
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Under the radar:
A look at three covert communications channels

James P. Goltz
GIAC security essentials (GSEC)

Practical assignment version 1.4b, option 1

January 23, 2003

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Abstract

In 1998 and 1999, the development of semi-automated computer attack tools brought
forth an innovation in information attack tools: programs designed to allow the attacker to
communicate with them, to communicate amongst each other, and to report back to the
attacker. In order to deter detection and to hide the tools' intent, the developers of these
tools designed them to use covert communications channels: network communications
channels meant to be hidden from normal view and/or to obscure the content of the covert
communications.
This paper examines three tools that employ such channels, tools which serve as good

examples of different kinds of covert communication:

• Back Ori�ce, a Windows-based remote-control trojan

• the Loki Project, a covert communications proof-of-concept library

• Trin00, a distributed denial-of-service tool

These three tools are used as examples because each employs a covert channel for
communication between an attacker and an attack tool, or between two attack tools. Each
example tool also demonstrates a different type of covert channel:

• Back Ori�ce relies on the use of obscure UDP ports.

• Loki uses a traf�c type not normally used for communication (ICMP packets).

• Trin00 uses obscure TCP and UDP ports, and also relies on a multi-tier architecture
with both attacker-to-tool and tool-to-tool channels.

For each example, this paper looks at how the covert channel or channels are designed,
how they are used, and how such channelsmight be detected and blocked. The paper then
shows how the means of detecting and blocking each speci�c channel can be generalized
into a �principle� for network designs more secure against such covert communication.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Contents
1 De�nitions 2

2 Back Ori�ce 3
2.1 History . 3
2.2 How the tool is used . 3
2.3 Method of covert communication . 3
2.4 Detecting the covert channel . 4
2.5 Blocking communications . 5
2.6 Generalization . 5

3 The Loki Project 5
3.1 History . 5
3.2 How the tool is used . 5
3.3 Method of covert communication . 6
3.4 Detecting the covert channel . 6
3.5 Blocking communications . 7
3.6 Generalization . 8

4 Trin00 8
4.1 History . 8
4.2 How the tool is used . 9
4.3 Method of covert communication . 10
4.4 Detecting the covert channel . 10
4.5 Blocking communications . 11
4.6 Generalization . 11

5 Summary 11

6 Conclusion 12

7 References 13

1

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

1 De�nitions
Attacker A person attempting to gain unauthorized access or produce results undesirable

to the legitimate owners of computer systems and networks. Because many authors
use the term �hacker� to mean a particular kind of programmer, regardless of good
or ill intent, �attacker� is used instead in this paper to refer speci�cally to those
attempting unauthorized access. Hackers may or may not have benign intent;
attackers (as the term is used in this paper) are assumed to have hostile intentions.

Attack tools Programs, automated or not, that attackers use to attempt to gain access
as described above. This paper often abbreviates this to �tools�; the full term �attack
tools� will be used when necessary to distinguish programs used by attackers from
programs used in more legitimate fashion.

Border router A router that connects a private network or networks to the Internet. All
traf�c traveling from the private network to the Internet (or another outside network)
or vice versa must traverse this router, so it is a logical place to consider blocking
traf�c.

Firewall A system designed to prevent unauthorized access to or from a private network.
[Webopedia.com, 2002] Often a �rewall is more sophisticated in its traf�c �ltering
than a border router: it can match outgoing DNS queries with their replies, for
example, whereas a router may be limited solely to �ltering based on source and
destination address and port numbers.
Although a �rewall need not be a router, and a border router need not be a �rewall,
because both are logical �choke points� for limiting outside traf�c we will use both of
these terms to indicate places on a network where attacker traf�c may be blocked.

Covert channel Not openly practiced, avowed, engaged in, accumulated, or shown
[Dictionary.com, 2002]. In this paper, �covert� implies not only that the channel
is �not openly practiced� but where the designer of the channel makes an active
attempt to hide the channel from view.
For example, the Loki project code (section 3) puts communications data into
unused portions of ICMP packets, where no data are normally found. Post�x
[Venema, 2002], on the other hand, prepends a �Delivered-To� header line1 in the
header of email, where diagnostic and control messages are routinely placed. Even
though the �Delivered-To� header is normally hidden from view by a user's mail
reader program, it is not deliberately hidden. mail reader programs.

Trojan Horse A program designed to look innocuous but act dangerously. A typical
Trojan Horse (�trojan for short�) will appear to be a game or useful utility in order to

1Prepended to email upon delivery to prevent mail routing loops.

2

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

entice an unsuspecting user into running it; but once executed, it will secretly install
its payload (for example, the Back Ori�ce server).
The original Trojan Horse was a large, hollow wooden horse built by Greek soldiers
during the TrojanWar. The soldiers hid inside the horse, andwhen the Trojan soldiers
brought the horse within the walls of Troy, the Greeks emerged and slaughtered the
Trojans. [Canary, 2002]

2 Back Ori�ce
2.1 History
On August 1, 1998, a hacker group called �the Cult of the Dead Cow�2 released Back
Ori�ce. According to the press release, Back Ori�ce was designed to allow remote control
and monitoring of Windows computers, ostensibly for legitimate systems administration
purposes:

[. . .]Back Ori�ce is a self-contained, self-installing utility that allows the user
to control and monitor computers running the Windows operating system over
a network.
Sir Dystic [the programmer who developed Back Ori�ce] sounded like an

overworked sysadmin when he said, �The two main legitimate purposes for BO
are, remote tech support aid and employee monitoring and administering [of a
Windows network].� [Cult of the Dead Cow, 1998]

2.2 How the tool is used
Back Ori�ce and its successor, Back Ori�ce 2000 (abbreviated �BO2K�), are intended to
allow an attacker to control an infected host remotely. The program allows him to do
almost anything that he could do while sitting at the keyboard of the host.3 The program
is presented as an tool for remote administration, but goes to some lengths to hide itself
from view and escape detection. Its main use of late is as a payload of a trojan-horse
program: the trojan in�ltrates the Windows system and installs Back Ori�ce for later use.

2.3 Method of covert communication
(The factual information for this section is from Flávio Veloso's paper �The Back Ori�ce
(BO) Protocol� [Veloso, 2001].)

2http://www.cultdeadcow.com/
3The name �Back Ori�ce� is a play on words of �Back Of�ce�, a Microsoft program suite that allowed,

among other things, remote server administration. Back Of�ce was less surreptitious than Back Ori�ce,
however.

3

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

The base method of communication with a Back Ori�ce server is via UDP port 31337
[Internet Security Systems, 2002], although this can be changed in the source code (for
Back Ori�ce) or a con�guration �le (for BO2K).4
Back Ori�ce packets have a 17-byte header containing an eight-byte �magic number�

(�*!*QWTY?�), a four-byte integer containing the packet length (including the header
and a one-byte CRC), a four-byte integer packet identi�cation �eld, and a one-byte �eld
containing �ags and operation type (Figure 1).

0 1 2 3 4 5 6 7
0 * ! * Q W T Y ?
8 Pkt len Pkt ID
16 F

. . . Data

C

Figure 1: Layout of Back Ori�ce packets (F = �ags/opcode, C = CRC)

BO packets are encrypted by XORing each byte with the output of a random number
generator, which is initialized with a shared secret password. Because the �rst eight bytes
are �xed and therefore always known, the encryption is relatively weak and can be broken.
Various Back Ori�ce plugins exist that can more strongly encrypt the packets, however.

2.4 Detecting the covert channel
If the packet can be decrypted, detection is simple. Unmodi�ed BO code will send packets
to and from UDP port 31337, and these packets will have �*!*QWTY?� as the �rst eight
bytes of the (decrypted) data portion. Obviously things aren't always that simple; it's
relatively easy to modify the source code or con�guration �le so that Back Ori�ce uses a
different port or different encryption. Even so, however, bytes 8 through 11 of the data
portion will contain the length of the data portion (including header and CRC), so any
packet that �ts this pattern may be a BO packet. The chances of truly random data
matching this pattern are approximately one in 4.2 billion5. Moreover, we can disregard
any packet that, if it were a BO packet, has a �length� �eld less than 19, since a BO packet
cannot be shorter than 19 bytes (17 byte header + 1 data byte + 1 CRC byte).
Packet data is not always random, however, and in practice false positives are much

more common than one in 4.2 billion.6 A protocol designed in a similar fashion to the
4If you view 3 as �E�, 1 as �I�, and 7 as �L�, 31337 spells �ELEET� (elite). This made 31337 an obvious

port for attacker use, which is why Back Ori�ce allows the attacker to change it.
5An unsigned 32-bit integer can range from zero to 4,294,967,296. Obviously, for a packet of a given

length only one of these numbers matches the packet length.
6Based on personal observations of the NFR IDA by the author while he worked at NFR Security, from

1999 through 2001.

4

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

BO protocol, such as that used by servers for the Unreal Tournament online role-playing
game, would trigger a large number of false positives.7
A better approach would be to count �BO-like� packets per host and see if one host

(or a small number of hosts) are responsible for the majority of those packets. Detection
efforts could then focus on those hosts.

2.5 Blocking communications
Because of the high probability of false positives, blocking every packet that looks like a
BO packet is not feasible, as it would likely result in a large amount of legitimate traf�c
being discarded. Selective blocking of BO-type packets from hosts that may be infected
(as detected by the methods in section 2.4 above) might yield better results.

2.6 Generalization
It is dif�cult to generalize these methods of detection and blocking, as they focus on
speci�cs of the BO protocol. We see how knowledge of the protocol helped our efforts,
however, so we can reasonably assume that knowing some speci�cs of the protocol we
are attempting to detect and/or block will help us do so. Conversely, knowing the speci�cs
of protocols normally allowed on your network and examining packets that fall outside of
this allowed set would be an alternate (although more complex) approach.

3 The Loki Project
3.1 History
Loki was introduced to the public in Phrack, an online hacker magazine, in August and
September of 1996 [Daemon9, 1997][Daemon9, 1996]. Phrack volume 49 contained an
article on the basic theory; volume 51 contained an example implementation.

3.2 How the tool is used
Loki by itself is not an attack tool. Instead, it is essentially proof-of-concept code meant
to be incorporated into other tools. Unlike the author of Back Ori�ce, the author of Loki
makes no attempt to legitimize his work. He �atly states the covert nature of the protocol,
as in this excerpt from Phrack 49:

Loki is not a compromise tool. It has many uses, none of which are breaking
into a machine. It can be used as a backdoor into a system by providing a
covert method of getting commands executed on a target machine. It can
be used as a way of clandestinely leeching information off of a machine. It
can be used as a covert method of user-machine or user-user communication

7Observations by the author at NFR Security.

5

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

[emphasis added]. In essence the channel is simply a way to secretly shuf�e
data (con�dentiality and authenticity can be added by way of cryptography).
[Daemon9, 1996, �le 06]

In essence, Loki is proof-of-concept code, the concept being that of moving data over
a covert channel by means of ICMP or DNS packets.

3.3 Method of covert communication
Loki uses ICMP Echo and Echo Reply packets as the basis for its covert channel. These
packets are normally used to con�rm that a particular host or router is �up� and processing
network traf�c. Because of the diagnostic nature of ICMP traf�c, including Echo and Echo
Reply packets, ICMP is often allowed unhindered through border routers and �rewalls.
Even �rewalls that attempt to match up Echo and Echo Reply packets may be fooled by
Loki, since a command in an Echo packet results in an acknowledgment in an Echo Reply
packet.
RFC 792 [Postel, 1981b] states that ICMP Echo and Echo Reply packets contain a

�data� portion, but de�nes no use for this portion other than to state �The data received in
the echo message must be returned in the echo reply message.� Loki hides its messages
in this data portion.
Loki can encrypt its data using either a simple exclusive-OR (XOR) method or a more

sophisticatedDif�e-Hellman key exchange protocol [Levy, 2003][Dif�e and Hellman, 1976]
to synchronize on a Blow�sh encryption key [Schneier, 1994]. This encryption does not
affect the ICMP sequence number or the opcode (command) byte in the data portion.
A later version of the Loki protocol used UDP packets masquerading as DNS queries

and query answers as a covert channel. The messages were hidden in the portion of the
packet immediately following the UDP header. Many packet �lters are con�gured to allow
DNS traf�c to pass in order to allow DNS lookups, so it is likely that such Loki packets
could penetrate into an inside network.
Although the packet is UDP and either originates from or is sent to port 53 (the standard

DNS port), there is no apparent attempt to make the packet data look like a valid DNS
query. The original source code did not provide for encryption when using UDP transport,
although this could easily be added.
Loki identi�es packets as Loki packets by two basic means:

• The ICMP packet sequence number must be hexadecimal 0xf001 (possibly read-
able as the word �fool�).

• Byte 0 of the data portion must be one of a limited number of �opcodes� indicating
encryption keys to be used, request/reply, acknowledgment, and so forth.

3.4 Detecting the covert channel
Theoretically, detecting ICMP-based Loki communications is extremely dif�cult. Since
ICMP Echo and Echo Reply packets may contain arbitrary data payloads for purposes

6

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

of link testing, there is no foolproof way to tell whether, for example, a given ICMP Echo
packet is part of a Loki covert channel or simply an Echo packet with a random data
payload.
In practice, however, three characteristics of Loki packets make them stand out:

• The sequence number is always 0xfoo1. Even if this is changed in the source
code as the Back Ori�ce port was (see section 2.3), we could simply do a histogram
analysis of ICMP packet sequence numbers and look for �spikes� in the data. Since
the sequence number is a 16-bit unsigned integer, we would expect to see a given
sequence number no more than once every 65,536 ICMP Echo packets on average.
More than three or so packets with the same sequence number, especially to or from
the same host, would be cause for suspicion.

• The �rst byte of the data payload is an opcode, and therefore falls within a relatively
small set of valid values. A statistically large number of ICMP packets with these
values as byte 0 of the data payload would indicate packets worth looking at in more
detail.
It's worth noting, however, that although the Loki code as given complains about
packets with an invalid opcode, it is possible that an attacker could change the
code to silently ignore bad opcodes and then inject many Loki packets with invalid
opcodes into the packet stream in order to foil this analysis. It would take a great
many such packets to obscure the small number of valid packets, however, thus
greatly decreasing the effective bandwidth of the protocol.

• The packets all come from or are sent to a given host or set of hosts. Statistical
analysis of source and destination hosts for ICMP Echo and Echo Reply packets
(similar to the opcode analysis above) would show a small number of hosts being
responsible for the majority of the traf�c.8

3.5 Blocking communications
The author of the Loki articles says about blocking the Loki protocol:

Disruption of this channel is simply preventative. Disallow ICMP_ECHO traf�c
entirely. ICMP_ECHO traf�c, when weighed against the security liabilities it
imposes, is simply not that necessary. [Daemon9, 1996, �le 06]

A less severe measure than disallowing all ICMP Echo traf�c on your networks, is to
disallow ICMP Echo traf�c crossing your �rewall or border router. Most of the hops an IP
packet takes are outside of both your network and that of the person trying to connect to
your servers; allowing �pings� from his border router to yours will detect these problems

8We would need to ignore ICMP Echo packets from known network monitoring hosts, since these hosts
would be expected to generate many such packets in order to monitor the network.

7

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

without compromising security inside your network. Problems that lie within your network
can be diagnosed by using Echo packets that do not cross your border router.
In addition, detection via statistical analysis as laid out in section 3.4 can be combined

with reactive blocking of ICMP traf�c to or from suspiciously �chatty� hosts until they can
be scanned and veri�ed to be �clean�.
Loki traf�c over UDP to port 53 is even easier. ICMP Echo packets might conceivably

be sent to any given IP device. In contrast, there is no reason to send a DNS query or
query response to anything but a DNS server. Indeed, since client programs are usually
allocated a port at random, there should be virtually no UDP packets originating from port
52 unless their originating host is a DNS server.

3.6 Generalization
As with Back Ori�ce in section 2.6, knowledge of the protocol is important in detecting and
blocking it. In addition, however, we see here the importance of allowing only necessary
traf�c across your network perimeter. In this case, we analyzed the need for ICMP Echo
and Echo Reply packets to cross the perimeter, and decided that the need for security far
outweighed any network diagnostic bene�ts.
In the case of blocking UDP Loki packets, we �nd another lesson: know your servers.

Only certain dedicated servers should be originating UDP traf�c from port 53; any other
hosts doing so are cause for alarm.

4 Trin00
4.1 History
Trin00 (pronounced �trin-oo�) was one of the �rst distributed denial-of-service (DDOS)
tools. Prior to its emergence in November 1999, a number of denial-of-service (DOS)
attacks were known [CERT Coordination Center, 1996], intended to consume resources
of the target (such as bandwidth or computing power) and thereby making it impossible
for the target to provides its usual services (such as email or web service). These attacks
were individual in nature, however: an attacker would have one host attack another host,
one at a time.
The emergence of Trin00, and later tools such as Tribe Flood Network[Dittrich, 1999b],

TFN2K [Barlow and Thrower, 2000], Stacheldraht9 [Dittrich, 1999a], and mstream
[Dittrich, 2000], made denial-of-service attacks much more devastating by introducing
a level of automation to the process. Instead of an attacker initiating denial-of-service at-
tacksmanually, he would command one ormoremaster hosts to perform the attack. These
masters would then each contact several daemons, hosts which had been compromised
earlier and were listening for such instructions. These daemons would carry out the actual
denial-of-service attack, but since one master could control hundreds or even thousands

9German for �barbed wire�.

8

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

of daemons, the attack could be much more devastating. In one such attack, servers
belonging to Yahoo, eBay, E-Trade, Buy.com, and CNN were made virtually unavailable
by �oods of traf�c that consumed the bandwidth of T-3 and larger telecommunications
lines [Harrison, 2000].10
Non-distributed denial-of-service attacks often involve such actions as �connecting� the

UDP echo and chargen ports (ports 7 and 19, respectively, as noted in [Postel, 1981a])
together, so that the hosts involved use all of their available resources generating and
echoing characters over the network. By contrast, distributed denial-of-service tools seek
to consume resources through sheer weight of numbers, by creating so much network
traf�c to a small number of hosts that either legitimate traf�c is crowded out or the targeted
hosts simply cannot handle the legitimate traf�c because of the �ood of other traf�c.

4.2 How the tool is used
Trin00 and similar distributed denial-of-service tools use a two-tiered architecture (Figure
2). An attacker selects a target or targets for the DDOS attack and sends the IP addresses
of the targets, along with the necessary commands, to one or more masters, which in turn
send commands to numerous daemons, which perform the actual attack. The master can
also shut down the Trin00 process on the daemon (presumably to prevent detection), and
the attacker can in turn shut down the Trin00 master process.

Attacker

?

? ? ?

Master Master Master

? ? ?

? ? ? ? ?

Daemon Daemon Daemon Daemon Daemon

Figure 2: Generalized DDOS architecture

Trin00 daemon programs are installed on already-compromised hosts. The process
is usually given a name identical or similar to existing network processes, so that process
listings will not raise suspicions.11 As part of the installation process, a crontab entry is
10A T-3 line carries approximately 45 megabits per second of network traf�c.
11Alternately, a �root kit� may be installed on the system to hide the presence of the Trin00 daemon

program. See [Miller, 2002][Dittrich, 2002].

9

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

created that restarts the daemon process every minute, presumably in case of crashes or
sysadmin �interference�.
Upon starting, each daemon sends the string �*HELLO*� to a precompiled list of master

hosts on a covert channel. It can also send this string upon command, in order for the
master to weed out non-responding daemons.

4.3 Method of covert communication
Trin00 has two covert channels: one for the attacker to communicate with the masters,
and the other for the masters to communicate with the daemons. We will refer to these as
the master channel and the daemon channel.
The master channel involves a TCP connection to port 27665. A password is re-

quired shortly after the connection is established (�betaalmostdone� [beta almost done] by
default), and only one connection at a time is allowed.
The daemon channel uses UDP, with the daemon listening on port 27444 and the

master on port 31335. Commands from the master to the daemons uses a password
embedded in the command line, presumably because of the connectionless nature of
UDP.
It is interesting to note that neither the master channel nor the daemon channel are

encrypted in Trin00. Later distributed denial-of-service tools such as Stacheldraht use
Blow�sh encryption, making detection and analysis more dif�cult.

4.4 Detecting the covert channel
Like Back Ori�ce, Trin00 uses ports known to both sides of the channel for its communica-
tion. Traf�c to or from an unaltered copy of Trin00 should be easy to spot on the network,
since it will be using TCP ports 27665 and UDP ports 27444 and 31335, and sending
unencrypted command traf�c like �aaa l44adsl ip-addr� (DOS attack on the host at
ip-addr) or �mping� (send a �png� command to all known daemons).
Obviously any of this can be modi�ed in the source code: the ports used may be

different, the passwords may have been changed, and even the command names may
have been altered. Like any other network program, however, these programs cannot use
a port already in use by another process, so if a well-known port is in use on a server that
should not be providing that service, we should be suspicious. For example, if a given
host is listening on UDP port 53 and that host is known not to be a DNS server, it may
be that a Trin00 daemon is listening on that port instead. By knowing our network, and
what services should and should not be running on any given host, we can spot �unusual�
traf�c fairly quickly.
In addition to the known TCP/UDP ports, Trin00 uses known �le names for its daemon

lists. The master program creates a �le named �...� that contains the current list of
known daemons.12 This �le is backed up to �...-b� if a new list is being generated as
described in section 4.2.
12Unix systems normally do not display �les whose name begins with �.� in directory listings. In addition,

10

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

This �le may be encrypted using Blow�sh, but its very presence should raise a red
�ag. Even if the source code is altered and the �le is named something else, the sudden
appearance of a new �le or the inexplicable altering of an existing �le on a carefully
watched server should invite further investigation.
But what about a desktop system? These cannot be watched as closely as a server;

often they are not centrally managed, and even if they are their user may create any
number of new �les one day � documents, spreadsheets, slide shows, and so on � and
delete some or all of them the next. In this case we cannot rely on �le systemmonitoring as
noted above for servers; but on the other hand, desktop systems should not be providing
services, so scanning for open ports might tip us off.

4.5 Blocking communications
Apart from detecting unusual activity in the �le system, our best bet for blocking distributed
denial-of-service covert channels is the fact that they must use known ports (known to the
attacker who compiled and installed them, that is). Assuming we know our network, the
attacker is at a disadvantage here:

• If he uses otherwise unused ports such as 27444 and 31335, his traf�c should be
blocked at our border router. Since we are not providing any services that use these
ports, we have no need to allow traf�c on these ports through our border router.

• If he uses well-known ports such as TCP port 22 (SSH) or UDP port 53 (DNS)
(hoping that our border router is not blocking traf�c on these ports) and if we know
which of our servers provide which services, we can limit traf�c passing through the
border router to only the servers that should get it. A compromised host may have
a Trin00 daemon process listening on UDP port 53, but if it is not one of our known
name servers we should not be letting traf�c on port 53 through to it.

4.6 Generalization
Apart from the recurring mantras �know your network� and �know your systems�, what
might be called the �Principle of Least Passage� applies here. Our main defense against
unknowingly being part of a Trin00 or other distributed denial-of-service network is to
allow through the perimeter only traf�c that is part of a service we know we're providing.
In addition, we can see the advantage in doing network scans regularly to look for open
ports on our systems, and host-based scans to look for odd changes on our systems.

5 Summary
We can summarize the �lessons learned� from the above examples in four maxims:

the current directory is always shown as �.� and the parent directory as �..�. Trin00's authors were probably
hoping that a �le named �...� would often be overlooked.

11

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Know your foe. Knowledge of the covert channel protocol � how data is encapsulated
and what the protocol packets look like � gives us a great deal of information about
how to detect and/or block the covert channel. (Admittedly, this often isn't possible
with a brand-new kind of covert channel.)

Know your servers. Knowing what to expect from your servers and what services they
provide helps detection immensely. If DNS queries appear to be answered by a
system you know should not be a DNS server, you should be highly suspicious.
Additionally, scan your servers with a data integrity tool like Tripwire13 or fcheck 14.
It's nearly impossible to know if a rootkit or other attack tool has been installed on
a system if you don't keep track of what is installed on that system and what has
changed recently.

Know your network. What services do you provide to the outside world, and from which
servers? What protocols are allowed on your network, and what does their traf�c
look like? What protocols should not be seen on your network? It's much, much
easier to spot traf�c that doesn't belong on your network if you know what traf�c
does belong there.

Principle of least passage. What kind of traf�c needs to cross from your inside network
to your outside network, and vice versa? Consider setting your �rewall or border
router to pass this traf�c and block everything else. If it doesn't need to get inside,
don't let it.

6 Conclusion
In this paper we have looked at three tools which use covert communication channels.
We examined the design and use of said channels, and examined ways to detect and/or
block these channels. We also generalized the means of detecting and blocking the covert
channels into four general principles for network design and maintenance:

• Know your foe (know the tools and covert protocols where possible)

• Know your servers (know what services are provided and scan servers regularly)

• Know your network (know what services and protocols traverse your network)

• Principle of least passage (only allow necessary traf�c through border router)

While adherence to these principles will not completely secure a network (if anything
can), they can server to make networks more secure against the use of these and other
covert channels.
13http://www.tripwire.com/
14http://www.geocities.com/fcheck2000/fcheck.html

12

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

7 References

[Authority, 2002] Authority, Internet Assigned Numbers. IANA protocol numbers and as-
signment services directory � port numbers. Last updated 8 January 2003.
URL http://www.iana.org/assignments/port-numbers

[Barlow and Thrower, 2000] Barlow, Jason and Thrower, Woody. TFN2K � an analysis.
10 February 2000.
URL http://securityresponse.symantec.com/avcenter/security/
Content/2000_02_10_a.html

[Canary, 2002] Canary, Bob. The Trojan war. 15 July 2002.
URL http://www.uwp.edu/academic/english/canary/trojans.html

[CERT Coordination Center, 1996] CERT Coordination Center. UDP port denial-of-
service attack. Advisory CA-1996-01, CERT Coordination Center. 8 February 1996.
URL http://www.cert.org/advisories/CA-1996-01.html

[Cult of the Dead Cow, 1998] Cult of the Dead Cow. Back Ori�ce press release. 21 July
1998.
URL http://www.cultdeadcow.com/news/back_orifice.txt

[Daemon9, 1996] Daemon9. Project Loki: ICMP tunneling. Phrack, 7(49). 8 November
1996. Issues of Phrack are distributed electronically in one or more sequentially
numbered �les; the article cited is in �le 06.
URL http://www.phrack.org/show.php?p=49&a=6

[Daemon9, 1997] Daemon9. LOKI2 (the implementation). Phrack, 7(51). 1 September
1997. Issues of Phrack are distributed electronically in one or more sequentially
numbered �les; the article cited is in �le 06.
URL http://www.phrack.org/show.php?p=51&a=6

[Dictionary.com, 2002] Dictionary.com. Dictionary.com de�nition of �covert�. 2002.
URL http://dictionary.reference.com/search?q=covert

[Dif�e and Hellman, 1976] Dif�e, Whit�eld and Hellman, Martin. New directions in cryp-
tography. IEEE Transactions on Information Theory, 22:644�654, 1976.

[Dittrich, 1999a] Dittrich, David. The �stacheldraht� distributed denial of service attack
tool. 31 December 1999.
URL http://staff.washington.edu/dittrich/misc/stacheldraht.
analysis

13

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

[Dittrich, 1999b] Dittrich, David. The "Tribe Flood Network" distributed denial of service
attack tool. 21 October 1999.
URL http://staff.washington.edu/dittrich/misc/tfn.analysis

[Dittrich, 2000] Dittrich, David. The �mstream� distributed denial of service attack tool. 1
May 2000.
URL http://staff.washington.edu/dittrich/misc/mstream.
analysis.txt

[Dittrich, 2002] Dittrich, David. �Root kits� and hiding �les/directories/processes after a
break-in. 5 January 2002.
URL http://staff.washington.edu/dittrich/misc/faqs/rootkits.
faq

[Harrison, 2000] Harrison, Ann. Cyberassaults hit Buy.com, eBay, CNN and Amazon.
Computerworld, 9 February 2000.
URL http://www.computerworld.com/news/2000/story/0%2c11280%
2c43010%2c00.html

[Internet Security Systems, 2002] Internet Security Systems. advICE Security Database,
Exploits/Ports/31337. Last modi�ed 9 December 2002.
URL http://www.iss.net/security_center/advice/Exploits/Ports/
31337/default.htm

[Levy, 2003] Levy, Benjamin. Dif�e-Hellman method for key agreement. Last modi�ed 30
October 2003. Based on [Dif�e and Hellman, 1976].
URL http://www.apocalypse.org/pub/u/seven/diffie.html

[Miller, 2002] Miller, Toby. Analysis of the t0rn rootkit. 2002.
URL http://www.sans.org/y2k/t0rn.htm

[Postel, 1981a] Postel, J. RFC 790: Assigned numbers. September 1981. The informa-
tion in this RFC is of historical value; the current port assignments are in an online
database. See [Authority, 2002].
URL ftp://ftp.rfc-editor.org/in-notes/rfc790.txt

[Postel, 1981b] Postel, J. RFC 792: Internet control message protocol. September 1981.
URL ftp://ftp.rfc-editor.org/in-notes/rfc792.txt

[Schneier, 1994] Schneier, Bruce. Description of a new variable-length key, 64-bit block
cipher (Blow�sh). In Fast Software Encryption, Cambridge Security Workshop Pro-
ceedings, pages 191�204. Cambridge, U.K.: Springer-Verlag, Heidelberg, Germany,
1994.

[Veloso, 2001] Veloso, Flávio. The Back Ori�ce (BO) protocol. Last updated 22 November
2001.
URL http://www.magnux.com/~flaviovs/boproto.html

14

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

[Venema, 2002] Venema, Wietse. The Post�x of�cial web site: Frequently asked ques-
tions: the Delivered-To header. File last modi�ed 9 January 2002.
URL http://www.postfix.org/faq.html#delivered

[Webopedia.com, 2002] Webopedia.com. De�nition of ��rewall�. Last modi�ed 24
September 2002.
URL http://www.webopedia.com/TERM/F/firewall.html

15

