To get the OS release version on the current system, we target the ReleaseId

object with the following query:

It may also be necessary to obtain the OS build number. To do this, the

Get-CimInstance cmdlet can be used to access the Win32_OperatingSystem class:

Gathering a list of hotfixes is straightforward with PowerShell by leveraging the

Get-Hotfix cmdlet. This cmdlet can be used without any additional parameters, resulting

in all installed hotfixes displayed to the console. If there’s a specific hotfix in question,

simply add the hotfix name following the cmdlet:

Another example may involve getting a list of hotfixes installed within a given

timeframe. For instance, to get a list of hotfixes installed between Jan01-Dec31 2017:

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Hunting and Gathering with PowerShell 1
2

Troy Wojewoda, tdwoje@gmail.com

2.2.3. Services

The collection of services can be performed in a number of ways via PowerShell.

One approach is to use the Get-Service cmdlet:

However, the Get-Service cmdlet lacks some important service attributes that

may want to be collected; such as the process the service launches, the account used as

well as whether or not the service uses its own process or a shared process. For this

information, the Get-CimInstance cmdlet can once again be used, this time with the

Win32_Service class:

2.3. Group Policy

Understanding local and domain policies is a fundamental task when baselining

an environment. It can also be a way to verify if a system or host of systems are within

compliance. If a Windows machine in question is part of a managed active directory

domain, PowerShell has some convenient cmdlets that can be utilized. For starters, the

Get-ADDefaultDomainPasswordPolicy cmdlet can be used in either the context of the

currently logged on user, the local computer or a given domain:

PS C:\> Get-CimInstance –ClassName Win32_Service | Select-Object Name, DisplayName,

StartMode, State, PathName, StartName, ServiceType

Name : Disk Status
DisplayName : Disk Status
StartMode : Auto
State : Stopped
PathName : C:\windows\SysWOW64\dstat.exe
StartName : LocalSystem
ServiceType : Own Process

PS C:> Get-Service | Select-Object Name, DisplayName, Status, StartType

Name DisplayName Status StartType
---- ----------- ------ ---------
Disk Status Disk Status Stopped Automatic

PS C:\> Get-ADDefaultDomainPasswordPolicy -Current LoggedOnUser

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Hunting and Gathering with PowerShell 1
3

Troy Wojewoda, tdwoje@gmail.com

In managed Active Directory environments, Group Policy Objects are used to

ensure the centralized management of system and security configuration settings being

applied to both user and computer accounts (Petters, 2018). PowerShell provides query

access to these GPOs in a number of cmdlets. The first cmdlet to look at is Get-GPO.

The Get-GPO cmdlet returns all or one GPOs in the domain:

 Get-GPO output provides a high-level view of each GPO. For details on a given

GPO, we look to the Get-GPOReport cmdlet. GPO settings can be verbose, therefore

redirecting the output to a file or supplying the ‘-Path’ parameter may be a preferable

alternative over standard output to the console.

Or:

 A more encompassing approach to understanding all policies being applied to

either a given user or computer (or both), is to use the Resultant Set of Policy approach

(RSoP). PowerShell provides access to RSoP via the Get-GPResultantSetOfPolicy

cmdlet:

PS C:\> Get-ADDefaultDomainPasswordPolicy -Current LocalComputer

PS C:\> Get-ADDefaultDomainPasswordPolicy -Identity pclab.com

PS C:\> Get-GPO –all

DisplayName : Default Domain Policy
DomainName : plab.com
Owner : PLAB\Domain Admins
Id : 41e3f340-116d-41d9-843c-01d04ab765e2
GpoStatus : AllSettingsEnabled
Description :
CreationTime : 5/29/2004 8:56:53 PM
ModificationTime : 4/18/2018 11:15:14 AM
UserVersion : AD Version: 6, SysVol Version: 6
ComputerVersion : AD Version: 41, SysVol Version: 41

PS C:\> Get-GPResultantSetOfPolicy –user <user> -computer <computer> -ReportType Html
-Path ".\user-computer-RSoP.html"

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Hunting and Gathering with PowerShell 1
4

Troy Wojewoda, tdwoje@gmail.com

3. PowerShell for the Hunter and Responder

Incident handlers, digital forensic analysts and cyber threat hunters operate in

varying roles within an organization’s CSIRT. Each role will certainly have and rely

upon specific toolsets. CSIRTs tasked with defending against advanced and evolving

cyber threats must continually adapt by evaluating and utilizing new and existing tools

(“FIRST CSIRT Framework”, 2019). As demonstrated with many of the collection

capabilities, PowerShell’s usefulness can be extended into the realm of hunting and

incident response.

3.1. Incident Response

Tools and techniques used by incident response teams should be tailored to the

organization and the networks they defend. This is where CSIRTs create incident

response playbooks to ensure they are operating both efficiently and effectively

(Bollinger, Enright & Valites, 2015). This section will demonstrate some uses of

PowerShell that can serve as examples within a CSIRT playbook; specifically, where an

incident responder is operating in the identification phase and analyzing a suspect host

computer.

3.1.1. Logged-On User

The Get-CimInstance cmdlet used with the Win32_ComputerSystem class

returns the currently logged-on user as well as a few more attributes that may be handy to

an incident responder:

PS C:\> Get-CimInstance –ClassName Win32_ComputerSystem | Select-Object Name,
UserName, PrimaryOwnerName, Domain, TotalPhysicalMemory, Model, Manufacturer

Name : PLABPC
UserName : PLAB\JUSER
PrimaryOwnerName : LAN Administrator
Domain : plab.com
TotalPhysicalMemory : 8466345984
Model : HP Elitebook x360 1030 G2
Manufacturer : HP

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Hunting and Gathering with PowerShell 1
5

Troy Wojewoda, tdwoje@gmail.com

See appendix for additional pivots on a domain user accounts in Windows Active

Directory environments.

3.1.2. Network Activity

TCP and UDP connections can be viewed in PowerShell by using the Get-

NetTCPConnection and Get-NETUDPEndpoint cmdlets respectively. Consider a

scenario where the NIDS alerted on an internal system communicating outbound over

TCP/8080, to the remote address 52.46.157.11. An incident handler can use the

NetTCPConnection cmdlet with the ‘-RemoteAddress’ and ‘-RemotePort’ parameters to

hone in on the process responsible:

3.1.3. Running processes

The Get-Process cmdlet returns a listing of running processes on a system. To

identify the owning process from the example above, the Process ID (PID) can be used as

follows:

PS C:\> Get-NetTCPConnection -RemoteAddress 52.46.157.11 -RemotePort 8080 | Select-
Object CreationTime, LocalAddress, LocalPort, RemoteAddres, RemotePort,
OwningProcess, State

CreationTime : 2/6/2019 12:57:29 PM
LocalAddress : 192.168.100.29
LocalPort : 56031
RemoteAddress : 52.46.157.11
RemotePort : 8080
OwningProcess : 4308
State : Established

CreationTime : 2/6/2019 12:56:13 PM
LocalAddress : 192.168.100.29
LocalPort : 56001
RemoteAddress : 52.46.157.11
RemotePort : 8080
OwningProcess : 4308
State : Established

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Hunting and Gathering with PowerShell 1
6

Troy Wojewoda, tdwoje@gmail.com

The above provides key information related to PID 4308 – the process name,

when the process launched and the full path of the executable on disk. However, the

Get-Process cmdlet lacks some additional details such as the parent process and

command-line arguments provided at start time. For this detail, the Get-CimInstance

cmdlet comes in handy once again:

Finally, by pivoting on the parent process ID (PPID), it can be determined the

source of the event – a word document that spawned PowerShell which created the

network traffic responsible for the NIDS alert:

3.1.4. Scheduled Tasks and Scheduled Jobs

PowerShell provides the ability to manage scheduled tasks with a number of built-

in cmdlets (“ScheduledTasks”, 2017). To view all scheduled tasks on a system, use the

Get-ScheduledTask cmdlet. There are a significant number of scheduled tasks found

out-of-the-box on any given Windows system. Collecting them all across the

environment may be a good baselining effort; however, for the purposes of finding evil in

a scenario where a good baseline has not been established, filtering out some of this noise

is ideal:

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Hunting and Gathering with PowerShell 1
7

Troy Wojewoda, tdwoje@gmail.com

One scheduled task named “updater1” was found. Some attributes are shown, but

important details such as the actions and triggers are not provided. To obtain the details

of a given task, the Export-ScheduledTask cmdlet can be used, which outputs an xml

formatted listing of a task’s details:

Scheduled Jobs are a little different than scheduled tasks. Schedule jobs are

relevant only to the execution of PowerShell; they can be thought of as a “hybrid of

background jobs and scheduled tasks” (Blender, 2013). First, use the Get-ScheduleJob

cmdlet to see a listing of Scheduled Jobs on a system.

PS C:> Get-ScheduledTask | Select-Object TaskName, TaskPath, Date, Author, Actions,
Triggers, Description, State | where Author -NotLike 'Microsoft*' | where Author -ne
$null | where Author -NotLike '*@%SystemRoot%*'

TaskName : updater1
TaskPath : \
Date : 2019-02-11T16:28:34.0326429
Author : PLAB\JUSER
Actions : {MSFT_TaskExecAction}
Triggers : {MSFT_TaskDailyTrigger}
Description :
State : Ready

PS C:> Export-ScheduledTask -TaskName updater1
.
.
<Triggers>
 <CalendarTrigger>
 <StartBoundary>2019-02-11T16:26:08</StartBoundary>
 <Repetition>
 <Interval>PT10M</Interval>
 <Duration>PT1H</Duration>
 </Repetition>
 <ScheduleByDay>
 <DaysInterval>1</DaysInterval>
 </ScheduleByDay>
 </CalendarTrigger>
 </Triggers>
 <Actions Context="Author">
 <Exec>
 <Command>C:\Users\juser\appdata\Roaming\1.exe</Command>
 </Exec>
 </Actions>
.
.

PS C:\windows\system32> Get-ScheduledJob

Id Name JobTriggers Command Enabled
-- ---- ----------- ------- -------
1 myProcesses 1 Get-Process True

PS C:\windows\system32> Get-ScheduledJob -Id 1 | Get-JobTrigger

Id Frequency Time DaysOfWeek Enabled
-- --------- ---- ---------- -------
1 Once 2/11/2019 10:00:00 PM True

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Hunting and Gathering with PowerShell 1
8

Troy Wojewoda, tdwoje@gmail.com

Above, we see that there is a Scheduled Job to run the Get-Process cmdlet, once

at 10:00pm. Results of a scheduled job get saved. To view these results, start off with

the Get-Job cmdlet. Once the job has been completed, the results can be collected with

the Receive-Job cmdlet as so:

3.1.5. File Hashing

Properly handling of files collected and examined during an incident response is a

vital function for any CSIRT. To ensure the integrity of a file or artifact, incident

handlers use cryptographic hashing algorithms such as MD5, SHA1 and SHA256.

PowerShell provides this capability with the Get-FileHash cmdlet:

3.2. Hunting

There are countless ways to hunt for an adversary within a computer environment.

Many techniques begin with collecting and sifting through raw artifacts. Information

collected from endpoints can be an extremely resourceful place to hunt considering this is

where many of the adversary’s techniques are carried out (“Enterprise Techniques”,

2018). This section provides some specific PowerShell examples a threat hunter may

find useful to build upon into current tools, techniques and processes.

PS C:\windows\system32> Get-Job

Id Name PSJobTypeName State HasMoreData Location Command
-- ---- ------------- ----- ----------- -------- -------
1 myProcesses PSScheduledJob Completed True localhost Get-Process

PS C:\windows\system32> Receive-Job -Id 1 -Keep

Handles NPM(K) PM(K) WS(K) CPU(s) Id SI ProcessName
------- ------ ----- ----- ------ -- -- -----------
 762 30 5948 18928 1.52 10376 1 powershell
 172 14 2664 10816 0.36 10448 1 notepad
 546 29 18356 32868 2.16 1480 1 cmd
 536 39 126668 127344 68.08 12992 1 chrome

PS C:\> Get-FileHash .\notes.txt -Algorithm MD5

Algorithm Hash Path
--------- ---- ----
MD5 53A09F3C1E5AF07F8C0E49F9720D5247 C:\Users\juser\Documents\notes.txt

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Hunting and Gathering with PowerShell 1
9

Troy Wojewoda, tdwoje@gmail.com

3.2.1. File Analysis, and Alternate Data Streams

Alternate Data Streams (ADS) are additional $DATA attributes associated to files

on NTFS filesystems (Carrier, 2005). There are various techniques that can be used to

view ADS, such as a directory listing with the ‘/R’ switch (dir /R) or using the Windows

Sysinternals tool: streams.exe. PowerShell also provides a convenient way to view both

the streams associated to a file as well as its contents. First, the Get-Item cmdlet is used

with ‘-Stream’ and a wildcard ‘*’ parameter to view all possible streams:

Due to the fact that all files on an NTFS filesystem will have a ‘$DATA’ stream

associated to it, the command can be adjusted slightly to show all other streams:

Pivoting on the stream named ‘SoupDuJour’, the contents can be viewed by using

the Get-Content cmdlet:

PS C:\> Get-Content .\notes.txt -Stream SoupDuJour
It's the soup of the day...

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Hunting and Gathering with PowerShell 2
0

Troy Wojewoda, tdwoje@gmail.com

3.2.2. Raw File Analysis

Consider a scenario in which the contents of a file are needed to be examined

thoroughly, regardless of the datatype. Viewing a non-ASCII character-set in the shell’s

standard output, or in a common text editor such as notepad, will misrepresent the results

due to the distortion of the original content as shown here:

Exposing the raw content in a hexadecimal representation helps address these

concerns. PowerShell supports a hexadecimal view with the Format-Hex cmdlet and

using the ‘-Encoding’ parameter with value Byte:

The Format-Hex cmdlet presents the output in hexadecimal form, found in the

center of the display, with its ASCII equivalent in the right column. The numbers in the

left column represent the byte-offset of the content, also in hex. In the example above,

PowerShell is not converting the content to hex, but rather presenting the output in that

format. The format string operator ‘-f’ can be used to convert the output to hex.

PS C:\> Get-Content .\ps.txt
MZ•

ÿÿ ¸ @ è
º
 ´ Í!¸LÍ!This program cannot

$ <îÒˆx•¼Ûx•¼Ûx•¼Ûq÷8ÛR•¼Ûq÷)Ûh•¼Ûq÷/Ûk•¼Ûx•½ÛÆ•¼Ûq÷?Ûñ•¼Ûq÷(Ûy•¼Ûq÷-
Ûy•¼ÛRichx•¼Û
Hp UŠ ` @

î

 € DÔ
¨É@ ` .text zG H

`.rdata Þ…
@ À.rsrc ØÈÐÊò@ @
„$‘ ‰l$T‰l$\‰l$<
è$M
‹L$ƒÄ

•T$RQPj W‰D$LÿÓ‹T$Rè M
ƒÄ

‰D$‰(•D$0PUUUUUUh!j j•Œ$ˆ
QÿÖ‹T$0Rèåýÿÿ‹èƒÄ

…íu<jLèÂ
‹L$8ƒ9 ÇD$4 †›
ºüÿÿÿ•A

+Õ‰D$$‰T$Lë
•¤$ ‹T$L3ÿ9}
v,•u

 Ð
‹Æƒù

r;ƒé

ƒÀ

ëìGƒê
ƒÆ
;} rÙ‹t$

PS C:\> Get-Content .\ps.txt –Encoding Byte | Format-Hex

 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

00000000 4D 5A 90 00 03 00 00 00 04 00 00 00 FF FF 00 00 MZ•.............
00000010 B8 00 00 00 00 00 00 00 40 00 00 00 00 00 00 00 ¸.......@.......
00000020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000030 00 00 00 00 00 00 00 00 00 00 00 00 E8 00 00 00 è...
00000040 0E 1F BA 0E 00 B4 09 CD 21 B8 01 4C CD 21 54 68 ..º..´.Í!¸.LÍ!Th
00000050 69 73 20 70 72 6F 67 72 61 6D 20 63 61 6E 6E 6F is program canno
00000060 74 20 62 65 20 72 75 6E 20 69 6E 20 44 4F 53 20 t be run in DOS
00000070 6D 6F 64 65 2E 0D 0D 0A 24 00 00 00 00 00 00 00 mode....$.......

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Hunting and Gathering with PowerShell 2
1

Troy Wojewoda, tdwoje@gmail.com

Additionally, it may be desired to inspect the first few bytes of a given file. To do so, the

‘-ReadCount’ parameter is specified as follows:

Above, we grab the first four bytes of the file ps.txt, convert the value to hex and

assign that value to the $magicBytes variable. This technique can be expanded upon to

look for anomalous relationships between a file’s extension and its magic bytes content.

For example, the magic bytes 4D 5A 90 00 are representative of a Microsoft executable

file. It is atypical for a file containing these first four bytes to be found with a non-

executable extension name, such as .txt, .png, .gif, .jpg, etc. See appendix for a practical

use-case.

3.2.3. Regular Expressions

Regular expressions provide an extremely powerful capability that no hunt team

should be without. A regular expression or regex for short, is a series of one or more

patterns used to find matches in text and can be of “literal characters, operators, and other

constructs” (“About Regular Expressions”, 2017). PowerShell’s Select-String cmdlet

can process regex’s fairly straightforward. Simply supply the regex pattern as an input

parameter to Select-String. The following example looks in the contents of a file, for a

pattern of base64 characters, with at least 1024 characters in length.

PS C:\> $magicBytes = '{0:X2}' -f (Get-Content .\ps.txt -Encoding Byte -ReadCount 4)
PS C:\> $magicBytes
4D 5A 90 00

PS C:\> Get-Content .\file.bin | Select-String '[A-Za-z0-9\/\+]{1024,}[=]{0,2}'

TVqQAAMAAAAEAAAA//8AALgAAAAAAAAAQAAA6AAA
AA4fug4AtAnNIbgBTM0hVGhpcyBwcm9ncmFtIGNhbm87tKIeI+823iPvNt4j7zbcfc421KPvNtx9ynbaI+82
3H3L9trj7zbeI+928aPvNtx9z/b8Y+823H3KNt5j7zbcfct23mPvNtSaWNoeI+82wAAAAAAAAAAAAAAAAAAA
sBCQAASAIAAHADAAAAAABVigAAABAAAABgAgAAAEAAABAAAAACAAAFAAAAAAAAAAUAAAAAAAAAAKAIAAAEAA
DuBAYAAwAAgAAAEAAAEAAAAAAQAAAQAAAAAAAAEAAALwFAHgXAAAAAAAAAAAAAGBjAgAcAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAqMkCAEAAAAAAAAAAAAAAAABgAgAcAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAIAAAYC5yZGF0YQAA3oUAAABgAgAAhgAAAEwCAAAAAAAAAAAAAAAAAEAAAEAuZGF0YQAAAOTWAgAA8AIA
ACAAAADSAgAAAAAAAAAAAAAAAABAAADALnJzcmMAAA
AA
AA
AA
AA
CFZXi3wkFGpAV/8VqGFCAGhwZEIAaFxkQgD/FaxhQgBQ/

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Hunting and Gathering with PowerShell 2
2

Troy Wojewoda, tdwoje@gmail.com

Alternatively, the contents of the file can be placed in a variable and then use the

‘-cmatch’ operator with the same regex, which returns a Boolean ‘True’ or ‘False’

depending on the results:

3.2.4. Encoded Data – Base64

Using regular expressions to hunt for base64 patterns is useful, but caution must

be applied if the search-depth criteria is low. Because the padding character ‘=’ is not

always present in a base64 encoded value, the regex ‘[A-Za-z0-9\+\/][=]{0,2}’ would hit

on any string containing a letter, number or one of the two special characters, resulting in

a large number of false positives. Increasing the search-depth criteria reduces the

chances of false positives. Also, hunters should be cognizant of the locations and sources

they search for base64 encoded patterns as many legitimate protocols rely on this

technique for transportation purposes, such as SMTP and HTTP protocols (Lion &

Yehudai, 2018).

PowerShell has built-in capabilities to decode base64 encoded messages. The

following example demonstrates decoding of a base64 string:

It’s important to note that there are two data conversions occurring in the above

example. The first is converting from a base64 string with

[System.Convert]::FromBase64String and the second is taking the output from the first

conversion and returning the ASCII string of that value with

[System.Text.Encoding]::ascii.GetString.

PS C:\> $filecontent = Get-Content .\file.bin

PS C:\> $filecontent -cmatch '[A-Za-z0-9\+\/]{1024,}[=]{0,2}'
True

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Hunting and Gathering with PowerShell 2
3

Troy Wojewoda, tdwoje@gmail.com

The above approach works fine if the ultimate result is all ASCII characters; that

may not always be the case, however. Revisiting the Format-Hex cmdlet, the analyst

has the ability to view the raw contents in hexadecimal form. The following is an

example in which the decoded result is not all ASCII printable.

3.2.5. Encoded Data – XOR

The bitwise operation XOR is another common encoding scheme used by

adversaries (“Custom Cryptographic Protocol”, 2018). In the event a threat hunter,

digital forensic analyst or incident responder suspects the use of XOR and possesses the

key to decipher the data, PowerShell’s bitwise XOR operator ‘-bxor’ can be used to as

follows:

Which returns the value in the decimal format. To get the results in hexadecimal

form, use the format string operation:

A more realistic scenario would be to iterate through an array of data, one element

at a time, performing the XOR operation. Revisiting the example from the previous

section and having the knowledge of the hex key 0x78, the message can be deciphered:

PS C:\> $b64msg2_out = ([System.Convert]::FromBase64String($b64msg2))
PS C:\> $a = $b64msg2_out.count
PS C:\> $xorKey = 0x78
PS C:\> $xor_out = for($i=0; $i -le $a; $i++) {$b64msg2_out[$i] -bxor $xorKey}
PS C:\> $xor_out | Format-Hex

 Path:

 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

00000000 68 74 74 70 3A 2F 2F 35 32 2E 34 36 2E 31 35 37 http://52.46.157
00000010 2E 31 31 3A 38 30 38 30 2F 61 73 64 66 67 2F 31 .11:8080/asdfg/1
00000020 32 33 2F 61 2E 6A 70 67 0A 78 23/a.jpg.x

PS C:\> $b64msg2 = "EAwMCEJXV01KVkxOVklNT1ZJSUJASEBIVxkLHB4fV0lKS1cZVhIIH3I="
PS C:\> ([System.Convert]::FromBase64String($b64msg2)) | Format-Hex

 Path:

 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

00000000 10 0C 0C 08 42 57 57 4D 4A 56 4C 4E 56 49 4D 4F BWWMJVLNVIMO
00000010 56 49 49 42 40 48 40 48 57 19 0B 1C 1E 1F 57 49 VIIB@H@HW.....WI
00000020 4A 4B 57 19 56 12 08 1F 72 JKW.V...r

PS C:\> $xordByte = 0x78
PS C:\> $key = 0x54
PS C:\> $xordByte -bxor $key
44

PS C:\> '{0:X2}' -f ($xordByte -bxor $key)
2C

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Hunting and Gathering with PowerShell 2
4

Troy Wojewoda, tdwoje@gmail.com

4. Conclusion

Data collection is at the heart of every digital investigation to include an incident

response. Both hunting and gathering can serve as extremely useful techniques that

ultimately aid the incident responder. Although efforts should be made to automate and

centralize this effort, some system artifacts will remain on a given host. Handlers can use

these datasets to build baselines or normalize environmental variables. Additionally, the

output of a threat hunting engagement can be used to create rules or become building

blocks for signature development.

Performing targeted collections with tools like PowerShell, responders can collect

granular objects that relate to a given event or series of events. The latest in

PowerShell’s framework is shown to have a treasure trove of capabilities for incident

response team members. Incident handlers and threat hunters alike can leverage this

resource to further enrich the information needed to solve complex or compounded

problems within their computer networks. Finally, tried and tested techniques can be

encapsulated into scripts that teams can use for repetitive data collection and analysis.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Hunting and Gathering with PowerShell 2
5

Troy Wojewoda, tdwoje@gmail.com

5. References

32-bit and 64-bit Application Data in the Registry. (2018, May 30). Retrieved from

https://docs.microsoft.com/en-us/windows/desktop/sysinfo/32-bit-and-64-bit-

application-data-in-the-registry.

About Regular Expressions. (2017, November 30). Retrieved from

https://docs.microsoft.com/en-

us/powershell/module/microsoft.powershell.core/about/about_regular_expression

s?view=powershell-5.1.

Beadle, J. (2018, June 7). How to Hunt For Security Threats. Retrieved from

https://www.gartner.com/smarterwithgartner/how-to-hunt-for-security-threats/.

Bejtlich, R. (2011, August). Become a Hunter. Retrieved from

http://docs.media.bitpipe.com/io_24x/io_24618/item_370437/informationsecurity

_july_aug2011_final.pdf.

Blender, J. (2013, November 23). Using Scheduled Tasks and Scheduled Jobs in

PowerShell. Retrieved from https://devblogs.microsoft.com/scripting/using-

scheduled-tasks-and-scheduled-jobs-in-powershell/.

Bollinger, J., Enright, B., & Valites, M. (2015). Crafting the InfoSec Playbook.

Sebastopol, CA: O'Reilly Media, Inc.

Carrier, B. (2005). File System Forensic Analysis. Boston, MA: Pearson Education, Inc.

Cruz, M. (2017, June 1). Security 101: The Rise of Fileless Threats that Abuse

PowerShell. Retrieved from
https://www.trendmicro.com/vinfo/pl/security/news/security-technology/security-

101-the-rise-of-fileless-threats-that-abuse-powershell.

Custom Cryptographic Protocol. (n.d.). Retrieved from

https://attack.mitre.org/techniques/T1024/.

Enterprise Techniques. (n.d.). Retrieved from

https://attack.mitre.org/techniques/enterprise/.

FIRST CSIRT Framework. (n.d.). Retrieved from

https://www.first.org/education/csirt_service-framework_v1.1.

Ingram, D. (2017, July 31). Open Source Does Not Mean Free! Retrieved from

http://www.siwel.com/blog/open-source-does-not-mean-free.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Hunting and Gathering with PowerShell 2
6

Troy Wojewoda, tdwoje@gmail.com

Lion, M. & Yehudai, G. (2018, May 1). The Catch 22 of Base64: Attacker Dilemma from

a Defender Point of View. Retrieved from https://www.incapsula.com/blog/the-

catch-22-of-base64-attacker-dilemma-from-a-defender-point-of-view.html.

Petters, J. (2018, November 11). What is Group Policy, GPO and Why it Matters for

Data Security. Retrieved from https://www.varonis.com/blog/group-policy/.

PowerShell Core. (2019, February 20). Retrieved from

https://github.com/PowerShell/PowerShell.

PowerShell Overview. (2018, August 26). Retrieved from

https://docs.microsoft.com/en-
us/powershell/scripting/overview?view=powershell-5.1.

Retrieving a WMI Class. (2018, May 30). Retrieved from https://docs.microsoft.com/en-

us/windows/desktop/WmiSdk/retrieving-a-class.

Set-ExecutionPolicy. (2018, August 26). Retrieved from https://docs.microsoft.com/en-

us/powershell/module/microsoft.powershell.security/set-

executionpolicy?view=powershell-5.1.

ScheduledTasks. (2017, September 25). Retrieved from https://docs.microsoft.com/en-

us/powershell/module/scheduledtasks/?view=win10-ps.

Running Remote Commands. (2018, August 13). Retrieved from

https://docs.microsoft.com/en-us/powershell/scripting/learn/remoting/running-

remote-commands?view=powershell-5.1.

Windows Management Framework. (2018, June 11). Retrieved from

https://docs.microsoft.com/en-us/powershell/wmf/5.1/compatibility.

The Windows PowerShell ISE. (2018, August 13). Retrieved from

https://docs.microsoft.com/en-

us/powershell/scripting/components/ise/introducing-the-windows-powershell-

ise?view=powershell-5.1.

Wueest, C. (2018, July 16). PowerShell Threats Grow Further and Operate in Plain

Sight. Retrieved from https://www.symantec.com/blogs/threat-

intelligence/powershell-threats-grow-further-and-operate-plain-sight.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Hunting and Gathering with PowerShell 2
7

Troy Wojewoda, tdwoje@gmail.com

Appendix A – Additional Use-Cases

Use-Case 1: Add PowerShell version check to script

Example showing how to manually check the PowerShell version and exit the script if

not compatible:

The above script can also run at the cmd line via an interactive shell:

Furthermore, PowerShell provides built-in functionality using the #Requires statement:

The #Requires statement can be used to ensure other dependencies before executing a

script; such as, running as an administrator or requiring specific modules. See reference

on the #Requires statement for more details (“About Requires”, 2018).

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Hunting and Gathering with PowerShell 2
8

Troy Wojewoda, tdwoje@gmail.com

Use-Case 2: Collect local accounts and groups on remote computers

This use-case is applicable in scenarios where PS-Remoting is not an option, and thus the

Get-LocalUser and related cmdlets cannot be used against remote systems.

Collect local user accounts on computer PLABPC:

Get local groups on computer PLABPC:

Alternatively, using the –Query operator:

Collect all users and groups from the local Administrators group of computer PLABPC:

PS C:\> Get-WmiObject -ClassName Win32_UserAccount -ComputerName PLABPC | Select-
Object PSComputerName, Name, Disabled

PSComputerName Name Disabled
-------------- ---- --------
PLABPC Administrator False
PLABPC luser False
PLABPC Guest True

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Hunting and Gathering with PowerShell 2
9

Troy Wojewoda, tdwoje@gmail.com

Use-Case 3: List Hotfixes installed following the latest reboot

The following example shows how to list any hotfixes that were installed after the latest

reboot. This technique can be useful to find systems that may have received critical

patches but have not yet gone through a reboot cycle.

Use-Case 4: Get Services where a condition applies

Collect Services that are set to run Automatic:

Collect Services that are currently Running:

PS C:\> $lastboot = (Get-CimInstance -ClassName Win32_OperatingSystem).LastBootUpTime
PS C:\> $lastboot

Wednesday, February 20, 2019 3:00:10 PM

PS C:\> Get-HotFix | where InstalledOn -gt ($lastboot)

Source Description HotFixID InstalledBy InstalledOn
------ ----------- -------- ----------- -----------
PLABPC Security Update KB4487038 NT AUTHORITY\SYSTEM 2/22/2019 12:00:00 AM

PLABPC Security Update KB4487026 NT AUTHORITY\SYSTEM 2/21/2019 12:00:00 AM

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Hunting and Gathering with PowerShell 3
0

Troy Wojewoda, tdwoje@gmail.com

Use-Case 5: Registry Analysis

Collect items under the Run key for HKEY_CURRENT_USER:

Collect items under the Run key for HKEY_LOCAL_MACHINE:

Recently Opened documents (last 150):

The above command will return the items under the RecentDocs key, but not in human-

readable format. Therefore, the Format-Hex cmdlet can be used:

View Network Shares/mount points:

PS C:\> Get-ChildItem
"HKCU:\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\MountPoints2\" | Select-
Object PSChildName

PSChildName

##10.100.16.145#c$
##10.10.50.96#c$
##10.10.50.96#i$
##10.10.50.96#u$
##10.10.50.97#c$
##10.10.50.97#l$

PS C:\> Get-ItemProperty "HKCU:\SOFTWARE\Microsoft\Windows\CurrentVersion\Run\"

PS C:\> (Get-ItemProperty
"HKCU:\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\RecentDocs\").133 | Format-
Hex
 Path:

 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

00000000 74 00 65 00 73 00 74 00 5F 00 64 00 6F 00 63 00 t.e.s.t._.d.o.c.
00000010 2E 00 64 00 6F 00 63 00 78 00 00 00 74 00 32 00 ..d.o.c.x...t.2.
00000020 00 00 00 00 00 00 00 00 00 00 74 65 73 74 5F 64 test_d
00000030 6F 63 2E 64 6F 63 78 2E 6C 6E 6B 00 54 00 09 00 oc.docx.lnk.T...
00000040 04 00 EF BE 00 00 00 00 00 00 00 00 2E 00 00 00 ..ï¾............
00000050 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00000060 00 00 00 00 00 00 00 00 00 00 74 00 65 00 73 00 t.e.s.
00000070 74 00 5F 00 64 00 6F 00 63 00 2E 00 64 00 6F 00 t._.d.o.c...d.o.
00000080 63 00 78 00 2E 00 6C 00 6E 00 6B 00 00 00 20 00 c.x...l.n.k... .
00000090 00 00 ..

PS C:\> Get-ItemProperty "HKLM:\SOFTWARE\Microsoft\Windows\CurrentVersion\Run\"

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Hunting and Gathering with PowerShell 3
1

Troy Wojewoda, tdwoje@gmail.com

In PowerShell, some Registry hives can be connected to as a mountable drive.

Navigating the registry is equivalent to navigating a directory structure. Connecting to a

registry hive and navigating to a specific key:

The Get-Item and Get-ItemProperty cmdlets can be used as well:

PS HKCU:\SOFTWARE\Microsoft\Windows\CurrentVersion\run> Get-ItemProperty .\test\

myvalue : aHR0cDovLzUyLjQ2LjE1Ny4xMTo4MDgwLzEyMzQ1YWJjLnR4dA==
mybin : {222, 173, 190, 239}
PSPath : Microsoft.PowerShell.Core\Registry::HKEY_CURRENT_USER\SOFTWARE\Mi...
PSParentPath : Microsoft.PowerShell.Core\Registry::HKEY_CURRENT_USER\SOFTWARE\Mi...
PSChildName : test
PSDrive : HKCU
PSProvider : Microsoft.PowerShell.Core\Registry

PS C:\> cd hkcu:
PS HKCU:\>
PS HKCU:\> cd '.\SOFTWARE\Microsoft\Windows\CurrentVersion\Run\'
PS HKCU:\SOFTWARE\Microsoft\Windows\CurrentVersion\Run\>
PS HKCU:\SOFTWARE\Microsoft\Windows\CurrentVersion\Run\> ls

 Hive: HKEY_CURRENT_USER\SOFTWARE\Microsoft\Windows\CurrentVersion\Run

Name Property
---- --------
test myvalue : aHR0cDovLzUyLjQ2LjE1Ny4xMTo4MDgwLzEyMzQ1YWJjLnR4dA==
 mybin : {222, 173, 190, 239}

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Hunting and Gathering with PowerShell 3
2

Troy Wojewoda, tdwoje@gmail.com

Use-Case 6: List parent/child processes and relationships

Use-Case 7: Collect all network connections with their respective
processes and process command-line arguments

TCP Connections:

UDP Connections:

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Hunting and Gathering with PowerShell 3
3

Troy Wojewoda, tdwoje@gmail.com

Use-Case 8: Detect executable files with unexpected file extensions

Traverse a given directory and output any files that contain the magic-bytes of a

Windows executable when the extension is not .exe, .dll, etc.

PS C:\> .\scripts\find_magic.ps1

Number of files/folders: 27
Found atypical file: C:\ps.txt
Found atypical file: C:\PsExec.exe.txt

Number of suspect files found: 2

