
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
OpenVMS Security 1

Fundamentals for Securing OpenVMS Systems

Mario Babineau
GSEC – Securing OpenVMS; Fundamentals. V1.4b

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
OpenVMS Security 2

Table of Contents

Executive Summary...3
Understanding Computer Security..3

OpenVMS Security Model..4
Reference Monitor SUBJECT Security..6

Primary and Secondary Passwords ...6
Auto generate password...7
Password expiration...8
Password Dictionary:...8
Password History..9
Password Length..9
One-way encryption...9
System Password..9
Template account ...10
Access Limiting Descriptors ...11

Reference Monitor OBJECT Security..11
UIC Base Security..11
ACL Base Security...13
UAF Security Privilege..151514

Reference Monitor Authorization Database...161615
Reference Monitor Audit Trail..16

Event Category Auditing...171716
Object Access Auditing Via the Access Control Entry (ACE)...................................18
User Auditing by Modifying the User Authorization Record.....................................19
Administering the Audit Log File...20

Conclusion..22
Appendix A: Auditing program..242423
References...262625

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
OpenVMS Security 3

Executive Summary

The purpose of this document is to define the fundamentals of securing an
OpenVMS system. It defines the OpenVMS security model and how it can be
applied to analyze and define security measures required for an OpenVMS
system.

OpenVMS is based on a very different model than Unix, thus the knowledge
base required to attack or secure an OpenVMS system is very different than the
one used for Unix. Most Unix based attacks will fail on an OpenVMS system.

OpenVMS security management also uses a different approach than Unix. This
document will show how security management is done in OpenVMS.

Securing an OpenVMS is not like securing a Unix system. It requires a different
“mind set”. It is like learning a new language; trying to translate every word from
one to the other will in most cases make the sentence completely
incomprehensible, and some words just do not exist in the other language. Direct
translation of security practices from Unix to OpenVMS is not practical, nor will it
give the expected result.

Understanding Computer Security

The first step in computer security is to understand how the Operating System
(OS) works. Read the vendor internal and management manuals. The security
administrator should be familiar with the command structure used by this OS.
The second requirement is to know in a structured way where the computer
compromises could come from. Then a model can be developed on which
security rules can be based.

Computer systems are usually compromised in one of these four ways:

• User1 irresponsibility: This is where a user purposely or
accidentally leaves open access to the system. This can be done
by leaving a session logged on and leaving the terminal unlocked.
This could also be a user who writes down his password in an
easily accessible location.

• User probing: This is a user trying to find unprotected access to a
system restricted area. Some users view this as an intellectual
game between them and the security administrator.

• User penetration: This is when a user actually breaks through the
security barrier to gain access to the system restricted area.

1 A user is someone who has authorized or unauthorized access to a system

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
OpenVMS Security 4

• Social Engineering: This is when someone accesses system
resources by non-technical means. This is usually done by
coercing a user to give information regarding the system security
or facility security. This could also be done by convincing the user
to actually perform commands on the system to give them access.

The second step is to define the security level required. The following factors
must be considered when defining the security level:

1. Cost: The higher the security level the more expensive it will be to
maintain security on the system.

2. Accessibility: The higher the security level the more difficult it will be to
access the system. Too much security may render a system unusable.

3. Risk: What are the risks of intrusion on this system? No access to
Internet and only one account would be a very low risk system.

4. Asset: What is the asset that needs protecting? How much monetary
value does it have for the company? How much interest does it have for
others?

Security needs will be defined in one of the following three levels:

1. LOW: Straight out of the box configuration is good enough.
2. MEDIUM: Security tools built in the OS with some configuration is

acceptable
3. HIGH: Third party software is required to secure this system.

OpenVMS Security Model

“OpenVMS and UNIX use rather different security models, and as a result, the
two platforms tend to require rather different security attacks and tools.
OpenVMS and UNIX also have rather different management "mind-sets" “ [1]

In the late 1960s, as multi-user systems were emerging, a lot of research was
done on how to secure such a system.

The first option was to find every security vulnerability on a system and block
them one by one. This proved to be an impossible task, since the blocks
themselves hold some security vulnerability.

The second option came as the Reference Monitor Concept. This concept was
first introduced in 1972 in the “Anderson report” [2]. a computer system is
defined into four parts: a subject, an object, an authorization database, and an
audit trail. The Reference Monitor process is the controller of the flow among all
of these parts. The Reference Monitor model is only an abstraction; it does not

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
OpenVMS Security 5

define security rules but the model on which to base security rules. For the model
to be perfect the following criteria must be met:

• Every access to objects MUST be mediated.
• The Authorization database and the audit trail MUST be tamperproof.
• The code that performs these tasks MUST be small and easy to analyze.

The concept is that any subject that wants to access an object MUST be
authorized by the authorization database and a record of the access (granted or
denied) MUST be recorded in the audit trail. The authorization database must be
dynamic so that it can adapt to new subjects or objects created on the system.

Figure 1: Reference Monitor

Authorization
Database

SYSUAF.DAT

Subject
User Process

(Interactive,batch,
remote)

Audit Trail
(Audit log file)

OPERATOR.LOG

Object
Resources

(Files, Terminal,
Printers)

Reference
Monitor

Computer systems that conform to this concept are very secure. OpenVMS does
not conform to this model, but the user interface and system management
processes do mirror the basic processes of the Reference Monitor model.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
OpenVMS Security 6

Now let’s look at how these four parts are implemented in OpenVMS and how we
can secure these with some simple configuration changes.

Reference Monitor SUBJECT Security

In the OpenVMS world, the subject could be any of the following:

• Interactive process
• Batch job process
• Remote/network process

All of these, except batch jobs, require authentication to the system. This
authentication is done via the LOGINLOGOUT process. Every action done on an
OpenVMS system MUST be done under a user identification, thus a batch job
cannot be submitted unless the user is already authenticated. The LOGIN
LOGOUT process creates a user process which defines the user rights on the
system. The user rights are stored in the system User Authorization File (UAF)
SYSUAF.DAT. The SYSUAF.DAT file is controlled and updated via the
Authorize utility. This utility can only be run by users that are part of the system
group.

Most access to the system requires a password as an authentication mechanism.
OpenVMS offers multiple ways to protect and enforce password policy. The
password policy and the password itself are also stored in the UAF. OpenVMS
offers the following features for password security:

• Primary and Secondary password
• Auto generate password
• Password expiration
• Password dictionary
• Password history
• Password length
• One-way encryption storing
• System password for terminal access
• Template account
• Access limiting descriptors

Primary and Secondary Passwords
Passwords are NOT case sensitive. Actually nothing is case sensitive in
OpenVMS; everything typed in lower case is automatically converted to upper
case by OpenVMS.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
OpenVMS Security 7

Password restrictions in OpenVMS are:

1. Passwords can be from 1 – 31 characters
 2. Valid characters are: A-Z, 0-9, $ (dollar sign), and _ (underscore)

To set a primary password with the Authority Utility:

$ SET DEFAULT SYS$SYSTEM
$ RUN AUTHORIZED
UAF> MODIFY SANS2 /PASSWORD=THISISLIFE

The user can modify his/her password via:

$ SET PASSWORD
 or
$ SET PASSWORD/GENERATE=n

The secondary password is where a user enters a username/password and the
system asks for a secondary password before creating the user process. A
primary password is mandatory prior to setting the secondary password.

To set primary and secondary passwords with the Authority Utility:

$ SET DEFAULT SYS$SYSTEM
$ RUN AUTHORIZED
UAF> MODIFY SANS /PASSWORD=(THISISLIFE,THISISLIFE2)
(in this ca se the primary password is: THISISLIFE, and the secondary password is: THISISLIFE2)

The user can modify his/her secondary password via:

$ SET PASSWORD/SECONDARY
 or
$ SET PASSWORD/SECONDARY/GENERATE=n

Auto generate password
OpenVMS can generate a password. The auto generate password utility only
requires one parameter: the number of characters the password should have.
The first column is the actual proposed password and the second column is the
pronunciation for the password.

$ SET PASSWORD/GENERATE=8
Old password:
afneapyva af-nea-py-va
calfjoyn calf-joyn
alotansha a-lo-tan-sha
vadfoarwoa vad-foar-woa
todaskma to-dask-ma

2 All examples in this paper will use a user account call SANS

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
OpenVMS Security 8

Choose a password from this list, or press RETURN to get a new list
New password:

This policy can be enforced on a user basis via the Authorize utility.

$ SET DEFAULT SYS$SYSTEM
$ RUN AUTHORIZED
UAF> MODIFY SANS /GENERATE_PASSWORD [=keyword]

 BOTH Generate primary and secondary passwords.
 CURRENT Do whatever the DEFAULT account does. This could mean

to generate primary, secondary, both, or no
passwords.

 This is the default keyword.
 PRIMARY Generate primary password only.
 SECONDARY Generate secondary password only.

Password expiration
The default expiration period for an account is 90 days. When the account gets
created the password is pre-expired; the user must enter a new password on the
first successful login.

To set the expiration to 90 days, 30 hours, 15 minutes, and 7 seconds the syntax
is:

$ SET DEFAULT SYS$SYSTEM
$ RUN AUTHORIZED
UAF> MODIFY SANS /PWDLIFETIME=90-30:15:07

Passwords can be set to expire immediately as follows:

UAF> MODIFY SANS /PWDEXPIRED

Password Dictionary:
By default the SET PASSWORD command compares the new password against
the standard OpenVMS dictionary. OpenVMS will modify the case as necessary
to find a match in the dictionary file. The security administrator can create an
unacceptable password list and add it to the standard dictionary file as follows:

$ CREATE LOCAL_PASSWORD_DICTIONARY.DATA
StarWar
Skywalker
nameofcompany
usernames
Crtl/Z

$ SET PROCESS/PRIV=SYSPRIV
$ CONVERT/MERGE/PAD LOCAL_PASSWORD_DICTIONARY –
_$ SYS$LIBRARY:VMS$PASSWORD_DICTIONARY.DATA

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
OpenVMS Security 9

The dictionary check is not performed if the Authorize utility is used to set a user
password.

Password History
By default the password history is ON and keeps 60 names for 365 days. This
can be changed by modifying the following logical names:

SYS$PASSWORD_HISTORY_LIFETIME (value=1 to 28000 days)
SYS$PASSWORD_HISTORY_LIMIT (value=1 to 2000 names)

$ DEFINE/SYSTEM/EXEC SYS$PASSWORD_HISTORY_LIMIT 100

The history check is not performed if the Authorize utility is used to set a user
password.

Password Length
The minimum length of the password is defined on the UAF via the following
command:

$ SET DEFAULT SYS$SYSTEM
$ RUN AUTHORIZED
UAF> MODIFY SANS /PWDMINIMUM=n

The maximum length is fixed to 31 characters.

One-way encryption
Every password gets encrypted and only the encrypted password is stored on
the UAF. OpenVMS does provide a default encryption algorithm but a
user/programmer can create a site-specific algorithm for added security. The new
algorithm is enabled via the Authorize utilities.

$ SET DEFAULT SYS$SYSTEM
$ RUN AUTHORIZED
UAF> MODIFY SANS /ALGORITHM=PRIMARY=CUSTOMER=128

The OpenVMS Programming Concepts manual provides directions on how to
write and use customer algorithms.

System Password
A system password is a password that is not attached to an account but to a
terminal. This terminal can be a Local Area Terminal (LAT) or remote terminal
(created via a telnet session), or the console terminal. This password forces the

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
OpenVMS Security 10

user to enter this password prior to being able to use this terminal to connect to
the system. The user will still be asked to provide a username/password to
access the system.

This is a two-step process; first set the system password and then attach this
password to a terminal.

First set the password:

$ RUN AUTHORIZE
UAF> MODIFY /SYSTEM_PASSWORD=<password>
 or
$ SET PASSORD/SYSTEM

Then attach this password to a terminal:

$ SET TERMINAL/SYSPWD/PERMANENT TTY1

Template account
OpenVMS has a special account called DEFAULT. This account is the account
that gets used to create the other accounts. Any modification to this account will
be transferred to all new accounts created after the change was made. Any
account that was previously created MUST be modified one by one with the new
setting.

UAF> show default
Username: DEFAULT Owner:
Account: UIC: [200,200]
([DEFAULT])
CLI: DCL Tables: DCLTABLES
Default: SYS$SYSDEVICE:[USER]
LGICMD: LOGIN
Flags: DisUser
Primary days: Mon Tue Wed Thu Fri
Secondary days: Sat Sun
No access restrictions
Expiration: (none) Pwdminimum: 6 Login Fails: 0
Pwdlifetime: 90 00:00 Pwdchange: (pre-expired)
Last Login: (none) (interactive), (none) (non-
interactive)
Maxjobs: 0 Fillm: 100 Bytlm: 8192
Maxacctjobs: 0 Shrfillm: 0 Pbytlm: 0
Maxdetach: 0 BIOlm: 18 JTquota: 100000
Prclm: 2 DIOlm: 18 WSdef: 150
Prio: 4 ASTlm: 24 WSquo: 256
Queprio: 0 TQElm: 10 WSextent: 512
CPU: (none) Enqlm: 100 Pgflquo: 10240
Authorized Privileges:
 TMPMBX NETMBX
Default Privileges:
 TMPMBX NETMBX

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
OpenVMS Security 11

Access Limiting Descriptors
The following UAF parameters will limit the access of a user to the system.
These are set via the Authorize utility.

/[NO]ACCESS = range Allow access to system in specified range
/[NO]BATCH = range Allow batch access in specified range
/[NO]DIALUP = range Allow interactive dialup access in specified

range
/[NO]INTERACTIVE = range Allow interactive access in specified range
/[NO]LOCAL = range Allow interactive access via local terminal in

specified range
/[NO]NETWORK = range Allow remote batch access in specified range
/[NO]REMOTE = range Allow remote interactive access in specified

range
range= ([PRIMARY], [hr – hr], [SECONDARY], [hr – hr])

Reference Monitor OBJECT Security

An Object in OpenVMS can be any of the following:

• File
• Batch queue
• Printer, disk, tape
• Terminal
• Any device locally or remotely connected to the system

OpenVMS has two security control mechanisms: User Identification Code (UIC)
base and Access Control List (ACL) base. OpenVMS also has security
privileges that give a user the ability to bypass all of OpenVMS's security, a
description of these parameters will be given in this section.

UIC Base Security

When an account gets created the System Administrator also gives it a unique
UIC. The UIC has two numbers, a Group number (from 1 to 37776 octal), and a
member identifier (0 to 177776 octal). Multiple users can belong to the same
group, but every user will have a unique member identifier within that group. A
user cannot belong to multiple groups in OpenVMS. This identifier
[group,member] is stored in the UAF.

When an object gets created, the owner is the account that created the object.
Only the owner has control access when using the UIC base security. The owner

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
OpenVMS Security 12

can set four securities groups on the object: System access, Owner access,
Group access, and World access. Each group has six types of access levels that
can be set:

1. Read, Gives the right to read the data from the object.
2. Write, Gives the right to write data to the object.
3. Execute, Gives the right to execute binary object.
4. Delete, Gives the right to delete an object.
5. Physical Gives the right to perform physical I/O.
6. Logical Gives the right to perform logical I/O.

Depending on the type of object being looked at, (device, file, etc.) some of the
types may not apply. The object protection can be displayed with the following
command:

$ DIR /FULL (OR /SECURITY) MYFILE.TEXT

MYFILE.TEXT;1 File ID: (6422,1,0)
Size: 1/4 Owner: [100,100]
Created: 22-DEC-2002 13:55:40.29
Revised: 22-DEC-2002 13:55:40.40 (1)
Expires: <None specified>
Backup: <No backup recorded>
Effective: <None specified>
Recording: <None specified>
File organization: Sequential
Shelved state: Online
Caching attribute: Writethrough
File attributes: Allocation: 4, Extend: 0, Global buffer count: 0
 No version limit
Record format: Variable length, maximum 0 bytes, longest 19 bytes
Record attributes: Carriage return carriage control
RMS attributes: None
Journaling enabled: None
File protection: System:RWED, Owner:RWED, Group:RE, World:
Access Cntrl List: None
Client attributes: None

$ SHOW DEVICE/FULL DKA0:

Disk AXPVMS$DKA0:, device type RZ29B, is online, file-oriented device,
 shareable, available to cluster, error logging is enabled.

 Error count 0 Operations completed 0
 Owner process "" Owner UIC [SYSTEM]
 Owner process ID 00000000 Dev Prot S:RWPL,O:RWPL,G:R,W
 Reference count 0 Default buffer size 512

 The protection can be set with the following command:

$ SET FILE/PROTECTION=(S:RWED,O:RWED,G:RWED,W:RWED) MYFILE.TEXT
$ DIR/SECURITY MYFILES.TEXT

MYFILE.TEXT;1 [100,100] (RWED,RWED,RWED,RWED)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
OpenVMS Security 13

By default, files get their protection from the parent directory and devices get
their protection from the device template.

ACL Base Security

ACL is a more granular way to control access to objects. ACL are built with
multiple or single Access Control Entry (ACE). ACE can be based on UIC or an
identifier.

An identifier gets created with the Authorization utility, and then users are
granted the identifier. A user may have multiple identifiers granted. Access is
granted to the identifier via the ACE.

ACL/ACEs are stored in the object header. To use ACL the user must have UIC
Read access to an object.

Prior to granting access to an object the following checks are performed:

• UIC access is checked; if there is no ACL on the object, access is granted
as per the UIC access level.

• If the Object has ACL and UIC Read access is granted, then the ACEs are
checked. Access is granted as per the first matching ACE in the list.

• If the Object has ACL and UIC Read access is granted, and NO matches
are found in the ACL, then the UIC access level is granted.

Because of the access rules, the order in which ACEs are entered on an object is
very important.

To add ACE “Control access” to the object is required. Access levels given via
ACE are as follows; Read, Write, Execute, Delete, Control, None.

The following example creates an identifier call “GIAC” and then grants the user
SANS this identifier.

UAF> ADD /IDENTIFIER/ATTRIBUTES=(RESOURCE) /VALUE=IDENTIFIER:%X80011 GIAC
%UAF-I-RDBADDMSG, identifier GIAC value %X80080011 added to rights database

UAF> GRANT/IDENTIFIER GIAC SANS
%UAF-I-GRANTMSG, identifier GIAC granted to SANS

UAF> SHOW SANS

Username: SANS Owner: SANS User
Account: USERS UIC: [100,100] ([USERS,SANS])
CLI: DCL Tables: DCLTABLES
Default: [USER]
LGICMD:
Flags:
Primary days: Mon Tue Wed Thu Fri

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
OpenVMS Security 14

Secondary days: Sat Sun
No access restrictions
Expiration: (none) Pwdminimum: 6 Login Fails: 0
Pwdlifetime: 90 00:00 Pwdchange: 22-DEC-2002 14:36
Last Login: (none) (interactive), (none) (non-
interactive)
Maxjobs: 0 Fillm: 100 Bytlm: 64000
Maxacctjobs: 0 Shrfillm: 0 Pbytlm: 0
Maxdetach: 0 BIOlm: 150 JTquota: 4096
Prclm: 8 DIOlm: 150 WSdef: 2000
Prio: 4 ASTlm: 250 WSquo: 4000
Queprio: 4 TQElm: 10 WSextent: 16384
CPU: (none) Enqlm: 2000 Pgflquo: 50000
Authorized Privileges:
 NETMBX TMPMBX
Default Privileges:
 NETMBX TMPMBX
Identifier Value Attributes
 GIAC %X80080011

Now we add the ACE GIAC to the file “MYFILE.TEXT” which will give Read,
Write, Execute access to any user who has this identifier

$ SET SECURITY /ACL=(-
_$ (IDENTIFIER=GIAC,ACCESS=READ+WRITE+EXECUTE), -
_$ (IDENTIFIER=*,ACCESS=NONE)) MYFILE.TEXT

$ DIR/FULL MYFILE.TEXT

Directory DKA600:[SANS]

MYFILE.TEXT;1 File ID: (6422,1,0)
Size: 1/4 Owner: [100,100]
Created: 22-DEC-2002 13:55:40.29
Revised: 22-DEC-2002 14:56:52.26 (3)
Expires: <None specified>
Backup: <No backup recorded>
Effective: <None specified>
Recording: <None specified>
File organization: Sequential
Shelved state: Online
Caching attribute: Writethrough
File attributes: Allocation: 4, Extend: 0, Global buffer count: 0
 No version limit
Record format: Variable length, maximum 0 bytes, longest 19 bytes
Record attributes: Carriage return carriage control
RMS attributes: None
Journaling enabled: None
File protection: System:RWED, Owner:RWED, Group:RWED, World:RWED
Access Cntrl List: (IDENTIFIER=GIAC,ACCESS=READ+WRITE+EXECUTE)
 (IDENTIFIER=*,ACCESS=NONE)
Client attributes: None

Now user SANS has read, write, and execute access to the file MYFILE.TEXT.
But SANS will not be able to delete the file.

$ DELETE/LOG MYFILE.TEXT;1
%DELETE-W-FILNOTDEL, error deleting DKA600:[SANS]MYFILE.TEXT;1
-RMS-E-PRV, insufficient privilege or file protection violation

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
OpenVMS Security 15

UAF Security Privilege

Some privileges will allow a user to totally destroy the system. These system
privileges should NOT be given to users unless absolutely necessary. Privileges
are granted via the Authorization utility. The system privileges are:

SETPRIV Can set any privilege
SECURITY Can perform security-related functions
READALL Can provide read access to anything on the system
SYSMAN Can insert object in system logical name table
DETATCH Can create detached processes
LOG_IO Can do logical I/O
PHY_IO Can do physical I/O
PFNMAP Can map to specific physical pages
SYSPRV Can access object via system protection
CMEXEC Can change mode to exec
CMKRNL Can change mode to kernel
BYPASS Can bypass UIC checking

UAF> MOD SANS/PRIV=BYPASS
%UAF-I-MDFYMSG, user record(s) updated
UAF> SHOW SANS

Username: SANS Owner: SANS User
Account: USERS UIC: [100,100] ([USERS,SANS])
CLI: DCL Tables: DCLTABLES
Default: [USER]
LGICMD:
Flags:
Primary days: Mon Tue Wed Thu Fri
Secondary days: Sat Sun
No access restrictions
Expiration: (none) Pwdminimum: 6 Login Fails: 0
Pwdlifetime: 90 00:00 Pwdchange: 22-DEC-2002 14:36
Last Login: 22-DEC-2002 15:03 (interactive), (none) (non-
interactive)
Maxjobs: 0 Fillm: 100 Bytlm: 64000
Maxacctjobs: 0 Shrfillm: 0 Pbytlm: 0
Maxdetach: 0 BIOlm: 150 JTquota: 4096
Prclm: 8 DIOlm: 150 WSdef: 2000
Prio: 4 ASTlm: 250 WSquo: 4000
Queprio: 4 TQElm: 10 WSextent: 16384
CPU: (none) Enqlm: 2000 Pgflquo: 50000
Authorized Privileges:
 BYPASS NETMBX TMPMBX
Default Privileges:
 NETMBX TMPMBX
Identifier Value Attributes
 GIAC %X80080011

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
OpenVMS Security 16

Reference Monitor Authorization Database

OpenVMS stores its security and user information in distributed databases.
These databases are index files and should be protected using the same tools as
described in the object security section. The UIC base access should be set as
follows: “System:RWED, Owner:RWED, Group: nothing, World: nothing”

The following files are part of the Authorization database:

SYSUAF.DAT Holds the username, passwords, and UICs
NETPROXY.DAT Holds username for remote access translations
RIGHTSLIST.DAT Holds rights identifiers
VMS$OBJECTS.DAT Holds UICs, Protection codes, ACL
VMS$AUDIT_SERVER.DAT Holds security configuration parameters

These files are normally located in the SYS$SYSTEM directory, but can be
located elsewhere if logical pointers are used to define their new location. It is
strongly recommended for security reasons that these files be moved to a new
location.

This can be done via the following steps:

$ COPY SYS$SYSTEM:RIGHTLISTS.DAT DKA600:[SANS]
$ COPY SYS$SYSTEM:SYSUAF.DAT DKA600:[SANS]
$ COPY SYS$SYSTEM:NETPROXY.DAT DKA600:[SANS]

Edit the SYS$MANAGER:SYLOGICALS.COM and add the following lines

$ DEFINE/SYSTEM/EXEC RIGHTSLIST DKA600:[SANS]:RIGHTSLIST.DAT
$ DEFINE/SYSTEM/EXEC SYSUAF DKA600:[SANS]:SYSUAF.DAT
$ DEFINE/SYSTEM/EXEC NETPROXY DKA600:[SANS]:NETPROXY.DAT
$!

These file should never be edited directly. OpenVMS provides utilities to modify
these files.

Reference Monitor Audit Trail

Auditing is the ability to monitor and report on security events. The auditing
capability of OpenVMS is very extensive and fully configurable. Auditing
information can be generated in three different ways:

1. Event category auditing
2. Object access auditing via the Access Control Entry (ACE)
3. User auditing by modifying the user authorization record

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
OpenVMS Security 17

The audit event messages can be directed to two places: the /ALARM parameter
sends the events to an operator terminal for live monitoring via the OPCOMM
manager, and the /AUDIT parameter sends the events to an audit log file.

Event Category Auditing

Event categories are defined in classes. Each class can have subclasses.
Auditing can be enabled for any class or subclass within a class. There are
twenty classes of events (see table 1: Event Classes). It is not recommended to
enable all event classes and subclasses, since this will generate a very large
number of events and require a lot of resources from the system. By default
OpenVMS will audit five classes (see table 1: Event Classes). To enable auditing
for a specific class use the following command:

$ SET AUDIT /AUDIT /ALARM /ENABLE=TIME

To disable auditing use the following command:

$ SET AUDIT /ALARM /DISABLE=TIME

(Notice that in this command the TIME class was not disabled for the
AUDIT output)

To view which auditing is enabled on the system use the following command:

$ SHOW AUDIT
System security alarms currently enabled for:
 ACL
 Authorization
 Audit: illformed
 Breakin: dialup,local,remote,network,detached
 Logfailure: batch,dialup,local,remote,network,subprocess,detached

System security audits currently enabled for:
 ACL
 Authorization
 Time
 Audit: illformed
 Breakin: dialup,local,remote,network,detached
 Logfailure: batch,dialup,local,remote,network,subprocess,detached

To view the ALARM auditing live from any terminal session issue the following
command:

$ REPLY/ENABLE=SECURITY

%%%%%%%%%%% OPCOM 30-DEC-2002 13:54:21.74 %%%%%%%%%%%
Operator _AXPVMS$TNA6: has been enabled, username SYSTEM

%%%%%%%%%%% OPCOM 30-DEC-2002 13:54:21.74 %%%%%%%%%%%

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
OpenVMS Security 18

Operator status for operator _AXPVMS$TNA6:
SECURITY

From this point on all security events will be displayed to this terminal. Multiple
terminals can be enabled for security. Security auditing can only be enabled from
an account that has the security privilege set into its UAF record.

Table 1: Event Classes

Event Class Default Description
ACCESS Specifies the type of access on which to generate

events (i.e.: failure, success etc.)
ACL X Access to a file with a Security Access Control

List events
AUDIT X Generate an event each time the SET AUDIT

command is use; This class can not be disabled
AUTHORIZATION X Access to the System Authorization file
BREAKIN X All types of intrusion attempts
CONNECTION Connection or termination of a connection to the

system
CREATE Creation of an object
DEACCESS Deaccess of an object
DELETE Deletion of an object
IDENTIFIER Use of an identifier to access an object
INSTALL Installation of new program on system
LOGFAILURE X Failed login attempts
LOGIN Successful login attempts
LOGOUT All logout
MOUNT Mount and dismount operation
NCP Access to the Network Configuration Databases
PRIVILEGE Successful or unsuccessful use of privilege
PROCESS Access to the system service processes
SYSGEN Modification of any of the kernel parameters
TIME Modification of the system time

Object Access Auditing Via the Access Control Entry (ACE)

It is possible to monitor specific objects for auditing using a security ACE within
the object ACL. Monitoring can be done on specific access types and the
auditing event can be sent to a live terminal (/ALARM) or to the audit log file
(/AUDIT). The access types are the same as the one defined in the UIC base
security plus two new types: SUCCESS and FAILURE.

Security auditing ACEs are attached to an object via the SET SECURITY/ACL
command or the Access Control List editor.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
OpenVMS Security 19

There are three files that are not monitored with the default auditing mechanism.

 SYSALF.DAT Automatic login file for window based domains
 OPERATOR.LOG Operator log file use by the OPCOMM utility
 ACCOUNTING.DAT System accounting file

These files should be monitored for security auditing, thus this can be done by
attaching a security ACE to the file.

To attach an Alarm ACE to the OPERATOR.LOG file enter the following
command:

$ SET SECURITY/ACL=(ALARM=SECURITY,ACCESS=DELETE+CONTROL+SUCCESS+FAILURE) –
_$ SYS$MANAGER:OPERATOR.LOG

To attach an Audit ACE to this file the command is:

$ SET SECURITY/ACL=(AUDIT=SECURITY,ACCESS=DELETE+CONTROL+SUCCESS+FAILURE) –
_$ SYS$MANAGER:OPERATOR.LOG

If a terminal is enabled for security, the following message will be displayed:

%%%%%%%%%%% OPCOM 31-DEC-2002 08:39:48.12 %%%%%%%%%%%
Message from user AUDIT$SERVER on AXPVMS
Security alarm (SECURITY) on AXPVMS, system id: 65534
Auditable event: Object access
Event time: 31-DEC-2002 08:39:48.12
PID: 00000224
Process name: _TNA6:
Username: SYSTEM
Process owner: [SYSTEM]
Terminal name: TNA6:
Image name: AXPVMS$DRA0:[SYS0.SYSCOMMON.][SYSEXE]SETSHOSECUR.EXE
Object class name: FILE
File name: _AXPVMS$DRA0:[SYS0.SYSMGR]OPERATOR.LOG;4
File ID: (6375,53830,0)
Access requested: CONTROL
Sequence key: 002C3D3F
Status: %SYSTEM-S-NORMAL, normal successful completion

The ACL attached to this file should look like the following:

$ DIR/SEC SYS$MANAGER:OPERATOR.LOG

Directory SYS$SYSROOT:[SYSMGR]

OPERATOR.LOG;4 [SYSTEM] (RWED,RWED,RE,)
 (ALARM=SECURITY,ACCESS=DELETE+CONTROL+SUCCESS+FAILURE)
 (AUDIT=SECURITY,ACCESS=DELETE+CONTROL+SUCCESS+FAILURE)

User Auditing by Modifying the User Authorization Record

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
OpenVMS Security 20

It is sometimes necessary to monitor a specific user activity on a system. This
can be done by setting the AUDIT flag in the user record using the Authorize
utility:

$ SET DEF SYS$SYSTEM
$ MC AUTHORIZE
UAF> MODIFY SANS /FLAGS=AUDIT
%UAF-I-MDFYMSG, user record(s) updated
UAF> EXIT
%UAF-I-DONEMSG, system authorization file modified
%UAF-I-RDBNOMODS, no modifications made to rights database
$

If a terminal is enabled for security the following message will be displayed:

%%%%%%%%%%% OPCOM 31-DEC-2002 09:00:03.68 %%%%%%%%%%%
Message from user AUDIT$SERVER on AXPVMS
Security alarm (SECURITY) and security audit (SECURITY) on AXPVMS,
system id: 65
534
Auditable event: System UAF record modification
Event time: 31-DEC-2002 09:00:03.68
PID: 00000224
Process name: _TNA6:
Username: SYSTEM
Process owner: [SYSTEM]
Terminal name: TNA6:
Image name:
AXPVMS$DRA0:[SYS0.SYSCOMMON.][SYSEXE]AUTHORIZE.EXE
Object class name: FILE
Object name: SYS$COMMON:[SYSEXE]SYSUAF.DAT;1
User record: SANS
Flags: New: AUDIT
 Original: (none)

The operating system will generate an event for every action that is taken by
SANS (i.e.: Login, Logout, files accessed, program executed, remote connection,
etc.). The AUDIT flag generates an extremely large number of audit events.

To extract the information from the audit log use the following commands:

$ SET DEF SYS$MANAGER
$ ANALYZE/AUDIT/SELECT=(FLAGS=MANDATORY,USERNAME=SANS)-
_$ SECURITY.AUDIT$JOURNAL

Administering the Audit Log File

OpenVMS writes all audit events to the latest version of the file
SYS$COMMON:[SYSMGR]SECURITY.AUDIT$JOURNAL. The audit file has
the following characteristics:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
OpenVMS Security 21

• Binary Uses less disk space
• Clusterwide Same file for multiple nodes in cluster
• Sequential record Ease of access for user-written programs

This file will grow without limit, thus it can easily fill up the system disk when
many events are monitored. It is good practice to rotate the audit file every day.
This can be done via the following command:

$ SET AUDIT /SERVER=NEW_LOG

The same problem exists with the SYS$MANAGER:OPERATOR.LOG file. This
file can be rotated with the following command:

$ REPLY/LOG

To save disk space, the previous day's audit and log files should be moved to
another disk. The easiest way to accomplish this is to write a simple DCL
program to perform these tasks and then submit it via a batch queue to execute
at 23:58 every day (see example in Appendix A).

Logging security events is useless if the data stored in the audit log file is not
analyzed. In OpenVMS this is done via the Analyze Audit utility. This utility
allows extracting of information from the binary audit log files and storing them in
a readable format. The command has the following syntax:

$ ANALYZE/AUDIT [file-spec[,...]]

 This utility has many filtering qualifiers as described in the following table:

Table 2: AUDIT Filtering Qualifiers

Qualifier Filtering Description
/BEFORE Content Extract events messages generated prior to the

specified time
/SINCE Content Extract events messages generated after the

specified time
/EVENT_TYPE Content Extract events messages with the specified class
/SELECT Content Extract events messages based on data in the

event message
/IGNORE Content Exclude events messages based on data in the

event message
/BRIEF Format Produce a single-line record format report with

basic information (this is the default)
/FULL Format Produce a multi-line record format report with all

possible data for each record selected
/SUMMARY Format Produce a summary report of all records selected
/BINARY Format Produce a binary file to be further analyzed by a

user-written program

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
OpenVMS Security 22

/OUTPUT Destination Specify the report destination (default is the user
terminal)

It is also recommended that the audit file be analyzed on a daily basis with the
following command:

$ ANALYZE/AUDIT/BRIEF/SUMMARY/SINCE=TODAY/OUTPUT=AUDIT$DISK:20021227_AUDIT.LOG
-
_$ SYS$MANAGER:SECURITY.AUDIT$JOURNAL
$ MAIL/SUBJECT=”Security audit” AUDIT$DISK:20021227_AUDIT.LOG SYSTEM

These steps can be added to the daily batch job (see example in Appendix A).

Remember, unless it is part of the routine task of the security administrator to
look at this file, it will not be possible to detect any security issues on the system.
Someone should be looking at this log file on a daily basis.

If a security issue is found in the security summary file, it is possible for the
security administrator to drill down into the audit file using the Analyze Audit
utility.

Conclusion

“Military contractors also accept OpenVMS as the one and only operating system
for providing maximum security with maximum numerical throughput” [3]

A VMS team participated in the DEFCON9 competition. DEFCON9 is an annual
computer underground conference for hackers held in Las Vegas, Nevada. At
this conference hackers try to compromise systems to gain points. This is a
statement made at this conference on OpenVMS.

“After 52 hours of playing, the DEFCON judges (a.k.a Goons) placed a note in
the Scoreboard file that said that the Green Team’s VMS box was “Virtually
Unhackable” and that hackers might want to move on to another target.” [4]

OpenVMS is a very structured Operating system. It has been around for over 25
years without any major security issues. Understanding the security model used
in OpenVMS will greatly help in defining the rules required for setting a specific
security level on a system.

OpenVMS has many security parameters, all configurable and tunable. Digital (or
now HP) writes very good and comprehensive management manuals. I
recommend that all security Administrators read the OpenVMS security
Management manual (part of the OpenVMS management manual set).

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
OpenVMS Security 23

This paper gives a fundamental overview of OpenVMS security. More information
and utilities can be found at the following links:

www.openvms.org
www.pointsecure.com

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
OpenVMS Security 24

Appendix A: Auditing program

Example program for maintaining the security audit file in OpenVMS.

$ SAY :== WRITE SYS$OUTPUT
$! ***************************************
$! * MAINTAINING_SECURITY_AUDITING.COM *
$! ***************************************
$!
$! This procedure will perform the following tasks:
$! 1: Create a new daily SECURITY.AUDIT$JOURNAL file
$! 2: Create a new OPERATOR.LOG file
$! 3: Copy the previous day's Security audit file to a new disk and
$! and rename it in the format: YYYYMMDD_SECURITY.JOURNAL
$! 4: Generate a summary report for today's security activity
$! and save it with the name YYYYMMDD_SECURITY.REPORT
$! 5: Mail the report to the system account.
$! 6: Copy the previous day's operator log file to a new disk and
$! and rename it in the format: YYYYMMDD_OPERATOR.LOG
$! 7: Resubmit itself for 23:58 tonight
$!
$!
$! PRIOR to start using this procedure:
$! 1: Define a logical for AUDIT$DISK: in SYS$MANAGER:SYLOGICALS.COM file
$! Execute de file: $ @SYS$MANAGER:SYLOGICALS.COM
$! 2: Create 3 directories under the AUDIT$DISK:
$! $ CREATE/DIR AUDIT$DISK:[LOG]
$! $ CREATE/DIR AUDIT$DISK:[AUDIT]
$! $ CREATE/DIR AUDIT$DISK:[COM]
$! 3: Copy this procedure in the AUDIT$DISK:[COM] directory
$!
$! To start this process run this procedure once manually
$! by executing the following command from a privilege account:
$!
$! $ SET DEF AUDIT$DISK:[COM]
$! $ @MAINTAINING_SECURITY_AUDITING.COM
$!
$!
$! -------------- Start of procedure ---------------
$!
$! Check if the AUDIT$DISK logical exists
$ AUDIT_DISK = F$TRNLNM("AUDIT$DISK")
$ IF AUDIT_DISK .EQS. "" THEN GOTO LOGICAL_ERROR
$!
$! Get the date for the filenames
$!
$!
$! Determine the current day
$ date_string = F$CVTIME("TODAY",,"YEAR") + -
 F$CVTIME("TODAY",,"MONTH")+ -
 F$CVTIME("TODAY",,"DAY")
$!
$!
$! Create a new Audit Journal file
$ SET AUDIT/SERVER=NEW_LOG
$!
$! Create a new operator log file
$ REPLY/LOG
$!

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
OpenVMS Security 25

$! Copy the Audit journal file to the audit disk
$ COPY/LOG SYS$MANAGER:SECURITY.AUDIT$JOURNAL;-1 -
 AUDIT$DISK:[AUDIT]'date_string'_SECURITY.JOURNAL
$!
$! Analyze today audit Journal file
$ ANALYZE/AUDIT -
 /BRIEF -
 /SUMMARY -
 /OUTPUT=AUDIT$DISK:[AUDIT]'date_string'_SECURITY.REPORT -
 AUDIT$DISK:[AUDIT]'date_string'_SECURITY.JOURNAL
$!
$! Mail the audit file to the SYSTEM account
$ MAIL /SUBJECT="Security audit" -
 AUDIT$DISK:[AUDIT]'date_string'_SECURITY.REPORT -
 SYSTEM
$!
$! Copy the operator log file to the audit disk
$ COPY SYS$MANAGER:OPERATOR.LOG;-1 AUDIT$DISK:[LOG]'date_string'_OPERATOR.LOG
$!
$! Resubmit the job for tomorrow at 23:58
$ SUBMIT /TIME=23:58 –
 /NOLOG –
 /NOPRINT –
 /QUEUE=SYS$BATCH -
 AUDIT$DISK:[COM]MAINTAINING_SECURITY_AUDITING.COM
$!
$ EXIT
$!
$LOGICAL_ERROR:
$ SAY " "
$ SAY "*** ERROR: AUDIT$DISK logical name not defined! ***"
$ SAY " "
$ SAY "****** MAINTAINING_SECURITY_AUDITING Terminating **********"
$ SHOW TIME
$ SAY " "
$ SAY " "
$ EXIT
$!

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
OpenVMS Security 26

References

[1] Hoffman, S. H., CGI Security. Newsgroup s: comp.os.vm s, date: 1997/03/04

[2] Anderson, J. P., Co mputer Security Technology Planning Study. Technical report ESD-

TR-73-51, Air Force Electronic System Division, Hanscom AFB, Bedford, MA, 1972

[3] Ceculski, B., Why OpenVMS is better than linux. Newsgroup s: comp.os.l inux.security

Date: 2002/10/29

[4] Wisniewski, J. R., Virtually Unhackable DEFCON9. Point Secure Inc, White Paper 2002

[5] Wayne Sauer, Applied VMS Security. DECUS Symposium 1996. Presentation

[6]……http://www.cs.nps.navy.mil/people/faculty/irvine/publications/1999/wise99_RM

CUnifySecEd.pdf

[7]……http://www.computer.org/proceedings/s&p/7828/7828toc.htm

[8]……http://www.openvms.compaq.com/doc/731FINAL/DOCUMENTATION

