
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Linux RootKits For Beginners – From Prevention to Removal

Jeromey Hannel

GIAC Security Essentials Certification

Practical Assignment Version 1.4b

January 23, 2003

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Linux RootKits For Beginners – From Prevention to Removal

Introduction

One day while reading a mail list for the Linux Users Group in my hometown I
discovered a call for help. It was a posting from a novice Linux user with a
disturbing issue.

While doing some routine checks on a Linux system, he found a user that had
been added to the system with the user id of 0 (root). His first thought was that it
might be a rootkit. He wanted to know what he could do to verify it was a rootkit
and how to remove it from the system. He further asked for suggestions on
preventative measures to ensure this kind of attack does not reoccur.

That situation prompted me to write this paper to an understanding of rootkits
and its effects. This paper will also discuss how to monitor for a rootkit, and the
steps that need to be taken to remove one.

What is a Rootkit?

According to http://www.whatis.com: “A rootkit is a collection of tools (programs)
that a hacker uses to mask intrusion and obtain administrator-level access to a
computer or computer network”.

Rootkits are commonly written for variations of the Unix operating systems
including Linux, BSD, and SunOs, but have also been written for the Windows
operating systems as well. This paper will focus on rootkits written for the Linux
operating systems.

There are many different versions of rootkits that perform basically the same
function. Well known Linux rootkits include LRK, tOrn, and Adore and some
Windows Rootkits include NTROOT, NTKap, and Nullsys. More information as
well as copies of these files can be found on Packet Storm’s site.

http://packetstormsecurity.nl/UNIX/penetration/rootkits/

Not only are rootkits designed to hide the presence of an attacker; they are also
used to gain future administrator-level (root) access, launch distributed denial of
service (ddos), or obtain financial or confidential information.

Because rootkits are designed to hide the presence of an attacker, it is
necessary to understand how a rootkit functions.

When a rootkit is installed, it overwrites many commands used on a daily basis
such as ls, ps, or netstat. By overwriting such commands, the intrusion can be
masked from the administrators.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Take the following scenario; an intruder just gained access to a system through a
recently published vulnerability in an un-patched application. The intruder then
launches the rootkit installer. This rootkit just over wrote the ls command. By
doing this, any time the trojaned ls command is ran, all files installed by the
rootkit are hidden from view. This rootkit also installed a trojaned version of the
ps command ultimately hiding the sniffer, backdoor, and log parsing processes
from view. The ls and ps commands are not the only commands that can get
over written by the rootkit. The following is a list of common commands that can
be overwritten by a rootkit.

netstat: A useful tool used to display information about current network
connections, routing tables, and interface statistics. Netstat can be altered by
rootkits to hide the connections made by the intruder to and from the system.

du: A command used to display file space usage. Much like the ls command, du
makes hierarchical directory tree but displays how much disk space each file or
directory is using. The du command is trojaned mainly to hide files and
directories installed by the rootkit.

find: Used to find files in a directory hierarchy. By altering the find command,
intruders make it harder for administrators to search for known files installed by
rootkits. Much like the ls and du commands, find is trojaned to hide the presence
of rootkit files.

ifconfig: Used to configure and display information about network interfaces. If
a sniffer is installed and running, the network interface is placed in promiscuous
mode. Placing an interface in promiscuous mode enables the network interface
to intercept and read packets on the network. Ifconfig is most commonly altered
to conceal the evidence of an interface in promiscuous mode thus hiding the
presence of a sniffer or password grabber.

inetd (xinetd): A super server designed to start programs that provide Internet
services. (x)inetd then spawns the appropriate server to accept the connections.
Many rootkits add their applications to the configuration file causing rootkit
services to be spawned when a specific port is accessed. This is done to hide
the process from administrators until the attacker calls it.

killall: A command used to stop processes. Killall is trojaned in most rootkits so
administrators cannot stop certain processes that have been installed by the
rootkit.

login: A daemon that is used when signing onto a system. The login daemon
can be modified to document all usernames and passwords typed into the
system. This documented list can be saved to a directory to be accessed for
later use, sent to another system, or displayed on an alternative source such as a
chat server or news group.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

lsof: A command that is used to list open files. The lsof command is overwritten
to hide any file or process that is open by the rootkit.

Not all rootkits were designed to overwrite commands. Rootkits such as Adore
Knark were designed as a loadable kernel modules or LKM for short. LKM
rootkits take advantage of system calls changing the behavior of the command
without actually modifying the command. In laymen’s terms, a system call is the
way a user level application asks the operating system to perform a function for
it. The system call table contains a list of each of the system calls.

Since rootkits are designed to hide their presence, any command affected by any
rootkit should still function as it did before the intrusion.

Rootkit Prevention

Rootkit prevention as well as preventing any other type of attack starts at the
basics of system security. A basic system security plan should include items
such as firewalls, VPN’s, as well as updating applications with vendor patches.
By implementing basic security measures, administrators can assure a relatively
secure network.

Security Basics

Firewall all networks.
It is always a good practice to make sure all networks are protected from the
Internet by using a firewall. Keep in mind that a firewall is not the only
preventative measure an administrator can take to deter intruders.

Know exactly what is running on all systems.
After a system is installed, take inventory of what is running. Turn off any
services that are not needed. Perform periodic audi ts of system processes to
ensure that no unauthorized applications are running.

Grant access to users that are needed to perform their jobs.
Never give a user more access to network services than he or she needs. Only
grant permission to services that the user needs to perform his or her job and
nothing more.

Enable secure communications such as VPNs and Secure Shell.
By implementing VPN’s, administrators ensure that all data transmitted across
Wide Area Network(s) (WAN) are encrypted. Secure Shell or SSH is an
alternative to the telnet protocol. SSH encrypts all data transmitted during a
session including usernames and password.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Keep up to date on all vendor updates.
Security and bug patches are frequently released for operating systems as well
as applications. Keep systems up to date with the latest vendor releases that
resolve security issues. Many attackers gain administrative level access by
exploiting vulnerabilities in applications used everyday. It is good practice to
belong to newsletters such as CERT or BUGTRAQ. These types of newsletters
inform administrators of recent vulnerabilities, what systems are affected and
where to go for patches.

Install host and network based intrusion detection systems.
Knowing what is going on within your network is very important. If an intruder
tries to gain access, let your IDS application notify you.

Monitor all log files.
Monitoring log files will give administrators the upper hand since most system
activities are logged. It is a good idea to automate this task using a log-checking
program such as Logwatch or LogSentry. Monitoring log fi les will not notify
administrators of a rootkit attack, however it will also inform them of unusual
system activity such as successful and unsuccessful login attempts.

Implementing basic security precautions is the first step in keeping intruders off
systems and preventing any kind of attack(s). An administrator can also prevent
rootkit attacks by ensuring file security.

File Attribute Security
There are a few steps that an administrator can take to implement file security.
One such way is to ensure that common files cannot be overwritten or changed.
This can be accomplished by setting the immutable flag on important system
files.

Using the Immutable Flag
The term immutable means unable to change. By setting the immutable flag on
a file it cannot be changed, renamed, deleted, or even linked to.

To set the immutable flag on a file, use the “chattr” command found in most Linux
distributions.

• chattr +i <file>: sets the immutable flag.
• chattr -i <file>: unsets the immutable flag.
• lsattr <file>: displays attributes set to a file.

Setting the immutable flag on some common files will cause most rootkits to fail
since the file is marked as unchangeable. This procedure may not stop LKM
rootkits as the kernel cannot be set as unchangeable. The list of files starting on
page 2 is a good starting point when deciding which files to set the immutable
flag on.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

The immutable flag can only be set and unset by root. Remember that the flag
can be removed as easily as it was added. Meaning should an attacker have
access to a machine, he would be able to find the set flag then unset it. After the
immutable flag is unset, then he would be able to install a rootkit. W ith this said,
do not rely on the immutable flag as the only defense against rootkits.

It is important to remember that following basic security guidelines is always
good practice. After security measures are in place, administrators should begin
to implement detection and monitoring practices on their systems.

Rootkit Detection and Monitoring

How can an administrator monitor for something that has been designed to hide
its existence?

Basically there are applications that have been written to assist administrators to
monitor system activities. Such applications also assist administrators in
detecting rootkits.

Tripwire and AIDE
Both Tripwire and AIDE are utilities used to monitor the integrity of files. They
both create a secure password protected database of file and directory attributes
that is used to compare against the current files and directories for changes.
They use MD5 to check the integrity of the file. MD5 sums are a hash function
that transforms a string of data of any length into a shorter fixed-length value. It
is believed that no two strings of data will have the same MD5 value.

Output of an md5sum against netstat and ls on a Linux RedHat 7.1 system

dc1961b6ce3ff6d6fe2c89c8603f4985 ls
30286974e55bb9f9e82f93cc44c39492 netstat

Notice the MD5 value is not the same for these commands. If files being
monitored are modified in any way, Tripwire and AIDE will notify administrators of
the change.

Both applications have been widely accepted in the security industry. I
recommend learning more about it and using i t throughout your enterprise.
Tripwire is available in both commercial and GNU licensing. AIDE is also
available in GNU licensing.

http://www.tripwire.com commercial license
http://www.tripwire.org gnu license
http://www.cs.tut.fi/~rammer/aide.html

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

RedHat Package Manager
Much like Tripwire and AIDE, Redhat Package Mangager (rpm) can be used to
verify the checksum of installed applications. Not only does it verify the
checksum, it can also verify other file discrepancies such as permissions and file
size. The rpm command with the –V option is used to check the signature of any
installed rpm package. Using the –Va option will check all installed packages.

Running “rpm –V util-linux” on a test system returned the following is the result:

.......T c /etc/fdprm

.......T c /etc/pam.d/chfn

.......T c /etc/pam.d/chsh
S.5....T c /etc/pam.d/login

Using the excerpt from the man page found below, you could interpret the above
results of the rpm command. Based on the results, it can be determined that
mTime (T) has changed on all files. The mTime is the file modification date and
time. It can also be said that the file size (S) and MD5 checksum (5) of the login
file has also changed. With this information an administrator would be able to
research why the files have changed.

From the RPM man page:

S file Size differs
M Mode differs (includes permissions and file type)
5 MD5 sum differs
D Device major/minor number mis-match
L readLink(2) path mis-match
U User ownership differs
G Group ownership differs
T mTime differs

Another application called Chkrootkit can be used to assist administrators in
monitoring for rootkit signatures.

Chkrootkit
Chkrootkit is a shell script that checks system binaries for rootkit modification. It
can also detect some well-known LKM rootkits. Chkrootkit is written and
maintained by Neslon Murilo and can be found at www.chkrootkit.org.

Using the following command files, chkrootkit searches for common files and
directories that rootkits place on the system.

• awk
• cut
• echo
• egrep
• find
• head

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

• id
• ls
• netstat
• ps
• strings
• sed
• uname

Chkrootkit also checks for hidden processes by checking the output of ps with
the /proc directory. Many rootkits may run sniffers and backdoors as hidden
processes. On a system that is very busy, this process may generate false
positives because the system will have a process that finishes running before the
compare can complete.

Chkrootkit also verifies that the network interfaces are not in promiscuous mode.
Promiscuous mode allows a network device to intercept and read each network
packet that arrives in its entirety. This mode provides the sniffer program all
packets for analysis.

Chkrootkit has the ability to use command files from an alternate path. With this
option, administrators can place files from the above list to a write protected file
system, compact disk, or floppy diskette. If these files cannot be copied out,
setting the immutable flag can assure files do not get overwritten. This ensures
that chkrookit is using uninfected files. Using infected files defeats the purpose
of utilizing this application.

As mentioned before, chkrootkit monitors and detects for well-known LKM
rootkits. In addition, utilizing commands such as lsmod and kstat will aide
administrators monitoring against these types of rootkits.

LSMOD
Lsmod is a utility used to list modules loaded into the kernel. An administrator
should become familiar with the output of this command. The following is a
sample output of lsmod command ran on a RedHat 7.2 system. The following
output displays the module, module size, use count, and the list of referring
modules.

3c59x 28424 1
cdrom 31936 0 (autoclean) [sr_mod]
sr_mod 16056 10 (autoclean)
ext3 64768 2
usb-uhci 24324 0 (unused)
usbcore 71072 1 [usb-uhci]
ext3 64768 2
jbd 47892 2 [ext3]
aic7xxx 128256 3
sd_mod 12832 6
scsi_mod 104800 4 [sr_mod aha1542 aic7xxx
sd_mod]

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Keeping track of all modules that are loaded into the kernel is a good step to
monitoring against LKM rookits.

It is important to remember that the lsmod command may be manipulated into
hiding the rootkit module by the rootkit module. There is however another
command that can be run to list what modules are loaded into the kernel. This
command is called cat.

Cat is a command that concatenates files and displays them to screen or some
other output. Using the cat command against /proc/modules will display the
same information as lsmod.

KSTAT
To assist in the detection of LKM rootkits, a program has been written by the
softproject group called Kernel Security Therapy Anti Trolls (KSTAT). KSTAT
has been written for both the 2.2.x and 2.4.x kernels.

Running kstat with the –s option will display information about the system call
table (sys_call_table). Kstat will display discrepancies in the memory address
results.

The following is an example of a kstat -s warning. It indicates that the memory
address in the system call table has changed thus indicating an LKM rootkit.

sys_fork 0xc4051428 WARNING! Should be at 0xc0108c88
sys_write 0xc4051590 WARNING! Should be at 0xc01269b8
sys_close 0xc405163c WARNING! Should be at 0xc01264a4
sys_kill 0xc40514d0 WARNING! Should be at 0xc011060c
sys_mkdir 0xc405172c WARNING! Should be at 0xc012e540
sys_clone 0xc405147c WARNING! Should be at 0xc0108ca4
sys_getdents 0xc40512a4 WARNING! Should be at 0xc013022c

It is strongly recommend that all the above applications be run automatically on a
nightly basis through cron and the results be emailed to the IT staff. This will
ensure that the applications are run thus minimizing the effects should such an
attack happen.

If a rootkit still finds its way onto a system, using all of the above applications
should indicate what rootkit is installed on the system giving administrators the
upper hand in removing the rootkit.

A lesson that should be taken from this paper when trying to remove a rootkit
from a system is it is never known the effects of the rootkit. Should an
administrator try and remove the rootkit he may miss something important
allowing the intruder to gain future access to the machine. It is necessary to
thoroughly analyze the entire system after a rootkit compromise. A system may
never be the same after this kind of attack.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Should an administrator decide to try and resolve the issue, the following section
will assist him in such a task.

Rootkit Removal

Many articles on rootkits and rootkit removal state that the first step to removing
a rootkit is to disconnect the infected system from the network completely. CERT
also recommends removing the system from the network. It is my belief that
before removing the system from the network, the first step should be to evaluate
the situation.

If the system is mission critical and is taken off the network, how much money
will the company or client lose? This is a very important question that every
administrator should ask before taking the system off the network.

Taking the system off the network would remove any active sessions open by an
attacker causing the intruder to be disconnected. Since most rootkits also run a
sniffer or password grabber, disconnecting the system from the network will
ensure that any communication to the outside world will fail.

If a system is mission critical and time is of the essence to get the system back
up and running, I would recommend replacing the infected hard drive in order to
get the system back into production. Keeping the infected hard drive will give
administrators the ability to look at the attack in greater detail without
compromising the productivity of the business. If the hard drive cannot be
replaced, use the dd or mkisofs command to make an iso image of the entire
system. After an image is made of the hard drive, then begin formatting and
reinstalling the operating system and application software. Having some sort of
backup of an infected system will assist with any legal proceedings that may
occur. The backup or backup image can also be used for training other
employees on intrusions and rootkits.

When reviewing the compromised system, next the administrator needs to find
out the extent of the rootkit damage. Utilize all the applications mentioned in the
paper to begin searching for the rootkit. Using these applications, an
administrator can find out what rootkit may be on the system. Remember
running chkrootkit at this time may fail unless the administrator has placed the
proper commands in a read only location. If an administrator has not properly
setup chkrookit the administrator can use the RPM command to get the original
commands placed back on the system.

Earlier in the paper, I discussed the usage of RPM to monitor for file integrity
changes. At this point an administrator will want to utilize this command to find
out exactly what packages will need to be reinstalled. By reinstalling the infected
applications, chkrootkit will now function. It is recommended to start installing the

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

following packages. Please note that the following packages may be RedHat
specific and may be different in other Linux distrobutions.

Fileutils: contains common file management utilities such as ls, cp, chown,
chgrp, and du.

Procps: contains system and process monitoring uti lities such as ps, top, and w.

Net-tools: contain basic networking tools such as ifconfig and netstat

Findutils: contains the find command that will assist locating files on a system.

Binutils: contains the stings command that is used with chkrookit to examine
binary files.

When removing and restoring infected files, try not to restore files from a backup
tape unless it can be guaranteed that files on the tape have not been altered. It
is recommended that the files being restored come from the original copies of the
distribution installation media.

After restoring commonly used commands, use them to find what files and
processes are on the system. Use the ps command to show rootkit processes.
After finding these processes, use the killall command to stop them. After they
have stopped, next step is to find out how they got started. Look in the init
scripts directory on the system. RedHat systems init scripts are found in
/etc/rc.d/init.d/.

As mentioned before, some rootkits are designed as a Loadable Kernel Module
(LKM). Because these rootkits are loaded using kernel modules, these modules
can be removed from the kernel and then deleted from the system. To remove a
module from the kernel, use the rmmod command. Remember that LKM rootkits
can change the behavior of a command, which means if an administrator tries to
remove a module by running rmmod, the module may not be removed. The sure
fire way to make sure that a kernel module is no longer loaded is to reinstall the
kernel from a backup or the distribution media.

After the rootkit is cleaned up and there is no trace of it, find out how the intruder
gained entry. Maybe your intrusion detection program needs to be evaluated or
your patches have to be installed sooner.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Conclusion

In conclusion, it is a good practice to secure your system from intruders, but it is
important to know the effects of the intrusion. Protecting your systems requires
more than a single tool. It also requires pre-planning when installing new
systems, maintaining backups, keeping up-to-date with the latest system and/or
security patches, as well as performing regular audits. As long as there is a
possibility of system vulnerabilities, security will continue to challenge IT
professionals.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

References:

Altunergil, O. (2001, December 14). Understanding Rootkits. Retrieved from the

World Wide Web on October 5, 2002:
http://linux.oreillynet.com/pub/a/linux/2001/12/14/rootkit.html

Brumley, D. (1999, September). Rootkits - How Intruders Hide. Retrieved from

the World Wide Web on October 5, 2002:
http://www.theorygroup.com/Theory/rootkits.html

Steps for Recovering from a UNIX or NT System Compromise. (2000, April 17).

Retrieved from the World Wide Web on November 3, 2002:
http://www.cert.org/tech_tips/root_compromise.html

Drake, J. (2001, October 12). How to tell if your Linux box has been cracked.

Retrieved from the World Wide Web on October 18, 2002:
http://www.linuxworld.com/site-stories/2001/1012.cracked.html

Galitz, G. (2001). Rootkits: Hiding a Successful System Compromise. Retrieved

from the World Wide Web on November 19, 2002:
http://www.iwar.org.uk/comsec/resources/root-berkeley/rootkit.htm

Miller, T. (2000). Detecting Loadable Kernel Modules. Retrieved from the World

Wide Web on January 1, 2003:
http://www.incident-response.org/LKM.htm

Project: Tripwire: Summary. (2002, February 28). Retrieved from the World Wide

Web on October 4, 2002: http://sourceforge.net/projects/tripwire

Prosise, C. and Shah, S, (2001, January 25). At the root of rootkits. Retrieved

from the World Wide Web on October 15, 2002:
http://builder.cnet.com/webbuilding/0-7532-8-4561014-
1.html?tag=st.bl.7532.edt.7532-8-4561014

Somer, L. (2002, February 11). Unix rootkits and backdoors. Retrieved from the

World Wide Web on October 15, 2002:
http://packetstormsecurity.nl/UNIX/penetration/rootkits/

What's chkrootkit? (2002, September 16). Retrieved from the World Wide Web

on October 15, 2002: http://www.chkrootkit.org

Windows NT/2K Rootkits. Retrieved from the World Wide Web on December 31,

2002:
http://www.rootkit.com/softwaremap/trove_list.php?form_cat=22&discrim=22

