GIAC

CERTIFICATIONS

Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?

Check out the list of upcoming events offering

"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

Custom Full Packet Capture System
GIAC (GSEC) Gold Certification

Author: Derek Banks, itsecderek@gmail.com
Advisor: Ty Purcell

Accepted: February 27,2013

Abstract
With server hardware cheaper and faster than ever custom full packet capture systems can
now be included in many Information Security budgets. Full packet capture is the most
detailed form of network information and can provide historical information about attacks
and malicious activity for as long as there is enough storage for the data. There are some
commercial offerings that fill this space, but they are expensive and can lack the
adaptability and customization that comes with building a custom solution. A custom full
packet capture solution can act as flight data recorder for information security analysts and
incident response teams to be able to reconstruct what occurred during an attack.

Custom Full Packet Capture System | 2

1. Introduction

The goal of a full packet capture system is to acquire the total sum of raw network traffic
as it flows from the computers and devices on one network to the destinations on another
network. Capturing full packet data, also known as full content data, allows an
information security analyst to be able to perform detailed network forensics when a
question about what transpired on the network arises. When all incoming and outgoing
packets are captured, network traffic can be analyzed to discover and verify
communications with malicious external threats. Capturing full content data provides an
analyst a higher degree of granularity and flexibility compared to other forms of

information such as log files or network flows (Bejtlich, 2012).

There are a number of commercial solutions available that fill the full packet capture
market space and they do have unique and useful features, however they all share one
thing in common - they are expensive. Using a server with adequate hardware, a custom
solution can be created for less cost than a commercial system. Hardware requirements
such as storage space, RAM, and processing power will vary based on capture
requirements. As a general rule, the faster the disks that can be used, the better such as

15k RPM or SSD disks. The use of a RAM disk can also help alleviate any disk bottlenecks.

In addition, it would be ideal to use a specialized high speed network capture card.
Specialized cards, like the DAG Packet Capture Cards offered by Endace, will offload the
capture process from the server’s CPU and will handle capturing all traffic off the wire.
Using a specialized card should eliminate any packet loss from the system assuming that

the network speeds match the capacity of the card.

Designing and implementing a custom solution allows analysts to use whatever tool they
need to be successful where a commercial solution forces an analyst to rely on only what
is provided by the vendor (Bejtlich, 2012). However, while a custom solution is attractive
for cost and flexibility, they can be difficult to configure from scratch and there are not a

lot of resources readily available on the Internet that describe potential configurations.

Derek Banks, itsecderek@gmail.com

Custom Full Packet Capture System | 3

Creating a custom solution does not have to be an impossible task. The first step should be
to understand the structure of the network that is to be monitored. This is essential for
determining placement of the solution. One of the most important locations to monitor
will be the ingress and egress points of the network where the true Internet destination
and the true internal source IP are captured. In some networks, for example one where a
proxy server is in use, this may mean deploying two sensors. Another important location
will be those where remote access users come into the environment, such as from a VPN

or business partners from a dedicated connection or gateway device (Bejtlich, 2012).

Once placement on the network is determined the network traffic will need to be sent to
the packet capture system. Typically this is done through a SPAN port (also known as port
mirroring). For each segment of the network that needs to be captured the network
equipment will need to have the ability to mirror the traffic to the capture system
(Bejtlich, 2005) Another option to gaining access to the network traffic is through the use
of aggregating taps. Device such as those offered by NetOptics will allow for traffic to be

tapped then aggregated to the packet capture device.

The pros and cons of using a SPAN port or network taps will vary from environment to
environment. SPAN ports may be susceptible to dropping traffic. This can be difficult to
detect and alert on. Network taps are less likely to drop traffic, but are in-line devices that

may have to be part of troubleshooting procedures if there is a production network issue.

It is also essential to understand the threats that the organization faces. Careful analysis
of the threats an organization faces should drive the system design. For example, is spear
phishing a concern? If the answer is yes, then the solution will need to have a way to
extract out important information with regard to email traffic. What about covert data
channels - is there a risk in the environment for this? Some thought should be given to
what kind of application information should be extracted and monitored by the analysts
using the system. Having terabytes of packet captures is not worth much unless the data

can be acted upon (Heins 2011).

Derek Banks, itsecderek@gmail.com

Custom Full Packet Capture System | 4

The next item to consider is the volume of traffic to be captured and the required retention
time for the data. This will determine the amount of disk space that the system needs.

Full saturation on a 1Gbps link will yield approximately 6 terabytes of traffic a day.
Chances are that a given 1Gbps link is not entirely saturated throughout an entire day and
the throughput will fluctuate. A good number to work with for a gigabit link is 1TB per
day (Heins 2011).

Another obstacle to overcome is the time sink involved with searching for data. Being able
to search for a data point such as an attacker IP address or domain name must occur
within a reasonable time frame. Searching through the large raw packet data is the least
efficient way to search. To reduce the amount of time for any given search, indexing and
extraction of application data (such as SMTP or DNS) must be a part of the system. (Heins
2011).

2. Overview of capturing traffic

While a custom solution can be created on a Windows Server platform, Linux provides
better native tools and scripting capabilities. The most commonly used packet capture
library is libpcap and one of the most popular applications for capturing traffic on either

server platform is tcpdump (Bejtlich, 2005).

The core of the design revolves around tcpdump, usage of command switches for tcpdump,
and some bash scripting for post capture processing. Tcpdump will be used to write a
packet capture (pcap) file to disk for a specific interval of time in seconds and then name
this file based on the date and time. Note that it may be a good idea to exclude certain
types of traffic from the capture as well, for example encrypted traffic that may not be
useful in the capture and that can potentially be monitored by another layer of defense.
Once the traffic is captured, a post processing script runs in parallel to the capture - this is

where indexing, extraction and certain analysis commands take place.

Derek Banks, itsecderek@gmail.com

Custom Full Packet Capture System | 5

Before starting with capturing traffic, make sure that the server OS is loaded and a
partitioning scheme is chosen that will isolate the packet capture files to a partition. The
reason for this is to ensure that there are not issues with the operation of the OS due to the

capture filling up disk space. An example of a portioning scheme is:

Table 1.1 - example partitioning scheme
/boot -500MB

/home - 10GB

/- 10GB

/var - 10GB

Jusr/local -10GB

/var/pcap - remainder of the disk space

Also note that since the sole purpose of this server should be capturing traffic, a minimal OS
install should be performed and only packages necessary to the functionality of the system
should be added. Alternatively a system hardening guide should be followed to make sure
services that are not needed are turned off and removed. There are many resources online

that provide guidance on Linux system hardening.

2.1. TCPDUMP Command Details

Assuming that the base of the system is in place such as the server OS has been
installed, disks are partitioned correctly (capture area is contained in its own mount
point, etc), and tcpdump is functioning, the first step will be to create a script that will
run tcpdump with the arguments necessary to capture data. Making the tcpdump
command and arguments part of a script will allow for changes to be a bit easier and
will also allow it to be called at start up (either via /etc/rc.local or as an init script).
Table 1.1 contains an example of the syntax of the tcpdump command that would
capture all traffic on the given interface and a brief description of what each switch

does. Appendix A contains a sample tcpdump script.

Derek Banks, itsecderek@gmail.com

Custom Full Packet Capture System | 6

Table 1.2 - tcpdump command
tcpdump -s0 -nn $EXCLUDED -G60 -w "%Y-%m-%d-%H%M.pcap" -i $IFACE -z
pcap_parsing_script.sh”

Switch explanation:

-s0 Will capture the entire packet

-nn Do not resolve host names or port names

-G60 | Rollover to new capture file every 60 seconds

-wW Write capture to file, in this case the date in year, month, day, Hour,
minute with .pcap extension (for consistency and to aid in clean up)

-i Interface that tcpdump listens on, in this case, a script variable is used

-e Interface the capture listens on (variable in script or network device)

-Z Post rotate command - for operation on the packet after capture

The -s switch captures “snaplen” bytes of data from each packet. Giving it a value of 0
makes it capture the default value of 65535. This effectively means that the entire

packet will be captured (Jacobson, 2009).

The -nn switch will prevent resolution of host names and port names (Meissler, n.d.).
Preventing the resolution of domain names is important as it will reduce network traffic
on the network. Also, in many circumstances it is not desirable to look up external host
names for Operations Security (OPSEC) reasons. Not resolving the port name keeps the
source and destination ports the actual port number than what tcpdump matches to the
most likely protocol on that port. This is important because you do not want an
attacker to know that you are monitoring because of DNS lookups to a server in their

control.

It may be useful to exclude certain types of traffic from being captured, especially if
there is little chance of it being useful in an investigation and it is something that may
be monitored and controlled in some other way. For example, if the organization allows
outbound ssh to certain locations and alerting of unauthorized traffic is handled by
some other device then it may not be necessary to capture port 22 traffic. Multiple
exclusions can be handled by calling a script variable and using a file with the

appropriate contents. An example exclusion file is included in Appendix B; however,

Derek Banks, itsecderek@gmail.com

Custom Full Packet Capture System | 7

care should be taken in how it is used. Exclusions that make sense in one network

environment may not make sense in another.

The -G switch rotates the capture file specified by the -w switch. The number value is
the amount of seconds for the capture to go before a new file is written. So a value of 60
will result in a new file every sixty seconds. The -w switch writes the captured packets
to file and should include in the file name statement syntax for the time and date
conforming to strftime, otherwise, the capture file will be overwritten (Jacobson, 2009).
The can of course be adjusted according to preference as long as it conforms to the

format.

The -z switch is used to make tcpdump run a command on the file it just finished
writing to disk. This is commonly used to compress pcap files after capture, but can run

any program on the system (Jacobson, 2009).

2.2. Post Capture Processing

Rather than calling a compression utility or some other application, the -z switch will
call a bash script as its argument that contains multiple commands that will process the
pcap file in parallel to the next capture file starting. In other words, when tcpdump rolls
over to the next file, the -z switch will be used to process the command given, in this
case a bash script, and as it starts a new capture, the commands in the bash script begin

executing on that file.

Using a bash script as the command that is run via the -z switch has some advantages.
It allows for one location to change the processing on the pcap file. It also allows for
easier addition of new functionality in the future. An example of a post processing

script is located in Appendix C.

Rarely should an analyst start investigating by looking at raw packet data. There should
be some indicator of interest elsewhere that spurs investigation into the packet data

(Bejtlich, 2012). These indicators can be from other logging sources or from eventual

Derek Banks, itsecderek@gmail.com

Custom Full Packet Capture System | 8

alerting set up on the full packet capture system, but at some point the analyst will have
to search for data. This is one of the main functionalities of post capture processing - to
create an index of IP address and application data to make searching much more

efficient.

2.2.1. IP Address Indexing

One of the most important post processing routines is to abstract each pcap file into
a corresponding index of IP addresses that communicate during the time frame of
the packet capture. This index file should contain data that makes it easier to search
for communication in the raw packet capture rather than searching through the
large raw files themselves. It can be netflow type information or simply just an IP
address seen as a destination depending on preferences. The index will act as
metadata of sorts for the raw packet captures. The approach is to simply retain the
file name of the pcap for the index file and write them to a separate directory. This

makes a one for one relationship for pcap to index file.

The main concept here is that when there is a call for data - for example was there
communication with a website at I[P address 1.2.3.4 on December 21, 2012 - that
searching for the results does not take an inordinate amount of time. Searching
through a full day’s worth of raw packet captures could take six hours or more
(Heins 2011). A more efficient approach is to search through the index files
because they will be much smaller than the raw packet data and therefore much

quicker to search through.

The index files will be smaller in size and compress well since they will be text data.
This means that they can be stored for much longer than the raw pcap files and a
record of communication can be retained for many months or years. So even if the
pcap data has been removed months after the data call comes in, at least there was

record that something occurred.

Derek Banks, itsecderek@gmail.com

Custom Full Packet Capture System | 9

The index files can be created in many ways and this is where one of the more
complicated aspects of this system will exist for those inexperienced in writing code.
There are perl scripts available on the Internet for parsing packet captures that can
be relatively easily modified to accomplish the task (see appendix D). If there is in-
house talent for C or python coding, a program written in either of those two

languages should be faster in processing time when compared to a perl script.

2.2.2. Application Data Indexing

Application data (DNS, SMTP, HTTP, etc) extracted from the packet capture files can
also prove to be useful. The idea here is the same as the IP address indexing in that
the time needed to perform any search for data is done outside of the raw pcap files

in much smaller abstracted files.

For example, if certain fields of email traffic are being extracted into application
index files, like senders and receivers, and there was an indication that a malicious
mail was sent to someone in the organization, it can be quickly verified if the mail
had been processed by simply searching through the indexes. If there is a match,

then the full content data can be extracted from the raw pcap files.

There are various ways that creating an index of application data can be
accomplished. One method for accomplishing this is to use ngrep and extract out
the data into a separate directory from the packet captures as text files (just like the
[P address index above). The sample post processing script in Appendix C
demonstrates a method for extracting SMTP data through the use of ngrep. That

method can be adapted for other types of application data as well.

2.2.3. RAM Disk

It may be necessary to use a RAM disk to initially capture the pcap files to if packets
are being dropped, then offload them to disk storage. This will depend on the [/0

capabilities of the disk in the server and the amount of RAM in the server will need

Derek Banks, itsecderek@gmail.com

Custom Full Packet Capture System | 1

to be adequate. This can be accomplished by setting the initial capture script to
write to the RAM disk, and then offload to the disk based storage as part of the roll

over processing.

There are various how to articles on the Internet on how to set up a RAM Disk in
Linux, in fact, there are already RAM disks in use normally; however they generally
default to 16 MB. One approach that works in Red Hat and Centos based
distributions is to set the initial RAM disk size at boot by passing a kernel parameter

of ramdisk_size=<size of RAMDisk> (Emery, n.d)

If it were determined the system needed a 1GB RAM disk to allow for the amount of
time allotted to the pcap write process, then the parameter passed to the kernel
would be ramdisk_size=1048576. Some trial and error, testing, and observation of
network throughput over time may be needed to determine the right size of the

RAMDisk.

Once the size is set, there are a few more items that need to be addressed. The
RAMDisk will need a file system and need to be mounted to a mount point such as
/mnt/ram. It should also happen at boot time, so ideally the creation of the file
system and mounting would happen in an init.d script in /etc/init.d. This may vary

based on the flavor of Linux that is being used.

2.2.4. Maintenance

Some maintenance of the pcap files will be necessary to avoid filling the volume
where the data is being written. One of the most basic ways to accomplish this is to
observe the packet capture data and as the disk starts to approach 80-90% full a
cron job can be implemented that calls a script that cleans up any raw pcap files

after a certain amount of days.

Derek Banks, itsecderek@gmail.com

Custom Full Packet Capture System | 1

For example, if the storage volume was at 85% capacity and there were 32 days
worth of pcap files, the script located in Appendix E could be modified and used to

run as a daily cron job and clean up a pcap file older than 35 days.

There may be other maintenance tasks that would be useful such as compressing
and offloading index files to longer term storage on the network for archive
purposes. Regardless of the requirements however, some thought should be given

to what maintenance is necessary on the system and can be automated.

2.3. Basic Analysis

So now that there is a massive archive of raw packet capture files and an index of them
to enable efficient retrieval, what can be done with the all of this data? The goal is to
take indicators and warnings, either from a mechanism set up on the full packet capture
system or from some other source and detect and respond to potential intrusions

(Bejtlich, 2012).

One of the most basic and recurring tasks will be to find communication to an external
website from an internal host. Assuming that http traffic is being indexed, using native
Linux commands will enable the searching to take place. Recall that every pcap will
have a corresponding text based index - in this case http traffic - therefore the index
can be searched via grep in a relatively short amount of time. Table 2.1 shows a grep

command that would list every file match for the given file name range.

Table 2.1 - example grep search for indexed data
grep -1 www.evil.com 2012-12-21*

Switch explanation:

-1 \ List all files that contain matches
Sample output:

2012-12-21-1440.pcap

Derek Banks, itsecderek@gmail.com

Custom Full Packet Capture System | 1

Once the file names where the traffic is known the analyst must make a determination
of what internal I[P address initiated the communication. For simplicities sake, assume
that the traffic in question is from one internal [P address and is contained in one pcap
file. Once the internal IP address is known, traffic for just that host can be extracted
from the larger pcap with tcpdump. Using 192.168.1.15 as an example internal host,
table 2.2 demonstrates a tcpdump command that will get a smaller pcap file narrowed

down to the internal [P communicating to the external site.

Table 2.2 - example tcpdump extraction

tcpdump -r 2012-12-21-1440.pcap -w /tmp/web.pcap host 192.168.1.15 and
port 80

Switch explanation:

-T Read pcap from file

- W Write pcap to file

As this type of investigation into the traffic will be recurring, the process can and should
be scripted so that an analyst can spend less time performing manual investigation

steps.

Having historical network traffic data opens up many interesting possibilities for
analysts. One of possibilities is to use the archive of network traffic when new IDS
signatures are available to determine if an attack has occurred in the past and

potentially an ongoing compromise that had not yet been detected.

Assume that a new attack has been discovered and there is a snort signature or some
other indicator of compromise such as malware command and control traffic or

hostnames or I[P addresses potentially involved in ongoing attacks. Software such as
Snort or Yara can be used to search historically through the packet captures to aid in

discovering if compromise has occurred.

Snort is very flexible and has many options for reading existing packet capture files. It

has options to read from a single file, a directory of packet captures, from a list of pcap

Derek Banks, itsecderek@gmail.com

Custom Full Packet Capture System | 1

files, and even shell style filters (Esler, 2012). If a Snort signature is available or can be
written by the analyst, the historical traffic can be searched for specific attacks that may

have occurred in the past.

Snort does have some overhead associated with it and can potentially take some time to
run. Another option to parse through the pcap files for indicators of compromise is

Yara.

Yara is a tool aimed primarily for malware classification and can parse file contents
based on descriptions in textual or binary form. Yara uses a configuration file that
analyst will have to create (Alvarez, 2011). For example, if www.evilbadness.com was
an indicator of compromise, the contents of table 2.3 demonstrates what the

corresponding Yara rule would look like.

Table 2.2 - Example Yara Rule
rule evilbadness : evilbadness
{
strings:
$a =" www.evilbadness.com "
condition:
$a
}

[f the directory that stores the pcap files is /var/pcap and the Yara configuration file is

in /home/user, then the syntax for running Yara is:

yara /home/user/yaraconfigfile /var/pcap

Multiple rules can be contained in a Yara configuration file. The output from matches to
rules will be the name of the rule and the path to the file that hits. Table 2.3 shows what

a match to the above rule would look like.

Derek Banks, itsecderek@gmail.com

Custom Full Packet Capture System | 1

Table 2.3 - Example Yara Rule
evilbadness /var/pcap/2012-12-21-1028.pcap

3. Conclusion

Full packet capture systems are no longer too expensive for most organizations to deploy.
Using a moderately powered server and storage system and a specialized network capture
card combined with open source tools and some creativity allows information security

analysts to be able to collect invaluable full content data.

Creating a custom system to collect full content data has many advantages over using a
commercial solution. One of the largest advantages is the use of open source tools that are
commonplace. This allows the analyst to be flexible in that the processes and tools used to
create the system can be adapted to many different network environments and not reliant
on a specific vendor’s tools and methods. Using a custom platform means that any tool
needed to accomplish the task at hand can be used and forces the analyst to obtain a
greater understanding of the operation of the network and how to detect and respond to

potential compromise.

4. References

Heins, Randy. (2011). The Full Packet Capture Pocket Fisherman. Retrieved from
http://www.cert.org/flocon/2011/presentations/Heins_Indexing.pdf

Bejtlich, Richard. (2005). The Tao of Network Security Monitoring: Beyond Intrusion
Detection: New York, NY: Addison-Wesley

Bejtlich, Richard. (2012). Why Collect Full Content Data?. Retrieved from
http://taosecurity.blogspot.com

Derek Banks, itsecderek@gmail.com

Custom Full Packet Capture System

Emery, Van. (n.d). Linux RAM Disk mini-HOWTO. Retrieved from
http://www.vanemery.com/Linux/Ramdisk/ramdisk.html

Jacobson, L. (2009, November 19). Tcpdump. Retrieved from
http://www.tcpdump.org/tcpdump_man.html

Meissler, D. (n.d.). A tcpdump tutorial and primer. Retrieved from
http://danielmiessler.com/study/tcpdump

Esler, Joel. (2012, December 4). Reading Pcaps. Retrieved from
http://manual.snort.org/node20.html

Alvarez, Victor Manuel. (2011, April 8) Yara in a Nutshell. Retrieved from
http://code.google.com/p/yara-project/

5. Appendices
Appendix A - Sample TCPDUMP Script

#! /bin/bash

IFACE="eth1"
HOMEDIR="/usr/local/bin"
where the data is output
DATADIR="/var/pcap"

cd $DATADIR

read the rules from the file for the port/protocols you don't want in the dump
EXCLUDED="cat $HOMEDIR/tcpdump-exclude’

create a variable for the program to use
TCPDUMPRUN="/usr/local/src/tcpdump/sbin/tcpdump -s0 -nn $EXCLUDED -G60 -w
"%Y-%m-%d-%H%M.pcap" -i $IFACE -z /var/pcap_scripts/pcap_parsing_script.sh”

run the tcpdump process
*$TCPDUMPRUN"

#done

Derek Banks, itsecderek@gmail.com

1

Custom Full Packet Capture System

Appendix B- Sample Excluded File Contents

not (port 22)

and not (port 123)
and not (ip proto 29)
and not (ip proto 47)
and not (ip proto 50)
and not (ip proto 51)
and not (ip proto 55)

Appendix C- Sample Post Processing Script
#! /bin/bash

pcapfile=$1
basename="basename $pcapfile’
tooldir="/usr/local /bin’
datadir='/var/pcap'
indexdir='/var/pcap/index’

#cd $indexdir
echo "Processing $pcapfile”

Extract all IPS's into an index file
*/usr/local/bin/parse_pcap_script.pl "$datadir/$pcapfile” > “$indexdir/$basename”

Extract SMTP information from PCAP file

/usr/local/bin/ngrep -Wsingle -qtil "$datadir/$pcapfile” "Subject:|filename=|RCPT
TO|MAIL FROM:|X-mailer:|To:|From:" port 25 | grep -i "Subject:\ |filename=\|RCPT
TO\|MAIL FROM\|To:\ |From:\ |X-mailer" > "$data

dir/smtp/$basename”

#Extract http information from PCAP file

/usr/local/bin/ngrep -Wsingle -qtil "$datadir/$pcapfile” tcp and dst port 80 or 443 | grep
-1 “http” > "$datadir/http/$basename”

#Run Snort on PCAP file

/usr/local/bin/snort -q -r "$datadir/$pcapfile” -c /etc/snort/snort.conf

Derek Banks, itsecderek@gmail.com

Custom Full Packet Capture System

Appendix D - Sample Pcap Parsing Script

Adapted from http://hype-free.blogspot.com/2010/03 /parsing-pcap-files-with-perL.html
#!/usr/bin/perl

use Net::TcpDumpLog;
use NetPacket::Ethernet;
use NetPacket::IP;

use NetPacket::TCP;

use strict;

use warnings;

my $log = Net::TcpDumpLog->new();
$log->read("$ARGV[0]™);

foreach my $index ($log->indexes) {
my ($length_orig, $length_incl, $drops, $secs, $msecs) = $log->header($index);
my $data = $log->data($index);

my $eth_obj = NetPacket::Ethernet->decode($data);
next unless $eth_obj->{type} == NetPacket::Ethernet::ETH_TYPE_IP;

my $ip_obj = NetPacket::[P->decode($eth_obj->{data});
next unless $ip_obj->{proto} == NetPacket::IP::IP_PROTO_TCP;

my $tcp_obj = NetPacket::TCP->decode($ip_obj->{data});
my ($sec,$min,$hour,$mday,$mon,$year,$wday,$yday,$isdst) = localtime($secs +
$msecs/1000);

print sprintf("%02d-%02d %02d:%02d:%02d.%d",
$mon, $mday, $hour, $min, $sec, $msecs),

, $ip_obj->{src_ip}, ":", $tcp_obj->{src_port},
"->", $ip_obj->{dest_ip}, ":", $tcp_obj->{dest_port}, "\n";
}

close STDOUT

Appendix E - Sample Maintenance Script
#!/bin/bash

Derek Banks, itsecderek@gmail.com

1

Custom Full Packet Capture System | 1

#this script will remove pcap files that are older than

#60 days from the data directory

DATADIR=/var/pcap

DAYSOLD="60"

cd $DATADIR

find $DATADIR -name "2012-*" -mtime +$DAYSOLD -exec /usr/bin/nice -n 10 rm -f {} \;

Derek Banks, itsecderek@gmail.com

