
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GIAC Security Essentials Certification (GSEC) Practical Assignment

version 1.4b Option 1

Submitted by Richard Rabinowitz

Title: Web services - why all the talk about security?

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Abstract

Web Services security has been a popular topic of discussion in the IT industry recently.
Many of those in the information security field have more of an infrastructure
background than an application development background. As a result, much of the
discussion about XML, Web Services, and related security issues may be hard to grasp
without the necessary basic foundation of knowledge about this emerging technology.
This research paper introduces XML, SOAP, and Web Services, discusses security
issues, and reviews important established and emerging standards for Web Services
security. The intended audience are IT professionals who may not be well versed in
XML, Web Services, and SOAP. The references provided will help interested
professionals delve into the topic further.

Introduction

You can’t open a computer magazine these days without finding an article related to
Web Services security. Many IT professional careers have moved along an
infrastructure/security track rather than an application development track. As a result,
many IT professionals interested in security do not have a background in XML, SOAP,
and Web Services. The focus of article is to give these professionals a basic level of
knowledge of Web Services, related security issues, and emerging security standards.
The references and sources cited in the article will point them to further sources so that
they may work intelligently with application developers to securely build and implement
Web Services.

What are Web services?

Despite all the buzz about them, many security professionals are not clear on exactly
what Web Services are. We will define and describe Web Services to begin the
discussion. The best and most succinct definition that I’ve seen is posted on
PerfectXML.com (http://www.perfectxml.com/WebSvc1.asp) :

A Web Service is programmable application logic accessible using
standard Internet protocols. Web Services combine the best aspects of
component-based development and the Web. Like components, Web
Services represent black-box functionality that can be reused without
worrying about how the service is implemented. Unlike current component
technologies, Web Services are not accessed via object-model-specific
protocols, such as DCOM, RMI, or IIOP. Instead, Web Services are
accessed via ubiquitous Web protocols (ex: HTTP) and data formats (ex:
XML).1

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Basically, Web Services help to make components available to users, systems, or other
objects via Web protocols without any requirements to use object-model protocols such
as those defined in COM+, CORBA, J2EE etc. This allows components to be accessed
by systems using common, standard, platform-independent, and well-known methods
such as Web servers, browsers, and other XML clients.

OK, so what’s this SOAP I’ve been hearing so much about?

Whatis.com (http://www.whatis.com) gives the following definition of SOAP:

Simple Object Access Protocol (SOAP) is a way for a program running in
one kind of operating system (such as Windows 2000) to communicate
with a program in the same or another kind of an operating system (such
as Linux) by using the World Wide Web's Hypertext Transfer Protocol
(HTTP)and its Extensible Markup Language (XML) as the mechanisms for
information exchange. Since Web protocols are installed and available for
use by all major operating system platforms, HTTP and XML provide an
already at-hand solution to the problem of how programs running under
different operating systems in a network can communicate with each
other. SOAP specifies exactly how to encode an HTTP header and an
XML file so that a program in one computer can call a program in another
computer and pass it information. It also specifies how the called program
can return a response2

Although our previous definition of Web Services mentions that Web Services can use
HTTP and XML to access objects, it doesn’t specify how to use them. SOAP was
developed and approved by a group of vendors in order to specify a simple protocol
used for communication (e.g. by other systems, clients, other objects etc.) with objects
using HTTP and XML. SOAP is probably the most common method used today for
Web Services communication. This is due to its ease of use and acceptance by a large
number of vendors. SOAP has been submitted to the W3C as a proposed standard and
further development (http://www.w3.org/TR/SOAP/).3

Why all the talk about security?

Web Services security discussions are all over the media these days, why is that? To
security-minded people like us, the answer is probably obvious. After al l, we just
explained that SOAP is a standard to allow others (other users, systems, servers,
objects etc.) to execute code on a system. What we’ve just described is in fact every
hacker’s dream. This is a story that seems to keep repeating itself in the technology

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

field. In application developers’ headlong rush to implement new technology,
functionality, and openness guess what they forgot to think about? That’s right- security!
As often happens (developers are often focused on functionality, proper operation,
interoperability, and deadlines) security has become an afterthought, an add-on to Web
Services, rather than being built in from the ground up.

See the below quote written by a developer on MSDN, it’s very telling about the
difference in perspectives between information security professionals and application
development professionals:

Firewall Woes
Currently, developers struggle to make their distributed applications work

across the Internet when firewalls get in the way. Since most firewalls
block all but a few ports, such as the standard HTTP port 80, all of today's
distributed object protocols like DCOM suffer because they rely on
dynamically assigned ports for remote method invocations. If you can
persuade your system administrator to open a range of ports through the
firewall, you may be able to get around this problem as long as the ports
used by the distributed object protocol are included.

To make matters worse, clients of your distributed application that lie
behind another corporate firewall suffer the same problems. If they don't
configure their firewall to open the same port, they won't be able to use
your application. Making clients reconfigure their firewalls to accommodate
your application is just not practical.

Since SOAP relies on HTTP as the transport mechanism, and most
firewalls allow HTTP to pass through, you'll have no problem invoking
SOAP endpoints from either side of a firewall. Don't forget that SOAP
makes it possible for system administrators to configure firewalls to
selectively block out SOAP requests using SOAP-specific HTTP headers.4

Did the hairs on the back of your neck stand up while you read the above? As a
security-minded IT professional, they should have. The author is saying that an inherent
reason that SOAP was created is to make it easy to bypass security controls that are
currently in place! This developer views firewalls as an impediment. In his view, SOAP
over HTTP was developed so that he doesn’t have to deal with the current procedures
for allowing traffic in and out of a corporate network. However, the final line of the quote
illustrates the fact that to implement secure web services security professionals must
implement additional controls than are currently in place. Now that everyone has woken
up to the potential threats that Web Services can introduce, several efforts are under
way to develop security standards.

As an aside, Skonnard says that most firewalls can selectively block out SOAP requests
using SOAP headers. Although today’s firewalls do have some SOAP-checking
functionality, unless there are policies and procedures set and the firewall administrator
properly configures the firewall (and is made aware of XML-SOAP applications), the

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

firewall will not be of much help regarding Web Services security, even at the perimeter
of an organization. As we will see, much more than perimeter security is required for a
secure Web Services implementation.

Why not use standard Web security?

The World Wide Web has been around for a while now. There are an incredible number
applications that use the de facto standard SSL for encryption of data in transit, signing
of data in transit, and site verification (i.e. X.509 server-side digital certificates). The vast
majority of sites today use username and password authentication over SSL to verify
identity- a decent number of sites go even further and use client-side certificates,
tokens, and other better authentication methods. Why not just use these exact same
methods and practices to secure Web Services? There is an article on this topic by
Sarah Evans and Olwyn Dowling at Webservices.org
(http://www.webservices.org/index.php/article/articleview/529/1/24/).5

We will follow Evans and Dowling’s discussion closely in this section. First, let us look at
the differences between common Web sites and Web Services implementations. Web
sites today are typically oriented toward individual users. If it is a retail site it can usually
described as B2C. If it is a company portal for clients or employees it is there to provide
information or self-service administrative functions. In general each transaction is of
relatively low risk: credit card liability is low for the consumer, retailers always must
afford some fraudulent transactions, and a company’s administrative changes can
usually be rolled back if an error or fraud has been found. The point is that although the
threat of a few malicious transactions may be high, the overall risk of damage is fairly
low (e.g. some books are fraudulently obtained from xyzpublishing.com , a single
employee’s records are maliciously changed etc.) Current web sites are not as
concerned about client authentication due to the lower risk on individual transactions
and low transaction volume per user. Most sites use usernames and passwords and
make sure that transmission of them are performed using SSL-encrypted
communications. This makes it hard for eavesdroppers to steal authentication
information and forces them to resort to other more detectable methods such as brute
force and dictionary attacks to try to obtain this information. One reason that client-side
SSL certificates have not significantly penetrated the market is that they require that
certificates be distributed and properly configured at each client host. In most cases the
effort required to use client side certificates for authentication outweighs potential
benefits when taking the risk level into account.

 However, with Web Services, the goal is usually to open a company’s internal systems,
processes, and data for interoperability with other systems. Often the goal is to open
Web Services beyond the enterprise over the Internet. Generally Web Services are
seen as way to allow quick, loosely coupled integration between entities and
applications without a large effort. This is a very different model for use and the risks
can be much higher. For example, a Web Service could expose a company’s customer
financial information (revenue, debt, etc.) for legitimate use, but if there was a breach of

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

security a malicious individual could quickly access all of the customers’ information and
blackmail the company by threatening to expose that information. This situation could
potentially put a company out of business. This risk level requires that better security
measures be put in place for Web Services. As most Web Services are implemented, it
is very important that strong authentication of the requester of the service is
implemented to prevent malicious and damaging activity. Client-side SSL certificates
could provide this stronger authentication to Web Services. The problem is still the
onerous task of installing, configuring, and maintaining these certificates across each
potential requester of Web Services. With Web Services’ goal of permitting integration
with a minimum of set up, configuration, and indeed even knowledge about the
workings of the specific Web Service client-side SSL certificates don’t seem practical in
most cases.

Another point to consider is Web Services and SOAP relative immaturity as
technologies. In general when technologies are first adopted they have not had the
rigorous testing and trials required to make them secure. If you survey incidents that
occur today, many occur because of product vulnerabilities such as buffer overflows,
SQL injection, malformed URLs and other unintentional problems with code or
applications rather than ill-designed security schema. While many of these
vulnerabilities have occurred in widely implemented, ‘mature’ technologies (i.e. IIS,
OpenSSL, OpenSSH, Microsoft SQL server), the risk of these type of vulnerabilities is
even greater in newer, sparsely implemented technologies such as Web Services and
SOAP. Evans and Dowling give a good example of a vulnerability in SOAPLite, an
implementation of SOAP in Perl, which allows a requester (through SOAPLite) to simply
execute any Perl function on the target system even though it is not meant to be offered
as a web service. The examples Evans and Dowling cite6 (derived from a vulnerability
posting at phrack http://www.phrack.com/show.php?p=58&a=9)7 can use the common
Perl function sendfile to download any file from the target simply by changing the
SOAP URL syntax from the allowed function (name and namespace) to an assumed
function that you want to try and execute. In the example, the request is easily made to
download a UNIX password file or a Microsoft SQL master database file, even though
the capability to use the sendfile command was never enabled or intended.

Unfortunately, even strong authentication and SSL encryption does nothing to protect
against this type of attack as well as the common buffer overflow and malformed URL
attacks. Ultimately, message-level monitoring and validation mechanisms for security
will be required to offer a robust, preventative, defense in depth approach to Web
Services. Additional SOAP message-level logging functions should be implemented in
order to provide detective and corrective capabili ties when an attack does occur.
Taking all of the above information into account, it becomes clear that current web
security methods and practices are inadequate to ensure Web Services security.

At this point I’d like to address a misconception that I’ve seen written about time and
again regarding Web Services security. Often, articles are published and statements are
made lamenting the shortcomings of Web Services security. Usually in the same
statement or breath it is mentioned that this is holding back Web Services deployment
beyond most enterprises’ perimeter firewalls. This implies that it is safe and prudent to

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

deploy Web Services within your security perimeter. As anyone knowledgeable on the
topic will tell you, the majority (most estimates put it at 70-80%) of all security breaches
occur within an organization’s perimeter rather than from the outside. Considering that
internal systems are often less secured (i.e. many enterprises only use firewalls, IDS,
and encryption on outward-facing systems), deploying Web Services exclusively for
internal use can stil l comprise a huge threat to security. In any case a risk assessment
must be done even before deploying Web Services on an internal network.

Standards – how many do we need?

As it became obvious that additional security functionality would be required to securely
implement Web Services, standards were developed. As is so often the story with
‘standards’, there are several paral lel (and sometimes competing) efforts toward the
same goal. In the case of Web Services, XML, and SOAP there are three major
standards bodies currently working on standardization: the W3C, the IETF, and OASIS.
These bodies sometimes work to develop complementary standards but often work
independently of each other and develop overlapping or competing standards as well.
Currently there are no less than 13 Web Services related standards or draft standards
in various stages of development and ratification by these bodies.8 Making sense of
them is a daunting task. Let’s take a look at some of them and assess their
complementarities or overlap.

IETF

The first standard we’ll look at is SASL or Simple Authentication and Security Layer.
SASL is an IETF standard and its description is available in RFC2222
(http://www.ietf.org/rfc/rfc2222.txt?number=2222)9. SASL is a standard which allows the
insertion, i.e. a ‘shim’, of an additional security layer to an existing, connection-based
protocol. If SASL is used, it allows a server to authenticate a user as well as to protect
subsequent communications between the client and server (i.e. for privacy and integrity
of transmissions). The higher level protocol must implement a command to authenticate
a user to a server and can include a command for the negotiation of protection of
protocol transmissions.

SASL is designed in a non-specific and extensible manner so that it can be used with
virtually any authentication and protection methods. It provides a simple way to allow
connection-based protocols to incorporate security protocols with little or no changes to
the higher level protocols or the connection. The example used in the RFC shows how
SASL can be used to insert a security layer between IMAP4 and TCP to enable the
IMAP server to authenticate a user and to optionally encrypt and sign further IMAP
client/server communications if negotiated. The SASL layer performs the security
functions like authentication, encryption, and decryption without the higher-level
protocol’s knowledge or understanding.

SASL achieves this utility by defining ‘mechanisms’ which are use when invoking a
SASL command. The mechanism name is a string which signifies the methods used
when SASL performs an authentication or other security function. Mechanisms must be

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

registered with the IANA. The list of registered SASL mechanisms can be found in the
"Assigned Numbers" RFC issued by the IETF.

In RFC2222, several mechanisms are defined including: Kerberos, S/KEY, GSSAPI,
and EXTERNAL. The EXTERNAL mechanism allows the server to use a mechanism
external to SASL (such as IPsec) to provide authentication and other security functions.

Thus it is easy to see how Web services can use SASL to implement any of a number
of authentication, encryption, and signing mechanisms to provide these security
services. SASL provides many alternatives and in doing so allows Web Services access
to effective user authentication techniques as opposed to simply using SSL. For
example, currently defined mechanisms include NTLM and Securid authentication, both
of which have made significant inroads to network infrastructures when compared with
SSL client-side certificates. To get an idea of the true breadth of SASL mechanisms,
look at the list at http://www.iana.org/assignments/sasl-mechanisms10.

An important note on SASL is that it can provide user authentication and
encryption/signing of transmissions between the client and host only for the duration a
session; it does not differentiate regarding content or access control. Once the
transmission of the information is complete it is no longer controlled or encrypted. In this
sense SASL is similar to SSL.

In a complementary fashion, the W3C has been working on two standards that also
specify mechanisms for encryption and digital signature, XML Encryption and XML
Digital Signature. Let’s take a look at these two initiatives and how they fit in.

W3C

XML Encryption is a recommendation of the W3C as of December 10, 2002 (see
http://www.w3.org/TR/xmlenc-core/)11. The XML Encryption recommendation provides
a process which allows the encryption (and decryption) of arbitrary data within an XML
document. The encrypted data can be the entire document, an XML Element, or an
XML Element Content, or other arbitrary data within the document. XML Encryption also
provides for listing the methods of encryption and data hashing as well as for the
encryption of encryption keys. XML Encryption gives developers a high degree of
granularity when encrypting content- they can choose to encrypt an entire document or
simply the content of on element in a document. It also provides for the encryption of
different parts of a document with different keys so that only authorized viewers can
access certain parts of the document.

In the W3C recommendation they give an excellent example of encryption options when
using a credit card for an online payment (see section 2 of the recommendation)12. The
recommendation illustrates how a developer can choose between the following
scenarios:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

1. Encrypting the entire credit card element. By doing so all information is encrypted
including the fact that a credit card was used at all (see section 2.1.1 of the
above)13. All references to credit cards are encrypted and contained in cipher
data content. An eavesdropper or a document reader without the proper
decryption keys will only know that there is some encrypted data but have no
clue as to what the data is, the element is simply labeled as <Encrypted Data>.

2. Encrypting the content for the Credit Card element. In this scenario the element
name (i.e. <Credit Card>) is left in plaintext (see 2.1.2 of the above)14 but the
number, issuer, and expiration date content and their respective element labels
are encrypted. An eavesdropper or document reader without decryption keys can
see that a credit card was used along with limit and currency information, but
cannot read any other element content within the Credit Card element.

3. Encrypting the specific Credit Card element content for the Number element.
Using this method only the actual credit card number (i.e. the Number element
content) is encrypted (see section 2.1.3 of the above)15. The element name,
issuer, expiration date, transaction amount, and card limit are all left in plaintext
with only the actual credit card number being encrypted. An eavesdropper or
document reader without decryption keys can tell that a credit card was used,
and know all of the credit card information except the actual card number.

4. Encrypting the entire document. Using this method the entire XML document is
encrypted (see section 2.1.4)16. Anyone without the decryption keys can only see
that there is an XML document with encrypted data. All other information such as
element names and element data content are encrypted in cipher data.

XML Encryption also allows for ‘Super-Encryption” (see 2.1.5)17. Super-Encryption is an
encrypted field in which the data is actually the encryption of an <Encrypted Data> or
<Encrypted Key> element. When using super-encryption, the entire original <Encrypted
Data> or <Encrypted Key> element must be used in the new <Encrypted Data> field- it
is invalid to encrypt only content or child elements of these element types.

XML Encryption also allows the developer to include encryption method and key
information as elements of the <Encrypted Data> element. It also makes use of the
XML Signature (XML-DSIG) schema, especially with regard to encryption keys.

The XML Signature (XML-DSIG) specification is a W3C Recommendation and can be
found at http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/ 18. It was produced
by a combined IETF/W3C working group in order specify syntax and processing rules
for the use of digital signatures with XML. The XML Signature recommendation
describes a standard method of digitally signing arbitrary data for use with XML data.
XML Signature can be used to sign either an entire XML document or elements within
an XML document. The signature is related to a specific data object which either can be
part of the same XML document or referenced via a URI. The signature can either be
enveloped or enveloping. An enveloping signature means that the signed data is
contained within an element of the actual signature object. An enveloped signature

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

means that the signature is contained as an element of the XML content. In the
enveloped case it is important that the signature does not take itself into account while
signing operations are performed.

XML Signature provides a method for two standard functions: the document reader can
verify that the content was signed by a particular authority, the document reader can
verify that the content is the same as when the data signed.

One feature of XML Signature worth noting is that it provides message authentication,
meaning that it detects attacks (by using checksums) where both the content and
signature have been changed in order to fraudulently change data and make the
receiver believe that it has been signed. This provides verification of the source of the
data and the data integrity of the content.

You should note that XML Signature provides canonicalization for data to be signed.
This concept is not always present in discussions of encryption, signature, and
message digests. Canonicalization is a process where an XML document is converted
into a physical representation of the document. Several slight variations of a particular
document may all correspond to the same canonical representation. This is necessary
because although two XML documents may be logically the same, i.e. equivalent, they
may be slightly different due to differences in line feed characters, empty tags, hex
values substituted for names within certain elements or attributes etc. These slight
variances in equivalent documents can occur because of operating system variations on
different systems, format translation, data transfer methods or other operations that are
not intended to alter data within a document. If a document was directly signed in this
manner two logically equivalent documents would fail signature tests in certain cases,
causing the document reader to think that the document was invalid. In order to avoid
this situation, documents or data objects are put into a canonical form which is a
physical representation which takes these slight variations into account so that two
logically equivalent documents are represented in an identical manner. There is
recommendation on Canonical XML available at http://www.w3.org/TR/xml-c14n .19

XML Signature remains agnostic with regard to what algorithms can be used for
message digest, signing, and canonical ization. For example you can use commonly
defined algorithms such as SHA-1 for message digests, RSA for signing, and XML-
C14N for cannonicalization. XML Signature does however have several required
algorithms that all implementations must support and several recommended algorithms
which most implementations will support.

It is easy to see that the use of XML Encryption and XML Signature can allow
XML/SOAP applications additional security functionality required in a Web Services
implementation. When used properly, these recommendations (along with appropriate
supporting elements) can provide the following security functions:

Confidentiality – Only authorized viewers of a document or document element can
decrypt information. If a document viewer does not have access to the necessary keys,
they can’t view any encrypted data.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Integrity – Digital signatures ensure that the signed document or document elements
are preserved in an equivalent state to when they were sent. Signatures also allow the
reader to identify who signed the document and therefore who approved its content.

XML Encryption and XML Signature provide the syntax necessary to implement most of
the common functions for encryption and digital signature within an XML framework.
XML Encryption and XML Signature provide some of the necessary functionality to
implement application-level security functions and defense-in-depth as far as Web
Services are concerned. However, due to the recommendations’ open natures they still
rely on common services for key and certificate management (e.g. a PKI) which are
vital to proper encryption and digital signature functionality. Unfortunately, key
management systems are not commonly implemented within organizations today and
are rarely implemented between organizations. These are precisely the situations (i.e.
B2B) where Web Services are expected to be most valuable. So similar impediments
exist when implementing XML Encryption/Signature as exist for other PKI infrastructure
systems like X.509 or PGP.

In an effort to provide specifications to address key management for XML Encryption
and XML Signature, the W3C has introduced the XML Key Management Specification
(XKMS). The specification can be found as a note at http://www.w3.org/TR/xkms/.20 The
working draft of XKMS (XKMS 2.0) can be found at http://www.w3.org/TR/xkms2/.21 The
initial note is listed for discussion by the W3C and has no official endorsed status. The
XKMS 2.0 specification is still under discussion and is by no means complete. We’ll look
at the XKMS 2.0 specification since this will most likely evolve into a standard in the
future.

XKMS 2.0 defines protocols for the distributing and registering keys to be used in
conjunction with XML Encryption and XML Signature standards. It is comprised of both
the XML Key Information Service Specification (X-KISS)22 and the XML Key
Registration Service Specification (X-KRSS)23. X-KISS is a protocol to allow an
application to delegate the processing of key information to a service. It is used to
retrieve public keys as well as identification information that is bound to those keys. X-
KRSS is a protocol that allows a key-pair owner to register that key-pair for use with the
X-KISS or other trust assertion protocols.

X-KISS allows an application (an X-KISS client) to delegate public key processing
functions to an external Trust service. In this way, applications can be built without the
development of complex and intricate PKI functionality, the application can access an
external PKI infrastructure with simple XML syntax. Additionally, X-KISS does not
require the use of a particular PKI specification. An application can be built in an open
manner and can take advantage of several types of PKI’s such as X.509, PGP, etc.

X-KRSS allows an application (an X-KRSS client) to register public key information and
optionally bind certain information to that public key. For example, a client can request
that a public key be bound to identification information such as a name so that the
public key information can be used to verify the identity of the source of signed data
elements. The key-pair can be generated by the client in advance of registration or can

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

be generated by the service when requested by the client. In the latter case the protocol
also provides the manner in which the service can communicate the private key to the
client. Additionally, the protocol can be used for private key recovery at a later time.

XKMS 2.0 defines a three tier implementation model that allows applications to decide
what level of services it wishes to take advantage of. In the Tier 0 Service Model the
application performs key processing functions without delegating any functions to a trust
service. In Tier 1, the application retrieves the key from the trust service but validates
the public key itself rather than delegating validation to a trust service. In Tier 2, the
application behaves as in Tier 1 but also gets validation from the trust service about
what data the key is bound to, for example a name or identity could be bound to the
key.

Regardless of which Tier of XKMS service is used, XKMS provides a simple, common
XML syntax for the retrieval of keys from directories, checking key revocations status ,
and operations required for trust chains.

OASIS

The other major organization working on standards within for XML is OASIS. OASIS
has several specifications in various status of development/ratification that are
specifically targeted at securing web services. Many of these specifications either build
on or are complementary to the specifications created by other bodies such as the W3C
and IETF.

The first OASIS specification we will discuss is Security Assertion Markup Language
(SAML). We discuss the SAML Specification 01 of May 31, 2002. The core specification
can be found at http://www.oasis-open.org/committees/security/docs/cs-sstc-core-
01.pdf 24

SAML is a framework for exchanging security information via XML. SAML defines
subjects, assertions, and authorities. Subjects are defined as an entity to which an
identity is assigned for security purposes. Often this subject is a specific person or
machine that is identified within a system or application. SAML conveys security
information via assertions.

Assertions are security statements made about the subject and conveyed from a SAML
Authority. Assertions can contain information about security authentications performed
by subjects, security attributes of subjects, and authorization decisions about subjects
authority to access resources. SAML Assertions are in XML format and can be nested,
so a particular assertion can contain any and/or all of the above types of the above
security information in it.

SAML clients can request an assertion from an authority and receive a response from
the authority. Only authorities can create assertions, so clients request and receive
assertions but can’t create them. Authorities can use a variety of sources to create
responses. These sources can be other assertions as well as external policy stores, so
a SAML Authority can request and create assertions. SAML Authorities are categorized

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

as authentication authorities, attribute authorities, and policy decision points. Once a
client receives an assertion from an authority the client can present the assertion to
request access to a system or data or verify his identity.

SAML defines the necessary XML protocol to request assertions and send responses.
This protocol can be bound to many underlying communications and transport
protocols. However, the specification only defines and sanctions a single binding to
SOAP over HTTP (see the [SAMLBind]25 specification for details).

SAML was designed to enable single sign-on so that a user could only authenticate
once even if they were using resources in different security domains. This greatly
simplifies security from the end-user standpoint and makes cross-domain operations
and management easier from the systems administration standpoint. However, care
must be used to ensure that single sign-on is implemented properly and does not
introduce untrusted subjects into a domain.

OASIS has a document that discusses security and privacy issues specifically for the
SAML specification. It is titled, “Security Privacy Considerations for Oasis Security
Assertion Markup Language” (http://www.oasis-open.org/committees/security/docs/cs-
sstc-sec-consider-01.pdf).26

Several key issues are discussed in this document. Most important is the fact that
SAML rides atop several other key components. SAML does not define how
authentication, attributes, or policy are implemented or managed- SAML is dependent
on underlying services such as a PKI, encryption methods and ciphers, and signature
algorithms. So the SAML assertions are only as reliable as the underlying methods
used to manage authentication, encryption, signature, and policy enforcement.

SAML itself is especially susceptible to several well-known methods of attack and
measures must be taken to minimize the risk of these attacks. SAML assertions are
returned to a client and are then out of the control of the issuing authority. You must be
careful about what information is contained in an assertion as it may be stored
persistently at a remote system and used for malicious purposes. Once the assertion is
returned to the client he may share (knowingly or inadvertently) these assertions with
any number of other unknown subjects or systems even if the issuer takes care to
properly sign and encrypt this information while in transit. Additionally, SAML by its
nature exposes behavioral information by requiring the client to request assertions from
an authority. A client can be identified as part of a select security domain by the fact that
it regularly requests assertions from a specific authority. For example, if a specific
machine often makes requests from the XYZ Company Authentication Authority,
someone can observe this and surmise that that client has a relationship with XYZ
Company.

Risks arise in SAML from the request-response protocol inherent in the specification.
First, a denial-of-service attack is possible because the request and response for
assertions can be computationally expensive. Another risk is that of replay at the SOAP

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

level for the purpose of DOS. The attacker would not need to understand the content of
the replayed information so even XML Encryption does not prevent this attack.

Thus SAML can allow a security domain to trust another domain’s assertion. This allows
each security domain to maintain their own authorities and underlying systems (e.g.
PKI, authentication mechanisms, policy enforcement, etc.) and through SAML
assertions pass information between security domains for the purposes of
authentication, attributes, and policy decisions. If the receiving security domain trusts
the source of the assertion, it can then act on requests made by the client without
requesting further (and possibly duplicate) information from the client. This can be used
to introduce single sign-on, access control and many other functions in web services.
SAML addresses the need where inter-domain functions are necessary for
authentication, key exchange/verification, and especially in the case of B2B Web
Services which are the focus of many if not most Web Services today.

Another important specification is the WS-Security specification which is currently an
interim draft specification published by OASIS (available at http://www.oasis-
open.org/committees/wss/documents/WSS-Core-08-1212-merged.pdf).27 WS-Security
is an extension of SOAP protocols to provide message integrity and single message
authentication. It provides a facility for associating security tokens with messages. WS-
Security builds on the XML Encryption and XML Signature definitions so that a token or
several tokens can be sent with an XML message in order to prove a message source
is as claimed and/or that the message has not been altered. These tokens are
deliberately defined in a generic manner so that they can support many technologies. A
security token is defined as a collection of one or more claims. Some examples of a
what a security token could be are: a Username, a certified X.509 key, or a Kerberos
ticket.

WS-Security defines a message header block which can be included in XML messages
in order to convey security information. WS-Security defines how this information (i.e. a
token) can be used to implement message privacy, authentication of the author/sender,
and message integrity.

The WS-Security specification also defines a method to encode binary security tokens,
a framework for XML-based tokens, and how to include opaque encryption keys in a
message.

WS-Security is designed to be open and supports multiple security models, multiple
security token formats, multiple signature formats, multiple encryption formats, and
multiple trust domains. It supports but is not limited to the use of PKI (X.509), Kerberos,
and SSL technologies. An implementation can use the three mechanisms, namely:
token sending, message integrity, and message confidentiality together or selectively on
a given message. It is important to note that WS-Security provides message-level
security and not just transport level security.

Conclusions

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Although Web Services initially lacked the necessary tools to implement secure
applications, significant progress is now being made. The three major standards bodies,
W3C, OASIS, and the IETF have been working together and in mostly complementary
fashion to propose new specifications that will ultimately become standards in order to
give Web Services developers the tools that they need to build and implement secure
services. The standards bodies have taken a practical approach by developing drafts
and specifications that are comprised of open, flexible, and extensible
recommendations which in turn support current technologies that are widely deployed.
In this way rather than forcing Web Services developers to reinvent the wheel they allow
them to use parts of the security infrastructure that are currently in place.

As the current draft standards become ratified and more widely implemented, Web
Services developers will be able to use standards such as SASL, XML Encryption, XML
Signature, XML Key Management, SAML, and WS-Security along with currently
implemented technologies such as SSL, PKI, Kerberos, firewalls, and content filters to
implement defense in depth at the application, system, and network levels. Functionality
including encryption,digital signature, single sign-on across security domains, and key
management are now available to Web Services developers- at least in the draft forms
of standards. Hopefully all of these specifications and proposed standards will find quick
acceptance so that Web Services applications can be deployed securely while living up
to their potential in the near future.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

References

1. Anonymous. URL: http://www.perfectxml.com/WebSvc1.asp (21 Jan 2003)
2. Anonymous. URL:

http://searchwebservices.techtarget.com/sDefinition/0,,sid26_gci214295,00.html
(21 Jan 2003)

3. Box, Ehnebuske, Kakivaya et al. “Simple Object Access Protocol (SOAP) 1.1”.
W3C Note. May 8, 2000. URL: http://www.w3.org/TR/SOAP/ (21 Jan 2003)

4. Aaron Skonnard. “SOAP: The Simple Object Access Protocol”. Microsoft Internet
Developer. January 2000. URL:
http://www.microsoft.com/mind/0100/soap/soap.asp (21 Jan 2003)

5. Evans, Sara and Dowling, Olwyn. “Is SSL enough security for first-generation
Web services?”. July 18 2002. URL:
http://www.webservices.org/index.php/article/articleview/529/1/24/ (21 Jan 2003)

6. ibid
7. Anonymous author. “RPC without borders”. Phrack 58 download. December 28,

2001. URL: http://www.phrack.com/show.php?p=58&a=9 (21 Jan 2003)
8. Fontana, John. “Securing Web Services”. Network World. September 23, 2002.

URL: http://www.nwfusion.com/buzz/2002/websec.html (21 Jan 2003)
9. Meyers, J. “Simple Authentication and Security Layer (SASL)”. RFC2222.

October 1997. URL : http://www.ietf.org/rfc/rfc2222.txt?number=2222 (21 Jan
2003)

10. Anonymous. “SIMPLE AUTHENTICATION AND SECURITY LAYER (SASL)
MECHANISMS”. August 17, 2001 URL: http://www.iana.org/assignments/sasl-
mechanisms (21 Jan 2003)

11. Imamura, Dillaway, and Simon. “XML Encryption Syntax and Processing”. W3C
Recommendation. 10 December 2002. URL: http://www.w3.org/TR/xmlenc-core/
(21 Jan 2003)

12. ibid, Section 2.1
13. ibid, Section 2.1.1
14. ibid, Section 2.1.2
15. ibid, Section 2.1.3
16. ibid, Section 2.1.4
17. ibid, Section 2.1.5
18. Bartel, Boyer, Fox, LaMacchia, Simon. “XML-Signature Syntax and Processing”.

W3C Recommendation. February 12 2002. URL:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/ (21 Jan 2003)
19. Boyer, John “Canonical XML Version 1.0”. W3C Recommendation. March 15,

2001. URL: http://www.w3.org/TR/xml-c14n (21 Jan 2003)
20. Ford, Hallam-Baker, Fox, Dillaway, Brian LaMacchia, Epstein, Lapp. “XML Key

Management Specification (XKMS)”. W3C Note. March 30 2001. URL:
http://www.w3.org/TR/xkms/ (21 Jan 2003)

21. Hallam-Baker, Phillip editor. “XML Key Management Specification (XKMS 2.0)”.
W3C Working Draft. March 18 , 2002. URL: http://www.w3.org/TR/xkms2/ (21
Jan 2003)

22. ibid
23. ibid
24. Hallam-Baker, Phillip and Maler, Eve. “Assertions and Protocol for the OASIS

Security Assertion Markup Language (SAML)”. Committee Specification 1. May
31,2002. URL:
 http://www.oasis-open.org/committees/security/docs/cs-sstc-core-01.pdf (21 Jan

2003)
25. Mishra, Prateek editor. “Bindings and Profiles for the OASIS Security Assertion

Markup Language (SAML)”. cs-sstc-bindings-00. April 19, 2002.
URL: http://www.oasis-open.org/committees/security/docs/cs-sstc-bindings-00.pdf
(21 Jan 2003)
26. Moses, Mishra, Hodges, et al. “Security and Privacy Considerations for the

OASIS Security Assertion Markup Language (SAML)”. Committee Specification
1. May 31, 2002. URL:
http://www.oasis-open.org/committees/security/docs/cs-sstc-sec-consider-01.pdf

(21 Jan 2003)
27. Hallam-Baker, Kaler, Monzillo, Nadalin et al. “Web Services Security Core

Specification”. Working Draft 08. December 12, 2002. URL:
http://www.oasis-open.org/committees/wss/documents/WSS-Core-08-1212-

merged.pdf (21 Jan 2003)

 Other References for Web Services security study

Anonymous. “Web Services Zone”. IBM .URL:
 http://www-106.ibm.com/developerworks/webservices/ (21 Jan 2003)

Anonymous. “xwss.org – XML Web Services Security Forum”. URL:
http://www.xwss.org/index.jsp (21 Jan 2003)

Anonymous. “Web Services Security: RSA Security Whitepaper”. URL:
http://www.rsasecurity.com/products/cleartrust/whitepapers/WSS_WP_0802.pdf (21
Jan 2003)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Karpinski, Richard. “Reactivity Ships ‘Firewall’ for Web Services”. Internet Week.
July 22, 2002. URL: http://www.internetweek.com/webDev/INW20020722S0010 (21
Jan 2003)

Doyle, Peter. “Security and Web Services”. SC Online Magazine. October 2002.
URL: http://www.scmagazine.com/scmagazine/sc-online/2002/article/46/article.html
(21 Jan 2003)

Fontanna, John. “Top Web Services Worry: Security”. Network World. January 21,
2002. URL: http://www.nwfusion.com/news/2002/0121webservices.html (21 Jan
2003)

