
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec


©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

PGP:  HOW IT WORKS AND THE 
MATHEMATICS BEHIND IT 

by 

Karen t. Coe 

Submitted in partial fulfillment of the 
requirements for the certification  

GSEC Security Essentials version 1.4 b 

 
SANS Institue 

2002 

 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 

 
SANS 

Abstract 

PGP: HOW IT WORKS AND THE 
MATHEMATICS BEHIND IT 

by Karen Coe 

 

PGP is a free, downloadable email encryption program. The newest versions use 

a combination of the CAST, ElGamal, DSA, and SHA-1 algorithms. Public key 

encryption (ElGamal) is used to encrypt a symmetric key (CAST) used for 

encryption of the encryption of the actual message; thus providing a mechanism 

for secure key exchange.  The digital signature is a signed hash (DSA, SHA-1) 

ensuring authenticity and integrity. For extra assurance the owner of the key may 

be verified with a ‘fingerprint’ – a randomly generated string of numbers or 

words associated with the key. The public key algorithms use properties of the 

multiplicative group, Z*p, in their creation. This group satisfies the following two 

conditions: efficiency (its group operation is easy to apply) and security (the 

discrete logarithm problem in  Z*p is computationally infeasible – given p is large 

enough). The symmetric key, (CAST-128) is a block cipher, of the Feistel 

Ciphers. The DSS (Digital Signature Algorithm), for DSA, is specified in FIPS 

186, and the SHS (Secure Hash Standard), for SHA-1, is specified in FIPS PUB 

180.  

 

 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 

 

P a r t  1  

How PGP Works 
 
PGP (Pretty Good Privacy) is a freeware, downloadable program used to encrypt 
and digitally sign email, created by Phil Zimmerman. It is simple to use via plug-
ins for Outlook and Eudora. PGP combines public key and symmetric key 
cryptography, providing both efficiency and security.   
 
The process begins with the compression of the message (“...the algorithms are 
functionally equivalent to those used by PKWare’s PKSIP 2.X.” [1]). It is then 
encrypted with a one time session key - generated by random movements of the 
user’s mouse, and keyboard strokes. The session key is then encrypted with the 
recipient’s public key. Signing is done with the sender’s private key, and a hash of 
the message.  
 
Since symmetric key encryption is many times faster than public key encryption, 
this method yields a fast, yet secure encryption scheme. Decryption is via the 
decrypted (with the recipient’s private key) session key. Authentication is done 
with the sender’s public key.  Below is a simple demonstration of how the 
process works. 
 
 
 
 
 
 
  
 
 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 

 2

HOW DOES IT WORK?HOW DOES IT WORK?

nn Let’s use the proverbial Alice and Bob.Let’s use the proverbial Alice and Bob.
nn Alice will send a message to Bob.Alice will send a message to Bob.

Hi Bob, Are we still on for Friday?
BTW, dump that Disney stock, 

While there is still time,
Alice

 
                                            

First, a session key is generated. This is a oneFirst, a session key is generated. This is a one --
time, private (symmetric) key that will be used for time, private (symmetric) key that will be used for 

both encryption and decryption.both encryption and decryption.

ONE TIME SESSION KEY

 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 

 3

THE PLAIN TEXT IS COMPRESSEDTHE PLAIN TEXT IS COMPRESSED

nn Hi Bob, are we Hi Bob, are we 
still…….still…….

Hi Bob, are we still…..

 
 

The plain text is encrypted with the session keyThe plain text is encrypted with the session key

CqpFGByWpiTCriRD7huDkxkXfc+iOZC9HH+XufashiN743q1jNVFmOPI2+WCqpFGByWpiTCriRD7huDkxkXfc+iOZC9HH+XufashiN743q1jNVFmOPI2+WyMKHU yMKHU 
6jnXOiHlLSfa/4J5r5uCOWSQAIgIiJ0gvaMNYP3eTwGeIwIpsHrLpTzq2dY67PDp6jnXOiHlLSfa/4J5r5uCOWSQAIgIiJ0gvaMNYP3eTwGeIwIpsHrLpTzq2dY67PDp
HUZ7NrXSxj26LEvYv1wFE6uMu7smBmnxsk8LwlvMfyolMu5EgPal3+EZALHECAlyHUZ7NrXSxj26LEvYv1wFE6uMu7smBmnxsk8LwlvMfyolMu5EgPal3+EZALHECAly
xpIY5CHCKkz2ieQRFG2d6O8VZTCr8Azqqyh1gfsUuCr87E9T3ftwogpU4iBo3pVwxpIY5CHCKkz2ieQRFG2d6O8VZTCr8Azqqyh1gfsUuCr87E9T3ftwogpU4iBo3pVw
TjwDfi4dQEAlcxXKdMRy7Z4IewFbQFyRUK3Z2XeCyUiyL/CGCADBsFWakpzNOYmSTjwDfi4dQEAlcxXKdMRy7Z4IewFbQFyRUK3Z2XeCyUiyL/CGCADBsFWakpzNOYmS
bSC5D6RpP885yxJWmoHsLBC3PkZ88Ca7J44epkRQ4aDGISA0E6MxP2f1kM6LEGtSbSC5D6RpP885yxJWmoHsLBC3PkZ88Ca7J44epkRQ4aDGISA0E6MxP2f1kM6LEGtS
EDoG1XPHWhxg0Yzf+iImmF38WIcdniOPpNxUyANpAsuh/KTBhiObwL3o75AOn/6PEDoG1XPHWhxg0Yzf+iImmF38WIcdniOPpNxUyANpAsuh/KTBhiObwL3o75AOn/6P
meOe4mzSdBDLp0qyxMWQfyJbpikLnkyoO+PvlCqUe3iZ2ZjmyxJ4420zWdjllKljmeOe4mzSdBDLp0qyxMWQfyJbpikLnkyoO+PvlCqUe3iZ2ZjmyxJ4420zWdjllKlj
k1xp9Z6nSBNwvGm52XCe4bCksmQ59j5JvDH6PMpaHnV/z+Jb1gedYe7gfp3Y6h+4k1xp9Z6nSBNwvGm52XCe4bCksmQ59j5JvDH6PMpaHnV/z+Jb1gedYe7gfp3Y6h+4
6U6FNQW2vnYwyDIbXAGyyxqTGoe8YozexJAuD9vl7cg2XuEmJja7Uw6gHGgD7jdo6U6FNQW2vnYwyDIbXAGyyxqTGoe8YozexJAuD9vl7cg2XuEmJja7Uw6gHGgD7jdo
XsSWLREDycBLG2jOd4A2YKg/FRHDZtIWC0zLhb6jfbQHDtwvgCydnv1pnNHiqEbjXsSWLREDycBLG2jOd4A2YKg/FRHDZtIWC0zLhb6jfbQHDtwvgCydnv1pnNHiqEbj
92JJQGVGMjcRacxEryjofYu2PMOQB1L3K0VI6x43SPVsjhAdo2CSV/ePXnypZ+ec92JJQGVGMjcRacxEryjofYu2PMOQB1L3K0VI6x43SPVsjhAdo2CSV/ePXnypZ+ec
R+RmXji8EdeGHJolmvvoi3glAFP5bk7W0lN71+6zClz6gSo9ZFSpwcnBWgVpomRUR+RmXji8EdeGHJolmvvoi3glAFP5bk7W0lN71+6zClz6gSo9ZFSpwcnBWgVpomRU
6va+8w4+cg6gWehqtiUrhCD6+Xv6jnCrBC97HpWTfWBmYOcgf0+aMZ2k+FTkwbVI6va+8w4+cg6gWehqtiUrhCD6+Xv6jnCrBC97HpWTfWBmYOcgf0+aMZ2k+FTkwbVI
N7dotbAcul2IxJu01NQqdGB13Frq2GuDj9/N5723vqP2Te3njJpQn2muFGJpVZZyN7dotbAcul2IxJu01NQqdGB13Frq2GuDj9/N5723vqP2Te3njJpQn2muFGJpVZZy
7GwRl5l6nqOwjQNw9dQFGAmXmsE9es4/D9FbNE5+XJ8rwcpf 7GwRl5l6nqOwjQNw9dQFGAmXmsE9es4/D9FbNE5+XJ8rwcpf 
==XpgpXpgp
----------END PGP MESSAGEEND PGP MESSAGE----------

 
 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 

 4

The Plain Text is Compressed Using a The Plain Text is Compressed Using a 
Hashing AlgorithmHashing Algorithm

(This will be used for the 
digital signature)

 
 
 

The Digital Signature is Created Using The Message Digest The Digital Signature is Created Using The Message Digest 
(hashed message) and Alice’s (hashed message) and Alice’s PrivatePrivate Key.Key.

Alice’s Private Key

Message Digest

Alice’s Signature

 
 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 

 5

The Message is SentThe Message is Sent

Black Hat cannot Read the Text Unless He Has Bob’s 
Private Key (to decrypt the session key); He cannot 
Change the Message Digest,Unless He Has Alice’s 
Private Key.

 
 
 
 

Let the Decryption Begin!Let the Decryption Begin!

ENCRYPTED SESSION KEY Bob’s Private Key

ONE TIME SESSION KEY

Bob decrypts the one time 
session key With his private key.

 
 
 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 

 6

Bob Decrypts Alice’s Message With Bob Decrypts Alice’s Message With 
the Onethe One--Time Session KeyTime Session Key

nn CqpFGByWpiTCriRD7huDkxkXfc+iOZC9HH+XufashiN743q1jNVCqpFGByWpiTCriRD7huDkxkXfc+iOZC9HH+XufashiN743q1jNV
FmOPI2+WyMKHU FmOPI2+WyMKHU 
6jnXOiHlLSfa/4J5r5uCOWSQAIgIiJ0gvaMNYP3eTwGeIwIpsHrL6jnXOiHlLSfa/4J5r5uCOWSQAIgIiJ0gvaMNYP3eTwGeIwIpsHrL
pTzq2dY67PDp pTzq2dY67PDp 
HUZ7NrXSxj26LEvYv1wFE6uMu7smBmnxsk8LwlvMfyolMu5EgPHUZ7NrXSxj26LEvYv1wFE6uMu7smBmnxsk8LwlvMfyolMu5EgP
al3+EZALHECAly al3+EZALHECAly 
xpIY5CHCKkz2ieQRFG2d6O8VZTCr8Azqqyh1gfsUuCr87E9T3ftxpIY5CHCKkz2ieQRFG2d6O8VZTCr8Azqqyh1gfsUuCr87E9T3ft
wogpU4iBo3pVw wogpU4iBo3pVw 
TjwDfi4dQEAlcxXKdMRy7Z4IewFbQFyRUK3Z2XeCyUiyL/CGCATjwDfi4dQEAlcxXKdMRy7Z4IewFbQFyRUK3Z2XeCyUiyL/CGCA
DBsFWakpzNOYmS DBsFWakpzNOYmS 
bSC5D6RpP885yxJWmoHsLBC3PkZ88Ca7J44epkRQ4aDGISA0bSC5D6RpP885yxJWmoHsLBC3PkZ88Ca7J44epkRQ4aDGISA0
E6MxP2f1kM6LEGtS E6MxP2f1kM6LEGtS 
EDoG1XPHWhxg0Yzf+iImmF38WIcdniOPpNxUyANpAsuh/KTBEDoG1XPHWhxg0Yzf+iImmF38WIcdniOPpNxUyANpAsuh/KTB
hiObwL3o75AOn/6P hiObwL3o75AOn/6P 
meOe4mzSdBDLp0qyxMWQfyJbpikLnkyoO+PvlCqUe3iZ2ZjmyxmeOe4mzSdBDLp0qyxMWQfyJbpikLnkyoO+PvlCqUe3iZ2Zjmyx
J4420zWdjllKlj J4420zWdjllKlj 
k1xp9Z6nSBNwvGm52XCe4bCksmQ59j5JvDH6PMpaHnV/z+Jbk1xp9Z6nSBNwvGm52XCe4bCksmQ59j5JvDH6PMpaHnV/z+Jb
1gedYe7gfp3Y6h+4 1gedYe7gfp3Y6h+4 
6U6FNQW2vnYwyDIbXAGyyxqTGoe8YozexJAuD9vl7cg2XuEmJ6U6FNQW2vnYwyDIbXAGyyxqTGoe8YozexJAuD9vl7cg2XuEmJ
ja7Uw6gHGgD7jdo ja7Uw6gHGgD7jdo 
XsSWLREDycBLG2jOd4A2YKg/FRHDZtIWC0zLhb6jfbQHDtwvgXsSWLREDycBLG2jOd4A2YKg/FRHDZtIWC0zLhb6jfbQHDtwvg
Cydnv1pnNHiqEbj Cydnv1pnNHiqEbj 
92JJQGVGMjcRacxEryjofYu2PMOQB1L3K0VI6x43SPVsjhAdo2C92JJQGVGMjcRacxEryjofYu2PMOQB1L3K0VI6x43SPVsjhAdo2C
SV/ePXnypZ+ec SV/ePXnypZ+ec 
R+RmXji8EdeGHJolmvvoi3glAFP5bk7W0lN71+6zClz6gSo9ZFSR+RmXji8EdeGHJolmvvoi3glAFP5bk7W0lN71+6zClz6gSo9ZFS
pwcnBWgVpomRU pwcnBWgVpomRU 
6va+8w4+cg6gWehqtiUrhCD6+Xv6jnCrBC97HpWTfWBmYOcg6va+8w4+cg6gWehqtiUrhCD6+Xv6jnCrBC97HpWTfWBmYOcg
f0+aMZ2k+FTkwbVI f0+aMZ2k+FTkwbVI 
N7dotbAcul2IxJu01NQqdGB13Frq2GuDj9/N5723vqP2Te3njJpN7dotbAcul2IxJu01NQqdGB13Frq2GuDj9/N5723vqP2Te3njJp
Qn2muFGJpVZZy Qn2muFGJpVZZy 
7GwRl5l6nqOwjQNw9dQFGAmXmsE9es4/D9FbNE5+XJ8rwcpf 7GwRl5l6nqOwjQNw9dQFGAmXmsE9es4/D9FbNE5+XJ8rwcpf 
==XpgpXpgp
----------END PGP MESSAGEEND PGP MESSAGE----------

ONE TIME SESSION KEY

Hi Bob, Are we still on for Friday? BTW, dump that 
Disney stock, While there is still time,
Alice

 
 
 

Bob makes his own Hash of the  Bob makes his own Hash of the  
Plain Text to Compare With Alice’sPlain Text to Compare With Alice’s

Hi Bob, Are we still on for Friday? BTW, dump 
that Disney stock, While there is still time,
Alice

 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 

 7

 

Bob Ensures that Alice is the True Bob Ensures that Alice is the True 
Sender by Comparing HashesSender by Comparing Hashes

Alices Public KeyAlice’s Signature
Bob decrypts the 
message digest Using 
Alice’s public key . He 
will compare this with 
his own message 
digest of the plain text.

 
 

He compares his hash with Alice’s. He compares his hash with Alice’s. 
They matchThey match, so Alice sent the message , so Alice sent the message 

and it has not been tampered with.and it has not been tampered with.

=

 
 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 

 8

All of this is transparent to the user. The plug-in for Outlook provides a popup 
menu, which includes check boxes for encryption and signing. After the initial 
setup, the program may even be set to encrypt and sign messages automatically.  
 
During set up, the user generates two sets of public/private keys, and chooses 
one of CAST (default), AES, IDEA, Triple-DES, or Two-Fish (for the session 
key). One set of public/private keys (DH) is used for the encryption of the 
session key; the other (DSA) is used for signing. This way, even if the signing key 
is hacked, the message cannot be decrypted and, if the encryption key is hacked, 
the signing key is still secure. PGP versions prior to PGP 5.0 used the same RSA 
set for both signing and encryption.  This meant that, in the event of key 
compromise, messages could be both read and signed by the compromiser. 
 
The DH part of the key (actually a variant, ElGamal, is the algorithm used) may 
be of length 1024-4096 bits. The DSS part is always 1024 bits (this is the length 
specified in the standard). CAST is a 128-bit block cipher. Part 2 of this paper 
describes the algorithms in detail.  



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 

 9

Part 2 
 

THE ALGORITHMS 
 
As stated in Part 1, PGP uses two public key algorithms, one symmetric key 
algorithm, a one-way hashing algorithm, and a compression algorithm.  These are 
seamlessly and transparently integrated into the program. The user initially selects 
the algorithm and key sizes when the program is installed. The public key options 
are DH/DSS, RSA, and legacy RSA. The symmetric key options are CAST AES 
TripleDES, IDEA, and Twofish. The SHA-1 algorithm is used for the Hash to 
create the digital signature. PGP uses its own compression algorithm, but will not 
try to compress a message which has already been compressed with another. This 
paper will discuss only DH/DSS, CAST, and SHA-1, the algorithms most often 
used in PGP today. 
 

DH/DSS 
 
DH stands for ‘Diffie Hellman’, after its inventors, and DSS stands for ‘Digital 
Signature Standard’. Actually, the algorithm used for the DH part, is a derivation 
of DH, called 'ElGamal’, also after its inventor.  The ElGamal algorithm is as 
follows: 

 
“SUMMARY: each entity creates a public key and a corresponding  
private key. 

 
Each entity A should do the following: 
 
1. Generate a large random prime p and a generator g of the multiplicative group 
Z*p of the integers (modulo p)  
2. Select a random integer a, 1<=a<=(p – 2), and compute ga mod p  
3. A’s public key is (p; g; ga ); A’s private key is ‘a’. 

 
SUMMARY: B encrypts a message m for A, which A decrypts. 

 
1. Encryption. B should do the following: 
(a) Obtain A’s authentic public key (p; g; ga ). 
(b) Represent the message as an integer m in the range {1, 2,…, p – 1}. 
(c) Select a random integer k, 1<=k<=(p – 2). 
(d) Compute s=gk mod p and t=m (g a )k mod p. 
(e) Send the ciphertext c= (s,t) to A. 
 
2. Decryption. To recover plaintext m from c, A should do the following: 
(a) Use the private key a to compute sa  and then compute s-a. 
(b) Recover m by computing (s-a)(t) mod p.”  [1] 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 

 10 

 
Let us see an example (with numbers too small, by any 
standard, to actually be used): 
 

1.   Generate p and a generator g of the multiplicative   
group Z*p. 
P=5  g=2         Note: <2> = {2,4,3,1}=Z*5. 

        
       2.  Select a random integer, a, 1<=a<=(p – 2) 
      a = 1          1<=a<=(5- 2) 
 

3.  The public key is (p, g, ga )=(5, 2, 1);  the private key 
is 1. 

 
To encrypt the message ‘m=d=4’ (note: ‘m’ is represented as 
an integer in {1,2,….,p-1}),  using the public key: 

       1.  Select a random integer ‘k’ so that 1<= k<=(p-2) 
            k=3   1<=3<=3 
 

2.  Compute s=gk  and  t=m(g a)k mod p 
              s= 23mod5 = 3    and    t=4(2 1)3 mod 5=2 
 

3. Send the ciphertext c=(s,t) 
c=(3,2) 

 
To decrypt c=(3,2): 
 
          Use the private key, ‘a’ to calculate s(p-1-a)  

          35-1-1=33mod5=2       
          then m= s(p-1-a) *t(mod p)           
          m= 2 * 2 (mod 5)=4     m=’d’, as desired. 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 

 11 

DSS 
 
The Digital Signature Standard (DSS) is a standard specified by NIST (National 
Institute of Standards and Technology) in as part of the FIPS (Federal 
Information Processing Standards). It specifies a Digital Signature Algorithm 
(DSA) that is appropriate when a digital signature is required.  
  
 “Explanation: This Standard specifies a Digital Signature Algorithm (DSA) appropriate 

for applications requiring a digital rather than written signature. The DSA digital 
signature is a pair of large numbers represented in a computer as strings of binary digits. 
The digital signature is computed using a set of rules (i.e., the DSA) and a set of 
parameters such that the identity of the signatory and integrity of the data can be verified. 
The DSA provides the capability to generate and verify signatures. Signature generation 
makes use of a private key to generate a digital signature. Signature verification makes use 
of a public key which corresponds to, but is not the same as, the private key. Each user 
possesses a private and public key pair. Public keys are assumed to be known to the public 
in general. Private keys are never shared. Anyone can verify the signature of a user by 
employing that user's public key. Signature generation can be performed only by the possessor 
of the user’s private key. 
 
A hash function is used in the signature generation process to obtain a condensed version of 
data, called a message digest (see Figure 1). The message digest is then input to the DSA to 
generate the digital signature. The digital signature is sent to the intended verifier along with 
the signed data (often called the message). The verifier of the message and signature verifies 
the signature by using the sender's public key. The same hash function must also be used in 
the verification process. The hash function is spec ified in a separate standard, the Secure 
Hash Standard (SHS), FIPS 180. Similar procedures may be used to generate and verify 
signatures for stored as well as transmitted data.” [3] 

 
First, we will examine the parameters used in the algorithm. As with the ElGamal 
algorithm, DSA makes use of the properties of Z*p as a multiplicative group.  
 
“1. p = a prime modulus, where 2L-1 < p < 2L for 512 = < L = <1024 and L a multiple 

of 64 
2. q = a prime divisor of p - 1, where 2159 < q < 2160  
3. g = h(p-1)/q mod p, where h is any integer with 1 < h < p - 1 such that h(p-1)/q mod p > 1     

(g has order q mod p) 
4. x = a randomly or pseudorandomly generated integer with 0< x< q 
5. y = gx mod p  
6. k = a randomly or pseudorandomly generated integer with 0< k< q “ [3] 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 

 12 

The parameters ( p, q, g ) are made public. The public key is ‘y’; the private 
key is ‘x’. Parameters ‘x’ and ‘k’ are kept secret for signature generation (a new ‘k’ 
must be generated for each signature). 
 
 
Let us generate a set of (again artificially small) set of parameters: 
 

1. p=11 (prime modulus of size specified in the algorithm – we are ignoring 

the size specifications for this example). 

2. q=5 (a prime divisor of  p-1 (in our case,10), also of specified size). 

3. g=4 (chosen so that order(g)=q. Another way to say this is that 

<g>=Z*q. In our case <g>={4,5,9,3,1}) 

4. x=2 (randomly generated with 0<x<q) 

5. y=5 (y=gxmodp) 

6. k=3 (randomly generated for each signature, with 0<k<q) 

Our public parameters are (11, 5, 4) – recall this is (p, q, g) 
Our Public Key is 5 (this is ‘y’) and our Private Key is 2 (this is ‘x’) 
 
Notice that the public key y=gxmodp could be used to solve for x, the private key, 
if the parameters were such that the discrete logarithm problem was ‘easy’. 
That is, x =loggy(modp). In the case of this example, x=log45(mod11). This can 
be solved very easily, by simply raising 4 to progressive powers. We see 
42=5(mod11) so x=2. This illustrates why the parameters must be chosen as 
specified. 
 
At this point, make note of the fact  that  y= gxmod p and g and p are public. As 
illustrated above, if we could manage to take the discrete log of y(modp), we 
would know x – the secret key. The numbers p,q are chosen, and g calculated, in 
such a way as to make this too difficult to do, even with a lifetime of super 
computers available. What if it were possible to replace the parameters with easy  
values (say p’,q’,g’) in such a way as to make this possible?  Black hat has already 
asked (and answered) this question as we will soon see! 
 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 

 13 

We now examine the creation of a Digital Signature (again with small 
parameters for the example). 
 
When creating the signature of the message m (or its hash value h(m)) the user 
uses the private key x and public parameters according to the following 
procedure: 
 
1. Select the random secret number k, 0 < k < q. 
           0 < k < 5       0 < 3 < 5 
           k =  3 
 
2. Calculate r = (gk

 mod p) mod q. 
          r =  (43mod5)mod11 
          r = 4 
 
3. Calculate kInv = k-1

 mod q. 
k * k-1 = 1(mod5)  so 3 * ? = 1(mod5)   
Using Euclid’s Algorithm or guess and check or a modular calculator 
we arrive at: 
k-1 = 2 
 

4. Calculate s = [kInv * ( h(m) + x*r)] mod q. 
          s = [2 * (h(m) + 2*4)]mod5  Let us suppose that m hashes to h(m) = 123 
          s = [2 * 123 + 2*4)]mod5 
          s = 2 
 
5. Digital signature of the message m is the pair (r, s). 
          DIGITAL SIGNATURE: (4,2) 
 
Let us note that r, s, q are generally 160bit numbers, whereas p, g, y are 1024bit 
numbers. 

 

 

 
 
 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 

 14 

To verify the digital signature of the message m we use signer´s public key y 
and public parameters (p, q, g) according to the following procedure. 
 
1. Verify that 0< r, s< q. In the opposite case the signature is invalid. 
          0 < 4,2 < 5 
 
2. Calculate sInv = s-1

 mod q and hash value h(m). 
2-1(mod 5) = 3 (by same method as above)  Assume the message hashes to h(m) = 123 as 
above 

          s-1 = 3       h(m) = 123  
 
3. Calculate u1 = sInv * h(m) mod q, u2 = sInv * r mod q. 
           u1 = 3 * 123(mod5)      u2 = 3 * 4 (mod 5) 
          u1 = 4     u2 = 2 
 
4. Calculate v = (gu1

 * yu2
 mod p) mod q. 

          v = (44 * 52mod11)mod5 
           v = 4 
 
5. The signature is valid iff v = r. 
             v = 4;  r = 4 so the signature is valid  

 

 
 

 

 

 

 

 

 

 

 

 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 

 15 

Recall, the parameters have been chosen in such as way as to make the signature 
secure. However, Black Hat is not stopped quite so easily! Suppose we HAD 
been able to somehow substitute the values p, g, q  into secring.skr (the secret key 
file) and obtained  a signed clear text message. There would now be a new pair r’,s’ 
based on our spoofed values ( p’ and g’ )and the randomly chosen k. And, we 
have a message with the spoofed signature, so we can see r’, s’. 

Now, from the definition of the signature value (r´, s´) it results that 

(1) r´ = (g´)k mod p´ mod q  
(1a) r´ = (g´)k mod p´ because p´ < q (this was the reason for that choice) 
 
Because of our spoofed values,it is possible to solve (1a) for the random number 
‘k’.  

 
Next, we use 

(2) s´ = {[k-1 mod q] * [ h(m) + x*r´] } mod q, thus 
 
(2a) x = { [s´* k -1 h(m)] * [(r´)-1 mod q] }mod q. (multiple both sides by k 
and subtract h(m)) 
 
The key issue is now that we are able to calculate the unknown randomly chosen 
number thanks to the choice of p’ and g’. We can do this because 

The prime number p´ was selected in such a way, that the equation (1a), 
i.e. the task of the discrete logarithm in Zp* be 
easy to solve. [7] 
 
“Let us notice that the integrity of the "Public Key Packet" field is not visibly secured 
anywhere in the format of OpenPGP, and as it became apparent by effecting a practical attack, 
not even in PGPTM programs. Nevertheless, when creating the digital signature it is public 
parameters of this field that are just utilized (in the event of PGPTM program, the Secret Key 
Packet is stored specifically in secring.skr file). These parameters could be read from the 
record of the public key (the file pubring.pkr), but it is logical that if the record of the private 
key is open, they will be read from here. In the record of Secret Key Packet the value of the 
private signature key is protected, but the mistake is that here the value of public parameters 
or public key is not protected anyhow. Specifically in the event o f DSA values p, q, g, y are at 
issue, of which we will use only p, g for specific attack.  
 
 
 
 
 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 

 16 

The main idea of the attack on DSA consists in the following steps. The attacker: 
 
1. will prepare special numbers (constants) of PGPrime and PGGenerator 
 
2. will obtain the structure of Secret Key Packet of the given user and replace p, g values 
stored in the structure "Public Key Packet" inside Secret Key Packet by values p´= 
PGPrime and g´= PGGenerator 
 
3. will capture the first not enciphered message or the file which the user signed with 
such false parameters and will keep its signature 
 
4. on the basis of the obtained message and its signature it will calculate the private key 
of the user (x value) 
 
5. will return the p, g values to the original condition 
 
 
…The key issue is now that we are able to calculate the unknown randomly chosen number 
thanks to the choice of PGPrime and PGGenerator. The prime number p´= PGPrime was 
selected in such a way, that the equation (1a), i.e. the task of the discrete logarithm in  
Zp´*  be easy to solve. On the basis of this procedure we then calculated 
value k from the equation (1a) and additionally computed value x from the equation (2a). 
We checked the correctness of x according to the relationship y = gx mod p with original 
values y, g, p. The x value is therefore calculated and its validity is verified against the value 
of the public key.” [7] 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 

 17 

 
SHA-1 

 
 
 

The SHA-1 (Secure Hash Algorithm)  is the compression algorithm used in the 
signing. Below is a diagram of how it is used in the digital signature: 
 

 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 

 18 

The following description of SHA-1 is taken from [8]: 
 
“(The SHA-1 algorithm is an) iterative, one-way hash functions that can process 
a message to produce a condensed representation called a message digest. (The) 
algorithm enables the determination of a message’s integrity: any change to the 
message will, with a very high probability, result in a different message digest. 
This property is useful in the generation and verification of digital signatures 
and message authentication codes, and in the generation of random numbers 
(bits). 
 
(The) algorithm can be described in two stages: preprocessing and hash 
computation. Preprocessing involves padding a message, parsing the padded 
message into m-bit blocks, and setting initialization values to be used in the hash 
computation. The hash computation generates a message schedule from the 
padded message and uses that schedule, along with functions, constants, and 
word operations to iteratively generate a series of hash values. The final hash 
value generated by the hash computation is used to determine the message 
digest. 
 
SHA-1 may be used to hash a message, M, having a length of l bits, where   
0< l <=264. The algorithm uses  
 
1) a message schedule of eighty 32-bit words,  
2) five working variables of 32 bits each, and  
3) a hash value of five 32-bit words. The final result of SHA-1 is a 160-bit 
message digest. 
 
The words of the message schedule are labeled W0, W1,…, W79. The five 
working variables are labeled a, b, c, d, and e. The words of the hash value 
are labeledH0

(i), H1
(i), …,H4

(i), which will hold the initial hash value, H(0), 
replaced by each successive intermediate hash value (after each message 
block is processed), H(i), and ending with the final hash value, H(N). SHA-1 
also uses a single temporary word, T.”  
 
Recall, the hash function is one-way. That is, no plain text will ever be 
recovered from it. Also, note that, by its design, it will produce a unique hash 
for any given plaintext; and any change in the plaintext will produce a drastic 
change in the hash. Below is an example of implementation (also from [8]).  
 
 
 
 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 

 19 

“Let the message, M, be the 24-bit (l = 24) ASCII string "abc", which is 
equivalent to the following binary string: 
01100001 01100010 01100011. 
 
The message is padded by appending a "1" bit, followed by 423 "0" bits, and 
ending with the hex value 00000000 00000018 (the two 32-bit word 
representation of the length, 24). Thus, the final padded message consists of 
one block (N = 1). 
 
For SHA-1, the initial hash value, H(0), is 
H0

(0) = 67452301 
H) 1 

(0)= efcdab89 

)H 2
(0)= 98badcfe 

H 3 
(0)= 10325476 

H 4
(0)= c3d2e1f0. 

 
The words of the padded message block are then assigned to the words 
W0,…,W15 of the message 
schedule: 
W0 = 61626380 
W1 = 00000000 
W2 = 00000000 
W3 = 00000000 
W4 = 00000000 
W5 = 00000000 
W6 = 00000000 
W7 = 00000000 
W8 = 00000000 
W9 = 00000000 
W10 = 00000000 
W11 = 00000000 
W12 = 00000000 
W13 = 00000000 
W14 = 00000000 
W15 = 00000018. 
 
 
The following schedule shows the hex values for a, b, c, d, and e after pass t 
of the “for t = 0  to 79” loop described in Sec. 6.1.2, step 4. 
 

a         b          c         d        e 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 

 20 

t = 0 : 0116fc33 67452301 7bf36ae2 98badcfe 10325476 
t = 1 : 8990536d 0116fc33 59d148c0 7bf36ae2 98badcfe 
t = 2 : a1390f08 8990536d c045bf0c 59d148c0 7bf36ae2”  
 
Note that the a,b,c,d,e values are the results of swaps, rotations, and functions 
defined in the algorithm. The functions make use of the ROTL30(x) function.  
ROTL30(b) is illustrated below. Note that ROTL30(b) is equivalent to  
ROTR32-30(b) where ‘32’ is the size of the word, ‘b’.  
 
Original ‘b’       1110 1111 1100 1101 1010 1011 1000 1001 
 Round t0 ‘c’     0111 1011 1111 0011 0110 1010 1110 0010 
 
The hex number is written in binary, then the rotation is applied. (Compare 
values with the hex values given in the table). The functions are detailed in [8].  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CAST 
 
The CAST Algorithm is a block cipher, based on framework of the Feistel cipher. 
CAST uses the Feistel structure because it has been well studied and is thought to 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 

 21 

be free of structural weaknesses that would leave it open to certain types of 
attacks.[10] The Feistel structure is a Substitution and Permutation Network 
(SPN). This algorithm is illustrated as follows (the example used has nothing to 
do with the actual keys and functions of the CAST cipher; it is merely a simplistic 
illustration of the process): 
 
Input a message block of ‘2n’ bits and split it into a left half, ‘L1’, and a right half, 
‘R1’.  

M=”abcdefgh”=”12345678;   L1=1234     R1=5678 
 
The right half and a subkey K1 are input to a “round function”, f1. 
    f 1(R1, K1)=f1(5678, 34)= 5678 + 34 = 5712   
 
Now the modified R1 is XOR ed with L1. 
   10011010010 + 1011001010000 =  1001010000010  
 
This becomes R2, and R1 becomes L2. 
   R2=1001010000010       L2=5678=1011000101110 
 
This completes round one. 
This continues for many rounds, depending on the cipher. For the very last 
round, the left and right halves are not swapped; rather they are concatenated. 
If the above example had only one round, the cipher-text would be:  
 
10110001011101001010000010  
 
The decryption is simply the reverse:  
 
Split the cipher text. 
   R2=1001010000010       L2=5678=1011000101110 
 
Assign L2 to be R1. 
     R1=L2=1011000101110=5678 
 
Now ‘R2 XOR f1(K1,R1)’  is assigned to L1 
         1001010000010 XOR (1011001010000) = 10011010010 = 1234 =L1 
 
Put the Left and Right sides back together. 
M= 12345678  
 
The actual CAST encryption algorithm may be described as follows: 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 

 22 

Divide the plaintext block into a left half and a right half. In each of 8 rounds, the 
right half is combined with a key using a function ‘f’ and then XORed with the 
left to make the new right half. The original right half becomes the new left half. 
After the eight rounds are done (the left and right halves do not switch after the 
eighth round), the two halves are concatenated. This forms the cipher text. 
 
The function ‘f’ is where the ‘S-boxes’ come in. The following explains the S-box 
process: 
 
“An m-to-n S-Box gets a block of m bits as input and returns a block of n bits as output with 

n•m. The result is obtained by indexing a lookup table with the input.  
Example. The S-Box below is used by the DES algorithm. It gets 6-bit blocks as input and 

returns 4-bit blocks. [10]  
 

 
 

 
If the input block is we take as row index, as column 

index, and return the corresponding table entry as output. For example, for input 011011 
the row is and the column is ; hence the output is 

. “ [11] 
 
The CAST S-boxes differ from the DES S-box (described above) in that the 
input is 8 bits and the output is 32 bits. That is, the output is larger than the input. 
Yet the SPN still has equal input and output block sizes because of the round 
function. Within it, the input data half is modified by the subkey for that round. 
Then, it is split into pieces, and each piece is input to a different S-box. The 
outputs are combined using binary functions (such as XOR); the result is the 
output for that round. This use of the S-boxes does not result in expansion of the 
data. The S1,S2, S3, and S4 boxes are used for the round function, and the 
S5,S6,S7, and S8 boxes are used for key-schedules. 
 
 
 
 
 
The function ‘f’ is defined differently for different rounds : 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 

 23 

“Three different round functions are used in CAST-128. The 
rounds are as follows (where "D" is the data input to the f function 
and "Ia" - "Id" are the most significant byte through least significant 
byte of I, respectively). Note that "+" and "-" are addition and 
subtraction modulo 2**32, "^" is bitwise XOR, and "<<<" is the 
circular left- shift operation.  

Type 1: I = ((Kmi + D) <<< Kri)  
f = ((S1[Ia] ^ S2[Ib]) - S3[Ic]) + S4[Id]  

Type 2: I = ((Kmi ^ D) <<< Kri)  
f = ((S1[Ia] - S2[Ib]) + S3[Ic]) ^ S4[Id]  

Type 3: I = ((Kmi - D) <<< Kri)  
f = ((S1[Ia] + S2[Ib]) ^ S3[Ic]) - S4[Id]  

Rounds 1, 4, 7, 10, 13, and 16 use f function Type 1.  
Rounds 2, 5, 8, 11, and 14 use f function Type 2.  
Rounds 3, 6, 9, 12, and 15 use f function Type 3.” [12] 

 
CAST-128 uses two subkeys per round: a 32-bit ‘masking key’, and a 5-bit 
‘rotation key’. The purpose of the masking key is to thwart differential and linear 
cryptanalytic attacks against the cipher. This done with a nonlinear, key-
dependent operation before the S-box lookup. In this way, the input to the set of 
s-boxes is effectively masked. The Key schedule and s-boxes are given in [12]  
The default key size is 128 bits in PGP. 
 
 
The usual choice of algorithms for PGP is ElGamal, DSA, and CAST. These 
algorithms provide adequate security for most non-classified data, if implemented 
properly. Probably, the biggest security hole in PGP is not in the keys, or their 
lengths. As is so often the case, it is the user’s passphrase that is the weak link in 
the chain. Each time the program is used for encryption, decryption, or signing, 
the user is prompted to enter a passphrase. If Black Hat can gain access to the 
user’s machine, why bother with an attack on the keys? The passphrase is far 
easier to crack! Users should be cautioned to choose a passphrase with an 
adequate length and complexity. 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 

 24 

Part 3 
 
 

THE MATHEMATICS 
 
 

The following table ,excerpted from [1], outlines many of the mathematical 
problems associated with cryptography: 

 
 

 
This paper will focus on the Discrete Logarithm Problem (DLP); the security of 
the ElGamal encryption algorithm is dependent upon the intractability of this 
problem. Following, is a brief discussion of the mathematics. 
 
 
 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 

 25 

First, some conventions: 
 

Z refers to the integers (…-2,-1,0,1,2,…). 
 

p is a prime number. 
 
‘n(mod)p’ refers to the remainder when n is divided by p. 
 
Z*p = {1,2,3,…,p-1}, the set of equivalence classes modulo p, with 0 omitted. 
(Equivalence classes are sets of integers that have the same remainder when divided 
by p. For example,  the equivalence class of 2 modulo 5 is {2,7,12,17,…}) 
 
If a is in Z*p, then the inverse of a(modp), is the number b, such that ab=1(mod 
p). For example, in Z*5, 3 is the inverse of 2 because 3*2=1(mod5). 
 
The gcd(m,n) is the greatest number that divides both m and n. 
 

 
Now, for some elementary facts from number theory and algebra:  
 

A number m has an inverse (mod p) if and only if gcd(m,p)=1. 
 

A group is a set of objects that is associative, closed under its operation, contains an 
identity, and has an inverse for each element. That is, if a,b,c are in the set, then: 

      (a*b)*c=a*(b*c);  a*b is in the set; there is an element r such that a*r=r*a=e, and 
there is an element e in the set such that e*a=a*e=a. Note: ‘*’ is a an operation that 
combines two elements, as in ordinary multiplication. 
 
 As an example, consider Z*5={1,2,3,4} with e=1 and  multiplication (modp) - this 
means multiply two elements in the normal way, and then take the remainder when 
divided by 5.  Association holds by virtue of the properties of integer multiplication.  
Any two numbers multiplied together produce an element that is still in the set. i.e. 
3*4=8=3(mod5) - still in the set.  All of the elements have an inverse. For example 
2*3=6=1(modp). It is easy to see that 1 has the desired properties for e, the identity. 
Thus, Z*5 is a group. 
 

We will be considering the set Z*p as a group. Since it is a group,  the elements of 
Z*p have inverses, but how can we find them? One way would be to try each 
element in the group, and see if it works. For example, to find the inverse of 2 in 
Z*p, we could try 2*1, 2*2, 2*3, and 2*4 and check to see which product was 
equal to 1(mod 5). Since 2*3=1(mod5), we see that 3 is the inverse of 2.  
 
This is fine for small numbers, but what if p is 100 digits long? Typically, 
cryptography uses very large numbers for p, so this method is not practical. Of 
course, there is another way! 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 

 26 

The Euclidean Algorithm is as follows: 
 
 To find the gcd(m,n), assuming m>n: 
 First calculate q1 so that: m=q1n+r1 
 Next calculate q2 so that: n=q2r1+r2 
 Then calculate q3 so that r1=q3r2+r3 
 Continue in this manner until rn=0.      rn-1 will be the gcd(m,n). 
 
      By backtracking, the gcd(m,n)=d may be written as xm + yn =d. 
 
Getting back to inverses, recall we are looking for r such that ra=1(modp). This  
is the same as ra –sp=1 or ra+tp=1. But, since gcd(a,p)=1 if a has an inverse at 
all, we can use the Euclidean algorithm to find r. We can find multiplicative 
inverses (modp) in this way. However, we can also find the inverse  of the 
generator, g, in another way. Fermat’s Little Theorem tells us that a-1=a(p-2)(mod 
p). Hence, we need only raise a to the power (p-2) to find its inverse. To see why 
this is so, we need the concept of a generator.  
 
 A generator of Z*p is an element g, such that powers of g will produce all of the 
elements of Z*p. For example, <2> is {2, 4, 3, 1}=Z*5, so 2 is a generator of 
Z*5 (<2> denotes the set of all powers of 2). There may be more than one 
generator, or a group may be generated by more than one element. In the case of 
Z*p, there will always be at least one single generator (this is what it means for a 
group to be called cyclic). Of course, there must be some number l, such that gl=1 
as gu<p, by virtue of being a member of Z*p. This number l, is called the 
order(g). If g is a generator, this number is p-1. Why? Because g , as a generator, 
must produce p-1 elements; no more and no less. Recall: that’s how many are in 
Z*p.  
 
Returning to the ElGamal algorithm, recall that the first step is to choose a 
random prime p, and a generator g of Z*p. The number p will be generated with a 
pseudo prime generator, but how can we find g? Will there always be a generator? 
As it turns out, there will always be a generator. We find this generator though a 
sophisticated version of the famed mathematical method, Guess and Check. First, 
we make a guess for g, and then we check to see if it generates the entire group. 
Actually, it’s not as haphazard as that. As it turns out, g is a generator if and only 
if g(p-1)/q  is not equal to 1(modp) - where q is a prime divisor of p-1. For example, 
in Z*5,  p-1=4. The only prime divisor of 4 is 2, so we look for elements that are 
not equal to 1 when raised t the power 2. We see that 22  is not equal to 1, but 44 
does equal 1. Hence, 2 is a generator, and 4 is not. Also, note that g  will be prime. 
If it were not, then g=ab so gn=(ab)n=anbn. But Z*p is cyclic, so there must be a g 
such that a=gr and b=gs . Then, (ab)n=g(rsn). This cuts down on the numbers that 
must be tested; we need only test primes that satisfy the above criteria. In fact, 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 

 27 

there will be exactly J(p-1) generators, where J(n) is the number of elements 
relatively prime to n. 
 
So, having found g, we select an 1<=a<=(p-2) and compute ga. How, exactly  is 
ga computed? Remember that  p,g, and a are all very large integers. To simply do 
g*g*…g* for a times, would take far too long. Instead, we use the Square and 
Multiply Algorithm. The gist of this algorithm is to repeatedly square (modp). i.e. 
27(mod5) is (22(mod5)(22(mod5)(22(mod5))(2)(mod5) The bit complexity (bound 
on number of bit operations) for this is ((lg(p))^3).    
 
To encipher, the sender chooses 1<=k<=(p-2) and calculates gk  and m*gak, both 
(modp). These are sent to the recipient. The decryption is via the inverse of gak. 
This is computed as above. Recall, all of these numbers are in Z*p, and p is 
prime, so they all have inverses. To see why this has to be, recall the idea of a 
generator. It generates Z*p by its powers. Thus, all the elements of Z*p may be 
written as some power of g. Suppose a=gn. Then gng((l-n)=1, where order(g)=l. Thus, 
g(l-n)  is the inverse of gn.  
 
We must have g be a generator in this encryption scheme. Why? Let us see an 
example where g is not chosen as a generator: 
If the group is Z*5, suppose we had chosen 4 as g and tried to encrypt m=3,  with 
(42)3 - (k=2, a=3). Then, we get c=3*1=3(mod)5. Oops! Our cipher text is the clear 
text. This is the reason; if g is a generator, gk will never be equal to 1 for k<=(p-2). 
Restrictions on the choice of a are for similar reasons.   
 
The group, Z*p is used because of its properties and the fact that there are 
algorithms available to do the computations in a reasonable amount of time. 
Additionally, the map, a-->ga, is what is known as a one-way function. That is, 
while feasible to compute in one direction, going the other way is not. That is, 
given y= ga(modp), it is not feasible to compute a=logg(y)(modp). This is what is 
known as the Discrete Logarithm Problem (DLP). This problem is thought to be 
intractable, although algorithms exist in special cases. The following describes 
their complexity. [13] 

 
 
 
 



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 

 28 

 
To understand why the discrete logarithm problem is so difficult, review the 
simple ElGamal example in this document. The encryption was (3,2). This means 
2k=3 and  m*(2a)k=2 (where g=2 and a is the private key). In this example, Black 
hat could easily compute k and then a. Using this, he could find (g(ak))-1 and so 
compute m. However, the numbers used are very large in practice, and this is 
becomes infeasible very quickly as the size of the numbers increase.  
 
The mathematics used in the construction of public key algorithms is very 
sophisticated. Among others, the ideas in group theory are used; particularly the 
properties of the group Z*p. There are continued efforts to prove the 
intractability of the DLP in this group, given current processor power - this 
remains an open problem.  The difficulty is considered t be equivalent to the 
difficulty of factoring large integers into primes, another intractable problem. 
However, cryptographers must be ever-vigilant against Black Hat, as new 
developments in mathematics (and increased processor power), could render this 
problem tractable in the future. Interestingly, the mathematics in use for creating 
cryptosystems today was originally developed for a completely different purpose. 
Much of it came about from attempts to factor polynomials of degree larger than 
three into their prime factorizations. In fact,cryptography in general makes an 
excellent argument for scientific research for its own sake.  As the unexpected use 
of abstract algebra in cryptosystems suggests, ‘pure’ mathematics, often thought 
of as its own reward, can be very ‘practical’ indeed!  



©
 S

A
N

S 
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll 
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46 

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 

 29 

BIBLIOGRAPHY 
 

1. A.Menezes, P. van Oorschot, and S. Vanstone. Handbook of Applied Cryptography.  
CRC Press, 1996.  
 http://www.cacr.math.uwaterloo.ca/hac/about/chap3.pdf 
 
2.  An Introduction to Cryptography. Network Associates, Inc., 1990-1999. 
 
3. FIPS PUB 186 
       http://www.itl.nist.gov/fipspubs/186m 
 
4. http://www.netcore.co.in/pgp.html 
 
5. http://searchsecurity.techtarget.com/sDefinition/0,,sid14_gci214292,00.html 
 
6. H.X. Mel, Doris Baker. Cryptography Decrypted. Addison-Wesley, 2001 
 
7. Vlastimi Klima, Toas Rosa.   Attack on Private Signature Keys of the OPenPGP format,  
PGP programs and other applications compatible with OPenPGP 
http://www.i.cz/en/pdf/openPGP_attack_ENGvktr.pdf 
 
8. Secure Hash Signature Standard  
(SHS)(FIPS PUB 180-22)  
 http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf  

 
9.  Bruce Schneier. Applied Cryptography. John Wiley & Sons, Inc., 1996. 
 
10. Carlisle M. Adams. Constructing Symmetric Ciphers  
      http://adonis.ee.queensu.ca:8000/ 
 
11.  http://stud3.tuwien.ac.at/~e9825530/computerscience/aes/2_4.html 
 
12.  C. Adams.  The CAST-128 Encryption Algorithm    (RFC2144) 
            http://www2.hunter.com/docs/rfc/rfc2144.html 

 
13.  Bernhard Esslinger, Bartol Filipovic, Henric Kay, Roger Oyono and 
Jorg Conelius Schneider. Mathematics and Cryptography, CrypTool.com, 2002. 
http://www.cryptool.com 
 
 
 
 
 


