
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Protecting the Intranet,
Buffering Outbound Direct Networked Connections using Citrix

Kevin Noble
January 13, 2003
GSEC Version 1.4b Option 1

Abstract

Corporations are at risk connecting to customers via the Internet or any other
hostile TCP/IP connection. Pooling users to a terminal server or a Citrix
Metaframe server before a connection can be initiated adds a layer of security
that can serve as a chokepoint for all traffic, including VPN connections.
Leveraging both a Terminal type connection with a VPN connection gives a
‘functional’ connection without a ‘direct’ connection. This type of solution can be
seen as a ‘buffered network connection’.

Contents

Introduction 1
Deployment Considerations 2
Simple Connection Model 3
Some Variation on the Simple Connection Model 5
Advanced Connection Model 4
Securing the Connection Models 8
Limitations 9
Conclusion 11
Bibliography 12
Appendix A - Implementing the Advanced Routing Solution 14
Appendix B – Perl VPN Tunnel Script 17

Introduction

Using an indirect connection is derived from a strict corporate policy against
outbound modem, VPN, and any other type of direct connection to customers
and partners. The need to connect to customers is business critical in today’s
world, and using standard terminal connections is one way to get connected
without having traffic traverse the all-important Intranet, and thus breaking the
policy. In some cases customers don’t have a host machine or are unwilling to
host anything other then a VPN connection. The differential technologies forces
the creation of a connection meeting a restrictive policy and a set of technical
boundaries.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Imagine for a moment a policy that sets strict boundaries such as the ones listed
below:

• No direct modem connection
• No direct VPN connection
• No distribution of the Customer VPN password for general access

Some of the technical boundaries for connectivity include:

• Customers might only allow modem connections
• Customers might only host a Terminal connection
• Customers might only host a VPN connection
• The VPN connection might only allow IPSEC
• The VPN connection might only allow PPTP
• Different customer networks may have the same private IP addresses

These extreme technical boundaries, coupled with the policy, certainly will not be
the case for most companies but present an interesting challenge. While this
paper tackles the technical boundaries, the first step is to understand what your
organizational security policy and technical boundaries are. With the increased
need to connect to customers, suppliers, and business partners, the VPN
protocol has become the most popular means to allow users to act as part of a
remote network. Connectivity growth is on the rise because i t has become more
important then ever to manage user connections and to minimize ‘rogue’
connections, where employees create a point of presence (POP) without any
authority. Many companies are facing problems with improperly configured
wireless networks and large companies do not often find the balance between
the need to network to customers and a high degree of security. If the internal
company network is to be guarded from attacks and unsolicited traffic, then a
buffered network connection can add a layer of security that is affordable. A
buffered connection is a bit hard for people to understand; most think in terms of
either being connected or not thus read the next line carefully. A buffered
network connection leverages an application layer solution, like Terminal
Services, with standard layer-2 type connections, such as VPN connections, to
stop actual customer traffic from traversing critical internal networks.

Deployment Considerations

Knowing what your customers and business partners require will be the first step.
In most cases, one will only need a DMZ hosting a terminal server for outbound
connections, and/or a VPN-appliance of some sort. The terminal server alone
can give one the presence on the customer network with little effort by simply
bridging terminal-to-terminal connections. While a number of terminal client
server solutions exist, this paper uses Citrix Metaframe. Citrix allows the client to
map drives where data can be passed from client to server. Other Terminal
Services solutions can be used instead or in addition, for example Windows

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Terminal Services or X-windows for Linux/Unix environments. The emphasis
should be to have an application layer interface like Citrix server as a gateway to
the DMZ that will in turn allow a direct connection.

Linux’s iptables allows a single (guest) machine to connect to multiple customers
who may have the same IP address and translate it without violating RFC-1918.
While this would be rare in most cases, it needs to be considered when scaling a
buffered network solution. Additionally, the Linux advanced routing will need the
Point-To-Point Tunneling Protocol (PPTP) client software with Microsoft Point-to-
Point Encryption Protocol (MPPE) support and possibly Layer 2 Tunnel Protocol
(L2TP).

Consider for a moment how many accounts a single customer gives you to
access the Customer VPN server, and then consider how many potential users in
your company might need to create a VPN tunnel to that customer. Often only a
single account is provided and many people need to connect. Most of the time
this one to many model eliminates accountability and increases risk. Some of
the connection models presented will have each user logon without exposing the
password to all the users.

The Intranet buffering depends on the connection requirements or business
requirements matched against the Security Policy, along with the customer
technology restrictions. All three factors will help in determining if any of the
connection models meet one’s needs.

Simple Connection Model

Traditionally, network connections directly connect the guest network linking the
host network by either encapsulating the traffic or sending it directly. The packet
might be delivered encrypted and undergo a state-full inspection by a firewall.
Figure 1 shows the typical connectivity, with the Terminal Server located in the
DMZ. A typical user would initiate a session to the terminal server and then
make connections to the Internet through the terminal server. This acts as a
simple buffered outbound indirect connection, as none of the packets from
Customer A or Customer B actually traverses the Corporate LAN because they
are terminated at the Terminal Server in the DMZ. Keeping those packets out
meets the security policy of ‘no direct modem or VPN connection’. One may
access the packets through a direct connection to the Terminal Server and then
create VPN session to customers, not before. In essence, you control a machine
that has limited Internet exposure and it in turn participates on the customer
network. The Citrix Metaframe product located on a server in the DMZ becomes
the buffer or proxy for user to customer connections.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

INTERNE T

DMZ

Corp orate LAN

W orkstat ion with Te rm nal C l ient
 or Citr ix cl ient

F irewa ll

Term inal Hos t Se rver or
Citr ix Me tafram e

C ustom er B

Custom er A

Linux Host

10.0.0.1/24

10.0.0.1/24

Figure 1

The firewall and the terminal host system should only allow sessions to be
created from the authorized corporate LAN networks. An interesting side effect in
this model is that the users of the Citrix session share multiple sessions on the
terminal host, where users can examine the same applications or share the same
data.

The terminal server host can also act as a VPN (L2TP) client connecting to
customer sites. This model has some limitations, such as only supporting a
limited number of simultaneous connections. Performance also can become an
issue when more than a few active connections are created, expending
considerable resources on the terminal host server.

It was decided early on to allow only Citrix ICA TCP port 1490 traffic to pass the
firewall from Corporate to DMZ. This adds great comfort from a security
standpoint. However, as the network becomes more secure, it also becomes
more restrictive, requiring more administrative effort. Some consideration was
given to using the same accounts that are used in the corporate domain by
mirroring or replication from the corporate domain into the DMZ Citrix server, but
the idea violates the DMZ solid barrier protecting the corporate Intranet and was
quickly dismissed.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Some Variation on the Simple Connection Model

Putting a Citrix or Terminal server in a DMZ to initiate VPN tunnels to customer’s
networks allows a user to be present on the customer network. In a simple
variation, a corporation could have a physical room with a number of
workstations that are actually on the DMZ and not the corporate network. We will
call this the ‘VPN tunnel room’ where users would have to simply enter the room
and to know only the customer information and control a single machine, which
will have a presence on the customer network. In terms of the corporate policy
outlined in the introduction section, this solution meets all the criteria with a
physical segregation of space and logical networks. It has an added advantage
of using a common space where users can watch can keep each other in line.
The disadvantage (or advantage depending on one’s perspective) is the physical
space requires the user to be in the room to perform and use the connections. In
enterprises where users are spread out across the country or the world, it would
require travel to the single site to initiate access or a ‘VPN tunnel room’ at every
location. Using Citrix or Terminal Server extends the ‘VPN tunnel room’ to the
desktop where users control a session that in turn connects to the customer.
The tunnel will always end in the DMZ in some form or fashion to meet our
Security policy.

Setting up multiple DMZ with the Citrix server at various points of presence
throughout the corporate Intranet is another variation on the simple connection
model as shown in Figure 2. This variation can be used to add redundancy or
separate customer’s VPN connections based on region, authority or need.

INTERNET

Corporate LAN with
an Internet point of

presence

Corporate LAN with
an Internet point of

presence

Corporate LAN with
an Internet point of

presence

Firewall

Firewall

Firewall

New York

San Diego

Miami

DMZ with Citrix

DMZ with Citrix

DMZ with Citrix

Customer A

Customer B

Customer C

Figure 2

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

When only a limited number of connections are needed to interface to customers,
a DMZ network with a properly configured Citrix Metaframe Terminal Server will
be enough for most small to medium sized companies. For a larger number of
customers or multiple concurrent VPN connection, adding additional systems
loaded with Citrix Metaframe to the DMZ would solve the problem of shared
connections.

Additionally, the demand for a separation of VPN sessions for users can be met
using Virtual Machines. VMWare allows a host machine to have any number of
guest operating systems. As explained by Human X in an article for linuxdig.com
“VMWare is an emulator that will allow you to install multiple operating systems
and run them all concurrently on top of any Microsoft / Linux operating system.
For the purpose of this discussion, the initial operating system installed on your
system will be considered the host and the installed VMWare operating systems
will be considered slaves / virtual machines” (Human X, 1).

Each guest machine can in fact run Linux, Windows, or other operating systems
with the capability to initiate VPN sessions as shown in Figure 3. VMWare
initiates a bridged connection to a single networking card allowing multiple
instances of an operating systems to appear independent of each other, having a
different IP address and a semi-random MAC address.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Corporate LAN INTERNET

VMWare host OS

Guest OS Guest OS Guest OS

Firewall

VMWare ESX Server

DMZ

User
Customer VPN host

Figure 3

VMWare offers a family of products for Virtual Machine solutions; one of interest
is the Vmware ESX Server capable of hosting many guest OS and provides
remotely controlling of each guest OS that in turn could participate in customer
networks privately as opposed to the Citrix or Terminal Server Solution. The
VMWare ESX server will keep the Tunnel endpoint in the DMZ as expected, but
it might be more difficult to monitor and manage the connections. VMWare also
has single advantages of being able to use exact replica or imaged Guest
operating system making it available on the fly. In cases of forensics, a Guest
OS can quickly be suspended and moved to another physical machine for
investigation. Of all the solutions presented in this paper I would have preferred
to use VMWare ESX server, with the exception that customer account
information is shared among Guest Operating Systems. This exception causes
this solution to fail our security policy, but well worth looking into if sharing the
customer logon information is acceptable.

For large companies with many customers, a collection of multiple Citrix
Metaframe servers working in concert can be expensive with software licensing
and hardware requirements. Even the VMWare ESX Server might be cost
prohibitive in terms of software and hardware, forcing one to look for another

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

solution. Alternately, you might want to consider a routing gateway solution
presented in the Advanced Connection Model.

Advanced Connection Model

The Advanced Connection Model meets a special condition to share VPN
connection from a single connection. In a production environment, we
successfully have a single Citrix Metaframe actively contolling mutiple VPN
connection to customers. Meeting the unusual technical problem of different
customers having the same private networks was explored by Brian Enright who
worked out a method, which, in his own words, “Uses [sic] concurrent
connections to multiple VPN hosts that have the same private network IP
addresses; which is currently not supported by any terminal service [by itself].“
(Enright, RDC Presentation, slide 2). Using Network Address Translation (NAT),
which allows for connections to identical private Intranets, and by the Linux
advanced routing solution, described below, creates this model. “This routing
solution can allow for virtually any type of concurrent connectivity to different
VPN hosts who might have the same private networks.” (Enright, RDC
Presentation, slide 2)

Linux allows for some very unique translation that deserves an explanation.
Figure 4 (Enright, RDC Presentation, slide 3) shows the simplistic packet flow
through Linux, essentially turning our Linux host into a VPN gateway.

IP Packet Mangle

Destination
Network
Address

Translation
(DNAT)

Routing
Rule Table IP PacketPost Routing

(NAT)

Masquerading
Source
Address

Translation
(SNAT)

Figure 4 (Enright, RDC Presentation, slide 3)

The packet received from the terminal host is mangled; essentially ‘marked’ in
the header field usually used for filtering, but in this case one is using it to mark
the traffic for the intended customer. Next, the packet is given the “real”
destination address, based on a lookup for the mangled (or “fake”) IP in the NAT
table; this is always done prior to routing and called Destination Network Address
Translation (DNAT). From the mangled IP, the correct rule can be resolved from
the routing rule table, and the correct route to the customer is known. Prior to
sending the packet, however, the source must be masqueraded through Source
Network Address Translation (SNAT). Masquerading is a specialized form of
address translation usually used to dynamically allocate PPP dialup. Now the
packet is ready to send.

This simple packet example is indicative of our larger solution. Nothing new here
to the world of TCP/IP, but combining all these techniques to manipulate the

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

packet is rare. The steps to implement this translation and interpretation are
carried out by Perl scripts called by the web server’s requests over a secure
connection from our Citrix server.

Except for the ‘Advanced Routing Solution’, all other models are modifications of
‘off-the-shelf’ product or technology. Details for implementing the Advance
Routing Solution are moved to Appendix A and B, and call heavily on the work of
Brian Enright’s adaptation of the ‘pptpclient’

Securing the Connection Models

Because the equipment in the DMZ where the buffered outbound equipment
operates is exposed to the Internet, is a target for attackers. In the Advanced
Routing Solutions, the client sessions hosted on the Citrix server access a
secure web connection to the Linux host that should be controlled using TCP/IP
wrappers; no other node should be allowed to access the Linux host because the
Linux host only client is the Citrix server(s).

Password management is very important for all the connection models. All the
models, with the exception of VMWare’s ESX server, one should probably store
the password and customer data in a RADIUS or LDAP server isolated from the
functional equipment. The physical separation of an LDAP server, for example,
could be setup to accept requests from the machines in the DMZ only. At a
minimum, consider an encryption schema to protect the entire customer
connection data. Another possibility for securing the information is to require the
user creating the tunnel to offer the information over a secure connection at the
time the connection request is made. This possibility is viable if you share the
password among users. Give some thought to passwords and exposure in
whatever model you choose.

Another important aspect of the design when considering security, is limiting the
access to the customer VPN accounts. As customers restrict VPN access solely
by the accessing organization and not the particular users within the given
organization, dozens of users could come and go using only a single account.
This freedom removes all real accountability. When users logon the Citrix front-
end to use VPN to access customer sites, they don’t necessarily need the VPN
account and password. The Linux VPN gateway described in this paper allows a
single customer VPN account to be shared among users without giving away the
customer account information to those users that require access. The request is
simply trusted by the Linux VPN gateway because all Citrix users have been
logged on to Citrix itself. This makes a few things very important, such as the
logging of events like the logon/logoff success and failures on the Citrix server
tied to the Linux ‘syslog’ events for VPN tunnel creation and termination. Both
the success and failure data sets will be needed to know who did what when.
Timing is also important, if the clocks are not synchronized, it can be difficult to

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

impossible to match logs. Storing and managing log files are another paper
entirely, quite a few people have written on the topic and more information can
be found at http://www.sans.org/rr/logging/

The link between the Citrix server and the Linux VPN gateway is un-tunneled
traffic and offers a chokepoint to log traversing traffic for customer connections.
When the traffic log is correlated with the logon access to Citrix and the Linux
connection data, the administrator has an excellent picture of events.

Limitations of the Models

With some limitations, the advanced routing solution allows multiple accesses to
sites with the same IP address from a single network. The first limitation is when
multiple connections are made and delivered to the Citrix server, users of the
Citrix server can see multiple customers, and customer traffic does not traverse
the other’s network. However, users of the Citrix server could confuse customer
networks. In some cases, it might not be desirable to have a single termination
end point for all customer traffic, consider the advantages and disadvantages
before using the advance routing solution.

With any of the models presented, performance decreasing with every
connection brought online. Depending on a number of factors, including network
and processor performance, one is probably limited to how many simultaneous
connections each single model maintain and is especially noticeable in the
Advanced Routing Solution. In theory, the marking of packets performed by
iptables in our script on the advance routing solution might be limited to 256
concurrent connections based on the number of active routing tables but is
probably far less based on physical constraints. Testing for this paper has only
brought 4 simultaneous connections. Scaling this solution beyond the 256
connections would require additional Linux VPN gateways, running concurrently
or a rewrite of the Linux kernel. In larger organization with many simultaneous
connections needed, consider setting up multiple connection models at various
point of presence within the organization.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Conclusion

In an environment where you would simply allow direct VPN tunnel access to
customer networks, each user creates an encrypted tunnel that is not managed
or monitored. If one cares about one’s customer relationship and possibly
supporting the customer network then protecting the customer network and
relationship is important. Managing and monitoring that connection can be as
important as keeping customer network traffic from traversing the corporate
Intranet. In the connection models presented here, the initial VPN connection
starts from a system maintained by the systems administrator in a controlled area
(the DMZ), one could verify a clean system is participating in the customer
network and keep minimize the potential of harmful network traffic in either
direction.

It is said that the greatest protection is afforded through narrow passages with
high walls. Using a terminal server to bring up tunnel connections to customer
networks affords greater protection to the Intranet while offering a chokepoint for
all outbound connections; thus giving a buffer to the connection by adding a layer
of security. This solution was created to solve the conflict between policy and
mission; having a strict policy on ‘no direct outbound VPN connections’ in spite of
a need to connect to customers via VPN. Alleviating the risk of VPN tunnels from
dozens of users to dozens of customers can be controlled, monitored and
managed through the buffered outbound connection using the connection models
presented in this paper.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

BIBLIOGRAPHY

Application Serving White Paper. 2000. Citrix.
http://download2.citrix.com/ctxlibrary/products/pdf/APPLICATION_SERVING_W
P_0700.PDF. (02 November 2002)

Cameron, James. All Traffic Through Tunnel (Draft). 30 December 2002. PPTP
Client How To Documentation.
http://pptpclient.sourceforge.net/routing.phtml#all-to-tunnel. (30 December 2002)

Enright, Brian. Perl VPN Tunnel Script. 5 Sept 2002. Siemens Information and
Communications Networks. Seen in Appendix A.

Enright, Brian. RDC Presentation. Oct 2002. Siemens Information and
Communications Networks Inc. Unpublished, available upon request.

Human X. Run Multiple O/S Concurrently with VMWare. 25 November 2002.
LinuxDig.com Technology Articles.
http://www.linuxdig.com/news_page/1038240305.php (07 January 2003)

Index of /pub/mppe. 5 August 2002. Planet Mirror Directory Listing for MPPE.
http://public.planetmirror.com/pub/mppe/. (11 November 2002)

Lear, E., de Groot, G. J., Karrenberg, D., Moskowitz, Y. B., and Rekhter, Y.
Address Allocation for Private Internets, RFC1918. February 1996. Internet
RFC/STD/FYI/BCP Archives. http://www.faqs.org/rfcs/rfc1918.html. (11
November 2002)

McCabe, Linus, and Cameron, James. Routing How To from SourceForge
PPTP Client. 25 Nov 2002. http://pptpclient.sourceforge.net/routing.phtml. (28
November 2002)

Munro, Jay. Virtual Machines & VMware, Part II. 21 Dec 2001. Extreme Tech.
http://www.extremetech.com/article2/0,3973,13793,00.asp (07 January 2003)

Pall, G., Palter, B., Rubens, A., Townsley, W., Valencia, A., and Zorn, G., Layer
Two Tunneling Protocol "L2TP",RFC2661. August 1999. Internet
RFC/STD/FYI/BCP Archives. http://www.faqs.org/rfcs/rfc2661.html. (28
September 2002)

Pall, G., Zorn, G. Microsoft Point-To-Point Encryption (MPPE) Protocol,
RFC3078. March 2001. Internet RFC/STD/FYI/BCP Archives.
http://www.faqs.org/rfcs/rfc3078.html. (29 September 2002)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

PPTP Client. 20 March 2002. SourceForge hosting of HP Sponsored PPTP
Client. http://pptpclient.sourceforge.net/. (28 September 2002)

Russell, Rusty. 6.1 Source NAT, 6.2 Destination NAT. 14 January 2002. Linux
2.4 NAT HOWTO. http://www.netfilter.org/documentation/HOWTO/NAT-
HOWTO-6.html. (2 October 2002)

Terminal Services: Providing the Benefits of Remote Application Execution
15 Dec 1999. Windows 2000 Terminal Services.
http://www.microsoft.com/windows2000/server/evaluation/business/terminal.asp.
(5 September 2002)

VMWare ESX Server Mainframe-Class Virtual Machines on High-Performance
Intel Servers. 2002. http://www.vmware.com/pdf/esx_specs.pdf (07 January
2003)

VMWare Products. 2003. http://www.vmware.com/products/ (07 January 2003)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Appendix A - Implementing the Advanced Routing Solution

Reading the overview of the PPTP Homepage is recommended prior to the
implementation of the full solution outlined in the paper. Install the PPP client on
the Linux VPN Gateway, available from the download section of the PPTP
website. The PPP-MPPE package for the i386 system works best and has all
the features used in this paper. However, not all flavors of Linux support the
MPPE protocol. A complete MPPE source, for inclusion in the kernel, can be
found at Public Mirror’s directory listing.

We use Linux 8.0 with Apache web support to call three basic Perl Scripts that
carry out VPN tunnel start, stop, and status functions. Figure 1 (Enright, RDC
Presentation, slide 4), below, outlines the web server’s roll. For security, the web
server status.cgi will initiate a socket connection on the local host to run the script
‘pptp-new’ as shown.

Figure 1 (Enright, RDC Presentation, slide 4)

The functions ‘Start, Stop and Status’ themselves are complex and some
knowledge about iptables and Perl scripting is recommended. Each request calls
functions similar to the examples, seen in Figures 3 (Enright, RDC Presentation,
slide 4), 4 (Enright, RDC Presentation, slide 6), and 5(Enright, RDC Presentation,
slide 7), to configure and use a PPTP tunnel. Another example similar to what
our end functions will look like may be found at the PPTP Client Homepage. A
manner to store the customer information, status, and routing information, which
will be called by the scripts, is also needed. In the examples, the customer
information is stored in tunnel.db and the routing information is stored in nat.db,
while the user/password information for a tunnel is stored in the chap-secrets.
(The schema for the necessary tables may be seen in Figure 2 (Enright, RDC
Presentation, slide 4).)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

/etc/ppp/vpn-database/tunnel.db
Tunnel_Name IP/Phone# Routing# Mark# UserName Tunnel_Name Passwd ConnType

/etc/ppp/vpn-database/nat.db
Tunnel_Name Fake_IP Real_IP Description

/etc/ppp/chap-secrets
User_Name Tunnel_Name Password

Figure 2 (Enright, RDC Presentation, slide 4)

Figure 3 (Enright, RDC Presentation, slide 4) displays the start function steps. It
retrieves the tunnel name from the request, and looks up the associated
information from the databases. It connects to Customer LAN using Dial-Up or
VPN (IP: w.x.y.z DEV: pppX); and creates a new routing table. Next, the rule
and route for the new table are added . For each entry in the nat.db database
associated with the tunnel name, the packets are marked and associated with
the Tunnel Name. After this has completed, the return packets are masqueraded
and the routing cache is flushed. Lastly, a lock file is created at pptp-
<tunnel_name>, where <tunnel_name> is the name given to the host tunnel.

START
#echo <Table_Number> <Tunnel_name> >> /etc/iproute2/rt_table
#ip rule add fwmark <Mark_#> table <Tunnel_name>
#ip route add default via w.x.y.z dev pppX table <Tunnel_name>
// ‘mark and dnat’ must be carried out for each entry in the ‘nat’ and
‘mangle’ database associated with the Tunnel Name while the
masquerading needs to be only done once
#iptables -t mangle -A PREROUTING -d <Fake_IP> -j MARK --set-mark
<Mark_#>
#iptables -t nat -A PREROUTING -d <Fake_IP> -j DNAT --to
<REAL_IP>
#iptables -t nat -A POSTROUTING -o pppX -j MASQUERADE
#ip route flush cache
#create LOCK file /var/lock/subsys/pptp/pptp-<Tunnel_Name>

Figure 3 (Enright, RDC Presentation, slide 4)

The stop function, Figure 4 (Enright, RDC Presentation, slide 6), also begins by
recovering the tunnel name from the request, and looks up associated
information from the databases. It reads the lock file at pptp-<tunnel_name>,
and removes the routing table entry from the rt_tables. The rule and route is
deleted for this table. For each entry in the nat.db database associated with the
tunnel name, all dynamically created mark and nat entries are cleaned, the

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

masquerading is also cleared (for reverse routing), the routing cache is flushed
and the lock file for the tunnel name is deleted.

STOP
#ip rule del fwmark <Mark_#> table <Tunnel_name>
#ip route del default via w.x.y.z dev pppX table <Tunnel_name>
// ‘mark and dnat’ must be carried out for each entry in the ‘nat’ and
‘mangle’ database associated with the Tunnel Name while the
masquerading needs to be only done once
#iptables -t mangle -D PREROUTING -d <Fake_IP> -j MARK --set-mark
<Mark_#>
#iptables -t nat -D PREROUTING -d <Fake_IP> -j DNAT --to <REAL_IP>
#iptables -t nat -D POSTROUTING -o pppX -j MASQUERADE
#ip route flush cache
#delete LOCK file /var/lock/subsys/pptp/pptp-<Tunnel_Name>

Figure 4 (Enright, RDC Presentation, slide 6)

Seen in Figure 5 (Enright, RDC Presentation, slide 7), status is used to
determine the current state of each tunnel. This test is relatively simple. The
pptp directory is read. All tunnels in the tunnel.db table that have a lock file
(pptp-<tunnel name) are marked as ‘UP’, while all others are marked ‘DOWN’.

STATUS - Return the current state of each Tunnel
• Read the directory /var/lock/subsys/pptp/
• Mark all Tunnels with a file “pptp-<Tunnel_Name>” as being UP
• Otherwise mark it as being DOWN
• Return the list to the web Server

Figure 5 (Enright, RDC Presentation, slide 7)

For a working VPN tunnel script (in Perl) that carries out the start and stop
functions, please see Appendix A (Enright, Perl VPN Tunnel Script).

Using the advance connection model does not solve all one’s problems and
responsibilities; it just shifts them to the DMZ. One will need to take steps in
securing the DMZ equipment, like the Linux advanced router and the Citrix or
terminal server, just as you would within your corporate network.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

APPENDIX B – Perl VPN tunnel script carrying out the start and stop
functions (based on open source script offered at
http://pptpclient.sourceforge.net and is provided as a working example)

#!/usr/bin/perl -w
#functions:
setup - configures tunnel servers and chap-secrets
start - brings up a tunnel
stop - brings down a tunnel

09/05/02 -- Brian Enright
modified and stream lined to support Multiple VPN connections
by accessing connection data through the databases
nat.db and tunnel.db will be used
This is a modified version of the PPTP-COMMAND script
Provided by the PPPTP-COMMAND software included with the
PPTP client down a tunnel $Id:
pptp-command,v 1.12 2001/12/20 13:09:02 jwiedemeier Exp $
#######
use IO::Socket;

database access module...

my $script_dir = "/etc/ppp/vpn-script";

require "$script_dir/getDataFromDB.pm";
require "$script_dir/tunnels_up.pm";

Data

the regexp for the list of characters that are unsafe
to put inside a system() or ``
it is built by saying everything but known safe characters
anyone want to make bets on if this holds true for i18n'ed systems?
my $safe_set = '-A-Za-z0-9\s\._\/:';
my $unsafe_re = "[^$safe_set]";
my $safe_re = "[$safe_set]*";

pppdir - the directory containing the ppp config files

my $pppdir = $ENV{"PPPDIR"};
die "Stop screwing with me and set PPPDIR to something reasonable\n" if
defined

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

$pppdir && $pppdir =~ /$unsafe_re/o;
$pppdir = "/etc/ppp" unless defined $pppdir;

chap_secrets - the full path to the the CHAP
(Challenge/Handshake Authentication Protocol) secrets fi le

my $chap_secrets = "$pppdir/chap-secrets";
my $pap_secrets = "$pppdir/pap-secrets";

subsys_dir - the place "rc" looks to see if a servics is started
before it runs the K* scripts
my $subsys_dir = "/var/lock/subsys/pptp";

clean up the path since this is run as root.
$ENV{PATH} = "/bin:/usr/bin:/usr/sbin";
delete $ENV{BASH_ENV};
delete $ENV{IFS};
delete $ENV{ENV};

sub usage() {
 print "\nusage: $0 [start|stop|deamon|status] tunnel_name\n\n";
 exit 1;
}

#ConfiguredTunnels

Returns a list of configured tunnels

needs to read tunnel.db and return an array of the Tunnel Names

sub ConfiguredTunnels() {
 my @tunnels = ();
 my @result = get_tunnel_data("");
 my $rec;
 foreach $rec (@result) {
 push @tunnels, $rec->{"Tunnel"};
 }

 return @tunnels;
}

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

#QueryUser <prompt> <default>

Ask the user <prompt> and return the answer, <default> if cr

sub QueryUser($$) {
 my ($prompt, $default) = @_;

 print "$prompt";
 print " [$default]" if defined $default;
 print ": ";
 my $answer = <STDIN>;
 chomp $answer;
 $answer = $default if $answer eq "" and defined $default;
 return $answer;
}

#bselect

a rough equilivent of the bourne shell's select
sub bselect($@) {
 my $prompt = shift;
 my @choices = @_;
 for my $i (0..$#choices) {
 print $i+1 .".) $choices[$i]\n";
 }
 #print $i+1 .".) Abort\n";
 my $reply = QueryUser $prompt, undef;
 return $reply;
}

#SelectTunnel - interactive

Prints $_[0] as a prompt and returns the choice.

sub SelectTunnel($$) {
 my ($msg, $option) = @_;
 my $tunnel = "";
 my @tunnels;
 if ($option eq "UP") {
 @tunnels = get_tunnels_up($subsys_dir);

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 }elsif ($option eq "ALL") {
 @tunnels = ConfiguredTunnels;
 }

 while($tunnel eq "") {
 #$tunnel = bselect $_[0], @tunnels;
 $tunnel = bselect $msg, @tunnels;
 }
 return $tunnels[$tunnel - 1] if $tunnel =~ /^\d+$/;
 return $tunnel if grep {/$tunnel/} @tunnels;
 return "";
}

#start

This does the old pptp-start work
sub start() {
 my ($tunnel, $f, @filter, @ifs, $if, @foo);
 my @tunnels = ConfiguredTunnels;
 die "no configured tunnels!\n" if @tunnels == 0;

 if(defined $ARGV[1]) {
 $tunnel = $ARGV[1];
 } elsif(-t STDIN && -t STDOUT) {
 $tunnel = SelectTunnel "Start a tunnel to which server?",
"ALL";
 } else {
 usage;
 }

 #
 # if $subsys_dir/pptp-$tunnel exists
 # die "LINK for $tunnel is already up...\n"
 # else continue
 #
 if(-f "$subsys_dir/pptp-$tunnel") {
 die "LINK for $tunnel is already up...\n";
 }

 die "Nasty characters in $tunnel\n" if $tunnel !~ /^($safe_re)$/o;
 $tunnel = $1;

 #
 # get Connection information form databases
 #

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 my @tmp_tunnel = get_tunnel_data($tunnel);
 my $Tunnel_data = $tmp_tunnel[0];
 my @nat_data = get_nat_data($tunnel);

 if ($tunnel ne $Tunnel_data->{'Tunnel'}) {
 die "ERROR:: getting data for $tunnel\n";
 }

 #build a regexp of the currently existing interfaces
 my @ifconfig = `/sbin/ifconfig`;
 foreach $f (@ifconfig) {
 next unless $f =~ /^[a-z]/;
 @foo=split ' ', $f;
 push @filter, $foo[0];
 }
 my $if_re = join '|', @filter;

 #bring up the tunnel
 my $server = $Tunnel_data->{'ServerIP'};
 my $uname = $Tunnel_data->{'UserName'};
 my $rname = $Tunnel_data->{'RemoteName'};
 my $conntype = $Tunnel_data->{'ConnType'};
 $conntype =~ s/^\s+//;
 $conntype =~ s/\s+$//;

 my $retry_count = 1;
RETRY:
 my $child = fork;
 if ($child == 0) {

 if ($conntype eq "VPN") {
 exec "/usr/sbin/pptp $server name $uname remotename $rname
disco
nnect \"$script_dir/pptp-new stop $tunnel\" file /etc/ppp/options.pptp";
 }elsif($conntype eq "DialUP") {
 exec "/usr/sbin/pppd /dev/ttyS4 connect \"/usr/sbin/chat -T
$ser
ver -f $script_dir/dial.scr\" name $uname remotename $rname disconnect
\"$script
_dir/pptp-new stop $tunnel\" file /etc/ppp/options.dialup";
 }

 die "exec of pppd failed.";
 }

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 my $timeout=30;
 while(1) {
 if (($timeout == 0) && ($retry_count > 0)) {
 $retry_count--;
 # print "DEBUG:: connection faild attempting to
retry\n\n";
 goto RETRY;
 }elsif ($timeout == 0) {
 die "ERROR! Connection timed out.\n";
 }
 $timeout--;
 @ifs = ();
 sleep 1;
 @ifconfig=`/sbin/ifconfig`;
 foreach $f (@ifconfig) {
 next unless $f =~ /^[a-z]/;
 @foo=split ' ', $f;
 push @ifs, $foo[0];
 }
 ($if, undef) = grep {!/$if_re/} @ifs;
 last if defined $if;
 }
 die "something screwy in your interface names: $if\n" if $if !~
/^($safe
_re)$/o;
 $if = $1;
 (grep {/inet/} `/sbin/ifconfig $if`)[0] =~ /:(\d+\.\d+\.\d+\.\d+)/;
 $ip = $1;
 (grep {/P-t-P/} `/sbin/ifconfig $if`)[0] =~
/P-t-P:(\d+\.\d+\.\d+\.\d+)/
;
 my $pptpip = $1;

add $tunnel to routing table using RT_Num

 open(RTTABLE, ">>/etc/iproute2/rt_tables") or die "ERROR opening
/etc/iproute
2/rt_tables\n\n";
 flock(RTTABLE, 2);
 seek(RTTABLE,0,2);
 print RTTABLE "$Tunnel_data->{'RT_num'} $tunnel\n";
 close RTTABLE;

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

add rule for new routing table using Mark_num

 system("/sbin/ip rule add fwmark $Tunnel_data->{'Mark_num'} table
$tunnel");

add MANGLE translations
add NAT translations

 my $nat_entry;
 foreach $nat_entry (@nat_data) {
 system("/sbin/iptables -t mangle -A PREROUTING -d
$nat_entry->{'FakeIP'} -j
 MARK --set-mark $Tunnel_data->{'Mark_num'}");
 system("/sbin/iptables -t nat -A PREROUTING -d $nat_entry->{'FakeIP'}
-j DN
AT --to $nat_entry->{'RealIP'}");
 }

NOW add default route to routing table $tunnel

 system("/sbin/ip route add default via $pptpip dev $if table $tunnel");

NOW add MASQUERADING for interface pppX

 system("/sbin/iptables -t nat -A POSTROUTING -o $if -j MASQUERADE");

Make sure ftp modules are loaded...

 my $conntrack_ftp = (grep {/ip_conntrack_ftp/} `/sbin/lsmod`)[0];
 if (!defined $conntrack_ftp) {
 system("/sbin/insmod ip_conntrack_ftp");
 print "\n\nip_conntrack_ftp is NOW loaded\n\n";
 }

 my $nat_ftp = (grep {/ip_nat_ftp/} `/sbin/lsmod`)[0];
 if (!defined $nat_ftp) {
 system("/sbin/insmod ip_nat_ftp");
 print "\n\nip_nat_ftp is NOW loaded\n\n";
 }

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 my @pppd_list = (grep {/pppd/} `/bin/ps ax`);
 my $num=0;
 for ($num=0; $num<=$#pppd_list; $num++) {
 if (index($pppd_list[$num], "<defunct>") > 0) {
 splice(@pppd_list, $num, 1);
 $num = $num-1;
 }
 }
 my $pppd_pid = $pppd_list[(@pppd_list-1)];
 $pppd_pid =~ s/^\s+//;
 $pppd_pid = (split(' ',$pppd_pid))[0];

 open(LOCK, ">>$subsys_dir/pptp-$tunnel") or die "couldn't open lock
file
: $!";
 print LOCK "$pppd_pid\n";
 print LOCK "$if\n";
 print LOCK "$ip\n";
 print LOCK "$pptpip\n";
 close LOCK or die "couldn't close lock file: $!";

 print "Tunnel $tunnel is active on $if. IP: $ip. P-t-P:$pptpip\n";

MAKESURE WE FLUSH THE ROUTING CACHE!!! !

 system("/sbin/ip route flush cache");

 exit 0;
}

#stop

this does the old pptp-stop work
sub stop() {

 my ($tunnel, $f, @filter, @ifs, $if, @foo);
 my @tunnels = ConfiguredTunnels;
 die "no configured tunnels!\n" if @tunnels == 0;

 if(defined $ARGV[1]) {
 $tunnel = $ARGV[1];

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 } elsif(-t STDIN && -t STDOUT) {
 $tunnel = SelectTunnel "Start a tunnel to which server?",
"UP";
 } else {
 usage;
 }

 die "Nasty characters in $tunnel\n" if $tunnel !~ /^($safe_re)$/o;
 $tunnel = $1;

 #
 # if $subsys_dir/pptp-$tunnel NOT exists
 # die "LINK for $tunnel is NOT up...\n"
 # else continue
 #
 if(! -f "$subsys_dir/pptp-$tunnel") {
 die "LINK for $tunnel is NOT up...\n";
 }

 #
 # get Connection information form databases
 #
 my @tmp_tunnel = get_tunnel_data($tunnel);
 my $Tunnel_data = $tmp_tunnel[0];
 my @nat_data = get_nat_data($tunnel);

 if ($tunnel ne $Tunnel_data->{'Tunnel'}) {
 die "ERROR:: getting data for $tunnel\n";
 }

 #
 # Get info from the lock file (order is important, see sub start)
 #
 open(LOCK, "<$subsys_dir/pptp-$tunnel") or die "ERROR unable to open
$su
bsys_dir/pptp-$tunnel";
 my $pptppid = <LOCK>;
 my $if_dev = <LOCK>;
 my $ip_addr = <LOCK>;
 my $pptp_addr = <LOCK>;
 chomp $pptppid;
 chomp $if_dev;
 chomp $ip_addr;

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 chomp $pptp_addr;
 close LOCK;

 # sending pptp process SIGHUP... (ie STOPING pptp)
 print "Sending HUP signal to PPTP processes $pptppid...\n";
 system("kill -s HUP $pptppid");

----May NOT be needed???
delete default route established during sub start

 system("/sbin/ip route del default via $pptp_addr dev $if_dev table
$tunnel"
);

del rule for new routing table using Mark_num

 system("/sbin/ip rule del fwmark $Tunnel_data->{'Mark_num'} table
$tunnel");

del $tunnel to routing table using RT_Num

 open(RTTABLE, "/etc/iproute2/rt_tables") or die "ERROR opening
/etc/iproute2/
rt_tables\n\n";
 @rttable_data = <RTTABLE>;
 close RTTABLE;

 my $i = 0;
 my $index = -1;
 foreach $line (@rttable_data) {
 if ((index($line,"#") == 0) or (length($line) < 3)) {
 $i = $i + 1;
 next;
 }
 my ($rtNum, $rtName) = split(' ',$line);
 if (($rtNum eq $Tunnel_data->{'RT_num'}) and ($rtName eq
$Tunnel_data->{'
Tunnel'})) {
 $index = $i;
 }

 $i = $i + 1;
 }

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 if ($index >= 0) {
 splice(@rttable_data, $index, 1);
 }

 open(RTTABLE, ">/etc/iproute2/rt_tables") or die "ERROR openeing
/etc/iproute
2/rt_tables\n\n";
 flock(RTTABLE, 2);
 seek(RTTABLE,0,0);
 print RTTABLE @rttable_data;
 close RTTABLE;

del MANGLE translations
del NAT translations

 my $nat_entry;
 foreach $nat_entry (@nat_data) {
 system("/sbin/iptables -t mangle -D PREROUTING -d
$nat_entry->{'FakeIP'} -j
 MARK --set-mark $Tunnel_data->{'Mark_num'}");
 system("/sbin/iptables -t nat -D PREROUTING -d $nat_entry->{'FakeIP'}
-j DN
AT --to $nat_entry->{'RealIP'}");
 }

del MASQUERADEING

 system("/sbin/iptables -t nat -D POSTROUTING -o $if_dev -j MASQUERADE");

 unlink "$subsys_dir/pptp-$tunnel";
 sleep 2;

MAKESURE WE FLUSH THE ROUTING CACHE!!! !

 system("/sbin/ip route flush cache");

 exit 0;
}

sub get_status_all {

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 my @status_list = ();
 my @tunnel_list = ConfiguredTunnels;
 my $index = 0;
 foreach my $tunn (@tunnel_list) {
 chomp $tunn;
 my $tunnel_data = (get_tunnel_data($tunn))[0];

 if (is_tunnel_up($subsys_dir,$tunn) == 1) {
 $status_list[$index] = "$tunn,UP,".$tunnel_data->{'ConnType'};
 }else {
 $status_list[$index] = "$tunn,DOWN,".$tunnel_data->{'ConnType'};
 }
 $index++;
 }
 return @status_list;
}

sub status{
 my @tmp = get_status_all;
 print "The Status for each Tunnel is as follows::\n";
 foreach my $tmp (@tmp) {
 chomp $tmp;
 print "$tmp\n";
 }
 print "\n\n\nDisplay as a single List!\n";
 my $list = join '|', @tmp;
 print $list;
 exit 0;
}

sub deamon{

 my $server = IO::Socket::INET->new (
 LocalAddr => '127.0.0.1',
 LocalPort => 3000,
 Type => SOCK_STREAM,
 Reuse => 1,
 Listen => 5
) or die "\n\npptp-new:: ERROR Binding to port 3000\n\n";
 while() {
 while(my $client = $server->accept()) {
 my $action = <$client>;

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 chop $action;

 #print "\n\nDEBUG1: action=>($action)\n\n";

 if ($action eq "start") {
 my $tunnel = <$client>;
 chomp $tunnel;
 #print "DEBUG2: tunnel=>($tunnel)\n\n";
 my @cmd = ("$script_dir/pptp-new", "start", $tunnel,
">/dev/null");
 system(@cmd);
 #
 # sleep 20;
 #
 my $result = is_tunnel_up($subsys_dir, $tunnel);
 if ($result == 1) {
 $result = "SUCCESS!!";
 }else {
 $result = "FAILED!!";
 }
 print $client "Request -- $result\n";

 }elsif($action eq "stop") {
 my $tunnel = <$client>;
 chomp $tunnel;
 #print "DEBUG3: tunnel=>($tunnel)\n\n";
 my @cmd = ("$script_dir/pptp-new", "stop", $tunnel, ">/dev/null");
 system(@cmd);
 #
 # sleep 10;
 #
 my $result = is_tunnel_up($subsys_dir, $tunnel);
 if ($result == 0) {
 $result = "SUCCESS!!";
 }else {
 $result = "FAILED!!";
 }
 print $client "Request -- $result\n";

 }elsif($action eq "status") {
 my @status = get_status_all;
 my $list = join '|', @status;
 print $client $list;
 }else {
 print "\n\nERROR: action ($action) unknown\n\n";
 }

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 close($client);
 }
 }
 close($server);
 exit 0;
}

if(defined $ARGV[0]) {

 if($ARGV[0] eq "start") {
 start;
 } elsif($ARGV[0] eq "stop") {
 stop;
 } elsif($ARGV[0] eq "status") {
 status;
 } elsif($ARGV[0] eq "deamon") {
 deamon;
 } else{
 usage;
 }
}

if(! -t STDIN || ! -t STDOUT) {
 usage;
}

my $mode = bselect "What task would you like to do?", "start", "stop",
"status",
 "deamon", "quit";
if($mode eq "1") {
 start;
} elsif($mode eq "2") {
 stop;
} elsif($mode eq "3") {
 status;
} elsif($mode eq "4") {
 deamon;
} elsif($mode eq "5" or $mode eq "q") {
 exit 0;
}

