
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Network Reconnaissance – Detection and Prevention

GSEC v1.4b
Andy Millican

January 23, 2003

Abstract

The focus of this paper is basic network reconnaissance. I will attempt to

define some basic port scanning and OS fingerprinting techniques, a few
common tools used to accomplish these scans, and basic methods to detect and
defend against these recon attempts. I have included examples of port scan
traffic to illustrate my points.

“… virtually every network attack is preceded by network reconnaissance.
Hackers scan and probe networks before they attack in order to get information
about the target” - Lenny Liebmann [1]

From my experience, both on my personal network and working as an IDS

analyst, this statement sums up the importance of regular recon auditing,
understanding basic scanning mechanisms, and implementing defense and
detection of recon events. An attacker who is able to successfully conduct recon
on your network has a much higher likelihood of attempting to compromise your
network than an attacker whose recon attempts are thwarted. Furthermore, the
attacker with recon information has a higher probability of successfully
compromising your network. A network admin who understands network
scanning, and can implement both defense and detection from this knowledge,
will be able to significantly increase the security level of his or her network while,
at the same time, significantly reducing the response time if a network incursion
occurs.

The Setup: Tools and Test Network

I used two machines from my personal network to research scanning
techniques and to gather the packet captures that I have included in this paper.
The host machine (10.0.0.7) is running Linux 2.4.18, with NMAP 3.10 alpha4 and
Ring 0.0.1-linux installed. The target machine (10.0.0.5) is a FreeBSD 4.7-
STABLE box with both SSHd and Telnetd listening on ports 22 and 23
respectively. All IP addresses are non-routable so no packet sanitation was
needed. For each of the scans I performed I limited the scan range to ports 22-
24 – hitting one closed and two open TCP ports. I used Nmap to perform all of
my port scanning. The Nmap utility contains a suite of network scans that extend
even beyond the scope of this paper.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

In order to gather packet data, I used a program called Tcpdump on the
target machine. Tcpdump is a network utility that can be configured to monitor
specific network traffic, including all traffic headers and packet payload
information. I also configured Snort 1.9.0 (I used the default install settings) on
the target machine as my IDS tool for detecting my port scans and OS fingerprint
attempts. I disabled the firewall that was active on the target machine, so that all
scan data could be captured.

Port Scanning

 Port scanning is defined as “The act of systematically scanning a
computer's ports. Since a port is a place where information goes into and out of a
computer, port scanning identifies open doors to a computer.” - Jupiter Media
Corporation [5] When performed regularly, port scanning will provide a network
admin with a view of his network as an attacker would see it before attacking.
Forearmed with this knowledge, if a network compromise does occur, the
network admin will know what services are visible to the outside world and thus
where the attack entry was likely to have occurred. In depth knowledge of recon
attempts is important to a network admin as it will allow him or her to set up their
network defense to properly block many different scans.

The principal behind port scanning is simple: Illicit data from any port you
are interested in from the target machine then analyze the data for patterns that
differ for closed and open ports. There are several methods to perform port
scanning. Each method has its own strengths and weaknesses. I will outline a
few port scanning techniques in this paper, specifically: TCP Null , TCP Xmas,
TCP FIN, TCP SYN, and UDP port scans.

TCP NULL Scan

 “As a general rule, reset (RST) must be sent whenever a segment
arrives which apparently is not intended for the current connection. A reset must
not be sent if it is not clear that this is the case.” RFC 793 [6]

In other words if I send any TCP packet without the RST flag set to a closed port
on a remote network, I should receive an RST response. If the port is open (or
listening) then I should receive no response. The TCP-NULL scan takes
advantage of this RFC standard by utilizing TCP packets with no flags set. For
each RST packet received a closed port is logged; when no response is received
a remote open TCP port is assumed. This scan does not work on certain
operating systems that do not adhere strictly to the RFC standard (Windows
95/NT, Cisco, BSDI, HP/UX, MVS, and IRIX)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Below is the data captured from an Nmap scan I ran using the –sN switch
across ports 22-24. As expected the only closed port is 24, which returned an
RST packet.

17:28:13.891604 10.0.0.7.36813 > 10.0.0.5.24: . win 3072
17:28:13.891685 10.0.0.5.24 > 10.0.0.7.36813: R 0:0(0) ack 0 win 0
17:28:13.892104 10.0.0.7.36813 > 10.0.0.5.23: . win 3072
17:28:13.892229 10.0.0.7.36813 > 10.0.0.5.22: . win 3072
17:28:14.199533 10.0.0.7.36814 > 10.0.0.5.23: . win 3072
17:28:14.199648 10.0.0.7.36814 > 10.0.0.5.22: . win 3072

IDS (SNORT) Detected: YES
Snort Rule:
[**] spp_stream4: STEALTH ACTIVITY (NULL scan) detection [**]

The default installation of snort was able to detect this scan. The SPP
plugin performs stateful packet monitoring for Snort. I will explain stateful devices
later in this paper.

TCP FIN Stealth Scan

The TCP FIN scan is identical to the NULL scan except that the FIN flag is
set on each outbound TCP packet. The result is the same, closed ports respond
with an RST packet.

Once again, I used this Nmap scanning utility, this time with the –sF
switch. The closed port 24 responded with an RST packet as expected.

17:26:41.683512 10.0.0.7.50203 > 10.0.0.5.24: F 0:0(0) win 1024
17:26:41.683595 10.0.0.5.24 > 10.0.0.7.50203: R 0:0(0) ack 0 win 0
17:26:41.684078 10.0.0.7.50203 > 10.0.0.5.23: F 0:0(0) win 1024
17:26:41.684202 10.0.0.7.50203 > 10.0.0.5.22: F 0:0(0) win 1024
17:26:41.991955 10.0.0.7.50204 > 10.0.0.5.23: F 0:0(0) win 1024
17:26:41.992070 10.0.0.7.50204 > 10.0.0.5.22: F 0:0(0) win 1024

IDS (SNORT) Detected: YES
SNORT Alert:
[**] spp_stream4: STEALTH ACTIVITY (FIN scan) detection [**]

Again the stateful operations of Snort detected this scan.

TCP XMAS Scan

The TCP XMAS scan is also identical to the NULL and FIN scans except
that all flags are set on each outbound TCP packet. Again, only closed ports

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

respond with an RST packet, and this type of scan will not work on systems that
do not adhere to the RFC standard.

Nmap –sX executes this scan. Once again my FreeBSD box dutifully replied on
port 24 with an RST packet.

17:27:48.764160 10.0.0.7.47742 > 10.0.0.5.22: FP 0:0(0) win 1024 urg 0
17:27:48.764483 10.0.0.7.47742 > 10.0.0.5.23: FP 0:0(0) win 1024 urg 0
17:27:48.764662 10.0.0.7.47742 > 10.0.0.5.24: FP 0:0(0) win 1024 urg 0
17:27:48.764720 10.0.0.5.24 > 10.0.0.7.47742: R 0:0(0) ack 0 win 0
17:27:49.072919 10.0.0.7.47743 > 10.0.0.5.22: FP 0:0(0) win 1024 urg 0

IDS (SNORT) Detected: YES
SNORT Alert:
[**] spp_stream4: STEALTH ACTIVITY (nmap XMAS scan) detection [**]

Stateful monitoring by Snort also picked up this scan.

TCP SYN Stealth Scan

The TCP SYN scan functions on the premise that a listening port will
respond to a TCP connection attempt, while a closed port will reject the
connection with an RST packet. For each SYN packet sent, the scanning tool will
receive either a SYN-ACK or a RST packet. When a SYN-ACK response is
received, the port is noted as open and an RST packet is sent to close the
connection.

The data captured below is traffic generated by Nmap using the –sS
switch. The two open ports (22 and 23) responded to the SYN requests with
SYN-ACK packets as expected.

17:22:21.919848 10.0.0.7.33941 > 10.0.0.5.22: S 1776161780:1776161780(0)
win 4096
17:22:21.919886 10.0.0.7.33941 > 10.0.0.5.24: S 1776161780:1776161780(0)
win 4096
17:22:21.919907 10.0.0.7.33941 > 10.0.0.5.23: S 1776161780:1776161780(0)
win 4096
17:22:21.920048 10.0.0.5.22 > 10.0.0.7.33941: S 1206968201:1206968201(0)
ack 1776161781 win 57344 <mss 1460> (DF)
17:22:21.920163 10.0.0.7.33941 > 10.0.0.5.22: R 1776161781:1776161781(0)
win 0 (DF)
17:22:21.920220 10.0.0.5.23 > 10.0.0.7.33941: S 2295585801:2295585801(0)
ack 1776161781 win 57344 <mss 1460> (DF)
17:22:21.920315 10.0.0.7.33941 > 10.0.0.5.23: R 1776161781:1776161781(0)
win 0 (DF)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

IDS (SNORT) Detected: NO

 The reason Snort did not detect this scan is outlined in a this paper under the
section on “Detecting and Blocking” port scans in the subsection “Connection
Logging and Correlation.”

UDP Port Scan

So far we have discussed only TCP scanning techniques. However, there
are other protocols and methods of scanning that do not use TCP and are still
useful to auditors and attackers. One such scan is the UDP port scan. Similar to
the TCP SYN scan, the UDP scan will send a UDP packet to each port on a
target. Any open UDP port will accept the packet, sending no reply, any closed
port should respond with an ICMP unreachable packet. Though certainly not
foolproof, this scan may be effective in finding unknown open UDP ports.

Below is the traffic capture from nmap using the –sU switch. There are no UDP
ports running on ports 22-24 so I received an ICMP unreachable packet from
each port scanned.

17:25:46.945054 10.0.0.7.33049 > 10.0.0.5.22: udp 0
17:25:46.945129 10.0.0.5 > 10.0.0.7: icmp: 10.0.0.5 udp port 22 unreachable
17:25:46.945458 10.0.0.7.33049 > 10.0.0.5.24: udp 0
17:25:46.945499 10.0.0.5 > 10.0.0.7: icmp: 10.0.0.5 udp port 24 unreachable
17:25:46.945669 10.0.0.7.33049 > 10.0.0.5.23: udp 0
17:25:46.945710 10.0.0.5 > 10.0.0.7: icmp: 10.0.0.5 udp port 23 unreachable

IDS (SNORT) Detected: NO

The reason Snort did not detect this scan is outlined in a this paper under
the section on “Detecting and Blocking” port scans in the subsection “Connection
Logging and Correlation.”

Detecting and Blocking Port Scans

Now that I have determined how port scanning works and what a port
scan will look like I will attempt to answer the question: How do I detect and block
port scans? There are several methods for detecting or blocking port scans. I will
give examples of ways to detect and block the scans that have been outlined in
this paper. These techniques can be used for many scans not listed in my
examples.

Signatures

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

An effective method for blocking scans is to have a device or service at
your network perimeter that can recognize scan packets and drop them. The
difficulty arises when you try to sort the malicious scan packets from the
legitimate traffic. Some of the scans listed above have a unique signature or
pattern that can identify them. Of the scans listed in this paper, the XMAS scan
is most easily recognizable as all TCP flags in the TCP header are turned on.
This makes the scan easier to detect and block. The same method cannot be
applied to other scans. Take the TCP SYN (or half open) scan for example. If you
write a signature to block all incoming TCP SYN packets, you will certainly stop
any scans, but also any legitimate TCP connections will cease to function.
Signatures work best on unusual or malformed packets.

Stateful Firewalls/IDS

Port scans such as the TCP NULL, XMAS, and FIN scan were designed
to circumvent stateless firewalls and stateless IDS devices. A stateless device is
not able to correlate packets that are part of the same connection - such a device
can only process one packet at a time. These devices are generally limited to
signature based detection and prevention methods. Stateless devices work fine
against basic TCP SYN scans but could often be confused by abnormal packets
such as the NULL, XMAS, and FIN scan. The introduction of stateful devices
remedied the problem. These devices could keep track of what connection a
packet was part of and how it related to other packets. A NULL, XMAS, or FIN
scan would be detected and blocked by a stateful device because the device
would realize that the packets were not part of an already established TCP
stream (which should start with the SYN/ACK handshake. A stateless device
could not block the FIN scan without blocking legitimate traffic, and also a
stateless device would require manual signatures to be written to catch and block
XMAS and NULL scans.

By default, Snort installs with stateful IDS active. As shown by my

examples, snort was able to detect the FIN, NULL, and XMAS scans. These
types of packets should never precede a TCP handshake. Snort was aware that
no SYN-SYN/ACK handshake had occurred and logged the suspicious FIN,
NULL, and XMAS TCP packets.

Connection attempt Logging and Correlation

The installation of Snort on my target machine was unable to detect the
TCP SYN scan and the UDP scan. The reason for this was that the connection-
logging feature was not turned on in Snort. TCP SYN and UDP scans appear to
be legitimate connection attempts to the target, their only distinguishing trait is
that they hit multiple ports. The SYN packet is sent but the handshake is not
completed. This will occur naturally due to network disruptions, but should not be
a common occurrence. This should certainly not occur five times in less than a

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

second from the same source IP. Snort does have the ability to log multiple
connection attempts from the same source IP address (although it does not by
default.) A SYN port scan or UDP port scan would be detected by this method,
as the SYN/UDP scan appears to be multiple failed legitimate connections. By
correlating connection attempts, it becomes apparent that the source IP was
performing a scan on my target machine, as the source made five connection
attempts to different ports in less than a second. Depending on your network, a
setup that logged five or more connection attempts from the same source IP in
ten second time window would correctly detect most SYN/UDP scan activity.

Port Scan Stealthing and Obfuscation

 Knowing techniques that are employed to stealth or obfuscate a scan are
important to any network admin. With the proper understanding of port scan
stealthing, a network admin will be able to determine which detection method will
work most efficiently while detecting as many port scans as feasible.

 Several methods exists that will stealth a scan so that it will not show up
on an IDS device. As we have seen from the examples, some scans are not
picked up by stateless firewalls. This is a basic form of stealthing and was
demonstrated by the XMAS, NULL, and FIN scans. A further method of port scan
stealthing is something called TCP fragmenting. By breaking a scan into tiny TCP
packets (packets so small that the headers span many packets) a scan will
bypass many basic IDS and firewall devices.

 An attacker may choose to obfuscate his scan instead of trying to stealth
it. A common obfuscation method is to spoof many source IP addresses along
with the legitimate source IP for a port scan. The target machine will likely log the
scan, but it will be extremely difficult for the network admin to determine from
which IP address the port scan actually originated. The downside to this method
is that it does set off any port alarms on the target network and will likely put the
network admin in a state of alert.

OS Fingerprinting

 The term OS fingerprinting defines any method used to determine what
operating system is running on a remote computer. OS fingerprinting is a key
element in network reconnaissance as most exploitable vulnerabilities are
operating system specific. An attempt to exploit a Microsoft IIS vulnerability on a
Linux 2.4 machine is doomed to fail. If an attacker is able to determine what
remote operating system a target is running then he or she will l ikely be able to
cross off a large number of exploits from their known exploit list and instead
concentrate on exploits that may work. This will both decrease the likelihood of
an attack being detected and greatly increase the chances of an attack being
successful.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 Much like port scanning, OS fingerprinting has evolved over time and
there are multiple methods to successfully fingerprint an OS. The general
methods used for OS fingerprinting are to find distinguishing traits for each
operating system, traits that can be observed from a remote network. More
specifically these methods can range from examining the default TCP window
size in a packet, to measuring the amount of data in ICMP packets, and even
gauging TCP initial sequence numbers. In the next section of this paper I will
demonstrate one simple method (TCP banners) and two tools (Nmap, and Ring)
that can be used in an attempt to gain an accurate OS fingerprint.

TCP Banners

 Querying the services running on a target machine is often the simplest
and quickest method for OS fingerprinting. Many servers actively announce their
operating system to any computer that attempts to make a connection. While
this may seem like a nice feature to some users, this is very disconcerting to a
security conscious network administrator.

 In the example below, SSH is listening on the target machine so I simply
telnetted to SSH port 22 to establish a TCP connection and waited for the service
to tell me something important.

etc# telnet 10.0.0.5 22
Trying 10.0.0.5...
Connected to 10.0.0.5.
Escape character is '^]'.
SSH-1.99-OpenSSH_3.4p1 FreeBSD-20020702

As you can see I have already managed to fingerprint my FreeBSD 4.7 as a
FreeBSD box running SSH-1.99-OpenSSH_3.4p1. I also have a date 2002-07-
02. I can now find out which FreeBSD operating systems are likely to have this
version of SSH installed.

Although examining TCP banners appears to be the perfect way to
fingerprint any OS, there are downsides to this method. Most banners are easily
modified or disabled, so it is possible that this method will return either no
information or incorrect information.

Nmap OS Fingerprint

 If insufficient data is available from a target’s TCP banners, then Nmap
may be a popular next step. Not only does Nmap provide multiple methods of
port scanning, it also combines most modern OS fingerprinting techniques into

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

one tool. The Nmap utility cross-references several methods of fingerprinting a
remote OS, a comprehensive list of methods used by Nmap can be found at the
Nmap web page http://www.insecure.org/nmap/nmap-fingerprinting-article.html .

I ran two examples of the Nmap fingerprint function. The first example was run
against my standard target – the FreeBSD 4.7 box at 10.0.0.5.

:/etc# nmap -sS -p 20-30 -P0 -O 10.0.0.5

Starting nmap V. 3.10ALPHA4 (www.insecure.org/nmap/)
Interesting ports on 10.0.0.5:
(The 9 ports scanned but not shown below are in state: closed)
Port State Service
22/tcp open ssh
23/tcp open telnet
No exact OS matches for host (If you know what OS is running on it, see
http://www.insecure.org/cgi-bin/nmap-submit.cgi).
TCP/IP fingerprint:
SInfo(V=3.10ALPHA4%P=i586-pc-linux-
gnu%D=1/22%Time=3E2F5980%O=22%C=20)
TSeq(Class=TR%IPID=I%TS=100HZ)
T1(Resp=Y%DF=Y%W=E000%ACK=S++%Flags=AS%Ops=MNWNNT)
T2(Resp=N)
T3(Resp=Y%DF=Y%W=E000%ACK=S++%Flags=AS%Ops=MNWNNT)
T4(Resp=Y%DF=N%W=0%ACK=O%Flags=R%Ops=)
T5(Resp=Y%DF=N%W=0%ACK=S++%Flags=AR%Ops=)
T6(Resp=Y%DF=N%W=0%ACK=O%Flags=R%Ops=)
T7(Resp=Y%DF=N%W=0%ACK=S%Flags=AR%Ops=)
PU(Resp=Y%DF=N%TOS=0%IPLEN=38%RIPTL=148%RID=E%RIPCK=
E%UCK=0%ULEN=134%DAT=E)

Uptime 3.019 days (since Sun Jan 19 21:27:04 2003)

Nmap run completed -- 1 IP address (1 host up) scanned in 37.284
seconds

Nmap OS fingerprinting functions by comparing multiple values to a fingerprint
file. In the example above no match was found for the data collected. Nmap
remains up to date because it allows end users to submit new fingerprint data via
the Nmap web page.

I ran a second scan against a Windows XP box at 10.0.0.3 to get a better
example of the accuracy of Nmap’s OS fingerprinting.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

root@windows:/etc# nmap -sS -p 1-1024 -P0 -O 10.0.0.3

Starting nmap V. 3.10ALPHA4 (www.insecure.org/nmap/)
Interesting ports on 10.0.0.3:
(The 1021 ports scanned but not shown below are in state: closed)
Port State Service
135/tcp open loc-srv
139/tcp open netbios-ssn
445/tcp open microsoft-ds
Remote operating system guess: Windows 2000/XP/ME

Nmap run completed -- 1 IP address (1 host up) scanned in 20.962
seconds

This time the results were better. A match was found in the fingerprint database
for Windows 2000/XP/ME. This is not as precise as I would have hoped (I am
running Windows XP not 2000 or ME) but it does give me a general OS
fingerprint.

Ring OS Fingerprint

 If the information gathered from TCP banners and from Nmap is not
sufficient then there are always new tools and techniques being researched that
allow better OS fingerprinting. Franck Veysett, Olivier Courtay, Olivier Heen, and
the Intranode Research Team released one such tool as proof of concept. The
program, called Ring, was released along with a white paper in April of 2002.
Ring functions by measuring the delay between an initial TCP packet and the
corresponding Retransmission Time Out (RTO) packet. During a normal TCP
session it is likely that one or two packets will not reach their destination. When
this happens the sender will not receive an ACK packet from the target. After a
certain time with no ACK response the sender will retransmit the original packet.
Ring functions by measuring RTOs, compensating for network distance, and
comparing the results to a fingerprint file. The theory is that each operating
system uses slightly different wait times before resending a TCP packet.

 I installed the proof of concept version of Ring on my Linux machine to
give it a test run. I was a bit skeptical considering the fingerprint file only
contained twelve entries but the results were quite accurate.

usage : ring -d destination_address -s source_address -p port -f
signature_file -i interface
~# ./ring -d 10.0.0.5 -s 10.0.0.7 -p 22 -f ./fingerprint -i eth0
2999767 6000910 12001833
OS:FreeBSD4.5
distance:3498

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Ring was able to match my FreeBSD 4.7 machine against the only FreeBSD
signature it had – FreeBSD 4.5. I ran the same test five times with the same
results, so Ring has proven, at least in this instance, both accurate and
consistant.

 I ran Ring again against my Windows XP machine. This time the
fingerprint returned as Windows 2000. Windows XP is based on much of the
same code as Windows 2000, so it is a close OS fingerprint match.

~# ./ring -d 10.0.0.3 -s 10.0.0.7 -p 139 -f fingerprint -i eth0
2932357 6009000
OS:Windows_2000
distance:21442

 The aspect of Ring that I found most helpful is the fingerprint file. The file
is stored in plain text, and it is easy to add your own entries. I took the data I
collected from the Windows XP fingerprint and added it to the fingerprint file. I ran
Ring again and here are the results:

:~# ./ring -d 10.0.0.3 -s 10.0.0.7 -p 139 -f fingerprint -i eth0
3002399 6008946
OS:Windows_XP
distance:70096

As you can see Ring was much more accurate than Nmap as far as fingerprinting
the two machines on my local network.

Defense against OS Fingerprinting

 Now that we have examples of how to gather OS fingerprint information
an important question to answer is: How do we stop OS fingerprinting?
Unfortunately, since OS fingerprinting relies on gathering data that is usually
available in normal IP traffic, it is very difficult to block OS fingerprinting. One way
to do so is to block direct access to sensitive computers. This can be done via
Network Address Translation (NAT). In effect this leaves only one machine (the
one with the routable IP address) susceptible to most external OS fingerprinting
attempts. You must, of course, make sure that the live box is up to date and
patched against all publicly known vulnerabilities.

Suggested Reconnaissance Countermeasures

 So we have determined that OS fingerprinting and port scanning is
generally a bad thing, but how do we block or detect it? A layered protection is
always best; however defense strategies for every network will be different. I

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

would suggest layering a stateful firewall, Intrusion detection device/process, and
using NAT for as much of the network as possible.

A stateful firewall placed on a network perimeter is likely one of the
greatest prevention measures for any intrusion. The firewall should be configured
to allow only the necessary traffic and should log multiple connection attempts
from the same source IP address. This allows the firewall to detect SYN scans,
and, since the firewall is stateful, it should block anomalous scans such as the
FIN, NULL, and XMAS scans.

The next layer of defense should be detection. Add a device or process

behind the firewall that monitors network traffic for anomalous activity. In the
examples I put into this paper I used Snort as my intrusion detection. I highly
recommend using it. Snort should also be configured to log multiple connection
attempts from the same source in a given time range. The log fi les generated by
Snort must be maintained and regularly reviewed; otherwise there is no point to
having intrusion detection.

As a final defense step, you should configure the fewest number of
machines with live IP address and use NAT and private IP space for the rest of
your network. This will help block many OS fingerprint attempts. It is important to
harden the machine that does have a live IP address, as it is your point of
weakness in a NAT environment. Apply all known patches for whatever operating
system the NAT device is running and try to insure that it is not vulnerable to any
publicly known exploits.

Conclusion

From port scanning to OS fingerprinting, network reconnaissance is useful
and interesting to both a would-be attacker and a network auditor. Network
reconnaissance will almost always be the first step an attacker takes in
compromising any network. Realizing the truth of this statement, a security
conscious network admin can take preemptive action against network intrusions
by using any reconnaissance blocking method that is feasible. This paper does
not cover every possible reconnaissance event, but I hope that the concepts
presented here will help any network admin better secure their network from
outside intrusion attempts.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

References:

1. Liebmann, Lenny. “The Bottom Line” URL:
http://www.comnews.com/stories/articles/c0702bottom.htm (July 2002).

2. Fyodor. “Nmap network security scanner man pages” URL:
http://www.insecure.org/nmap/data/nmap_manpage.html

3. “TCPDump Man Pages” URL:
 http://www.tcpdump.org/tcpdump_man.html (December 2002).

4. “Snort FAQ” URL:
http://www.snort.org/docs/faq.html (March 2002).

5. Jupiter Media Corporation. “Webopedia”
http://www.webopedia.com/TERM/P/port_scanning.html (2003).

6. Information Sciences Institute University of Southern California.
 “RFC 793 – Transmission Control Protocol” URL: ftp://ftp.rfc-editor.org/in-
notes/rfc793.txt (September 1981).

7. Dethy@synnergy.net. “Examining port scan methods - Analysing Audible
Techniques“ URL: http://packetstormsecurity.org/groups/synnergy/portscan.txt
(2001).

8. iEntry, Inc. “Stateful vs. Stateless IP Filtering” URL:
http://securitypronews.com/2002/0214.html (Febuary2002).

9. Fyodor. “Remote OS Detection via TCP/IP stack fingerprinting” URL:
http://www.insecure.org/nmap/nmap-fingerprinting-article.html (June 2002).

10. Franck Veysett, Olivier Courtay, Olivier Heen, Intranode Research Team.
“New Tool And Technique For Remote Operating System Fingerprinting” URL:
http://www.intranode.com/pdf/techno/ring-full-paper.pdf (April 2002).

11. Beardsley, Tom. “Intrusion Detection and Analysis: Theory, Technique, and
Tools” URL: http://www.giac.org/practical/Tod_Beardsley_GCIA.pdf (May 2002).

