
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Common Ground - A Discussion of Standards in
Network Security and How to Extend Them into the

Network Assessment Arena
Timothy Politowicz

Practical Version 1.4b, Option 1

Abstract
Effective communication between existing security tools, products and groups has been
hampered by a lack of common ground. Standards, whether de facto standards or
formally developed, can facilitate collaboration, simplify integration of heterogeneous
systems, and foster revolutionary solutions in new fields. A discussion is provided of
several entrenched and emerging standardization efforts in the security field. Based on
some of these technologies, a data model suitable for use in the network assessment arena
is proposed.

Introduction
In order to secure a network an understanding of the threats against it and the
vulnerabilities is has is required. With this understanding, appropriate defense and
response tactics can be used. Typical defensive tactics include the use of packet filtering
mechanisms such as firewalls and router access control lists. The defensive strategy may
also include preventative measures. Periodic network assessments, used to uncover and
correct vulnerabilities, are a common intrusion prevention technique.

This paper discusses areas of “common ground”, or standardization, that have improved
or have the potential to improve communication between various network security
components and groups. The paper is divided into three main sections. The first section
addresses efforts related to vulnerabilities. Overviews of the Common Vulnerabilities
and Exposures (CVE) list, ICAT metabase and the Open Vulnerability Assessment
Language are provided. The second section addresses standardization efforts in the
defense and response area. Two closely related IETF drafts, the Intrusion Detection
Message Exchange Format (IDMEF) and Incident Object Description and Exchange
Format (IODEF) are covered. The third section then takes a closer look at two
commonly used tools, SARA™ and Nessus, used for network assessments and how some
of the standardization efforts covered in this paper can be used to improve network
assessment tools and processes. Finally, a summary is provided along with an
acknowledgements and references section.

Vulnerabilities
The Merriam-Webster dictionary defines a vulnerability as something that makes one
“open to attack or damage” [16]. In the context of computer networks most people, and
this paper, identify vulnerabilities as specific flaws in software packages, operating
systems, networking hardware and other related components that leave a system open to
attack or damage.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

There are many companies and groups that discover, organize and provide vulnerability
information to the public. Some of these groups include [11]:

• CERT® Coordination Center
• ISS X-Force
• Security Focus/Bugtraq/NT Bugtraq

Until recently, most of the information obtained by these groups was provided by the
vendors and open disclosure by members of the computer community. Not surprisingly,
some companies are now openly paying hackers for vulnerability information that has
been previously “unknown” so that they can bolster their portfolio and use it as a
competitive advantage by providing clients with advanced warning [13]. Regardless of
the methods of obtaining the information, each group has its own format for representing
and reporting vulnerability information.

To a certain extent, end-users of vulnerability information, don’t care where the data
comes from, they just want to use it to improve the security of their networks. Until a
standard representation of this information was available, users were left with a few
choices including: use only one source, manually slog through multiple sources and try to
correlate items, or try to write scripts. Fortunately, work has been done by the MITRE
Corporation and Computer Security Resource Center (CSRC) of the National Institute of
Standards and Technology (NIST) to help address issues related to standardizing
vulnerability related information.

Common Vulnerabilities and Exposures (CVE)
In 1998/1999, work was performed for the MITRE Corporation which resulted in the
introduction of the concept of a Common Vulnerabilities Enumeration (CVE) [14]. As
the work progressed, the “E” in CVE was changed to represent Exposures. CVE is a
publicly available dictionary of standardized names that can be used to cross reference
data from different vulnerability databases and security tools [1]. The security
community, including vendors and open source projects, has embraced CVE. Over 70
organizations participate in the effort, and there are well over 100 “CVE-compatible”
products and services on the market and freely available [4].

CVE-2002-0055

SMTP service in Microsoft Windows 2000, Windows
XP Professional, and Exchange 2000 to cause a
denial of service via a command with a malformed
data transfer (BDAT) request.

Reference: BUGTRAQ:20020306 Vulnerability
Details for MS02-012
Reference: MS:MS02-012
Reference: XF:ms-smtp-data-transfer-dos(8307)
Reference: BID:4204

Figure 1 Example CVE Entry [5]

Show in Figure 1 is a typical CVE entry.
The ID for the entry is shown at the top,
as “CVE-2002-0055”. The ID or name
for an entry is based on the year and a
counter (reset annually) when the entry
was given “candidate” status. For
example, the entry shown in Figure 1
was the 55th entry added in 2002. The
only other parts contained in a CVE
entry include a brief description, in this
case related to an SMTP denial-of-
service attack, and a list of related
references.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

By itself, CVE does not help end-users solve security. It does not include technical
details, patch, classification, or impact information [8]. For example, it is not designed to
allow users to search based on operating system or vendor, it is simply meant to help
identify specific vulnerabilities that have been reported from various sources. One may
wonder how a standardized set of names can help solve problems if it isn’t designed to
answer the questions that need to be asked? The answer is that other work has been done
which builds on CVE to provide this functionality.

ICAT
There are many vulnerability databases and security tools, and CVE provides a common
link between these resources. In order to have a common interface to, and not just a link
between, the information provided by these vulnerability databases, ICAT was developed
by a group at the National Institute for Standards and Technology (NIST). ICAT is a
metabase, not a database. Metadata is data that describes data. The ICAT metabase
contains information that describes the data contained in other databases, specifically
vulnerability databases.

For people interested in accessing
computer vulnerability information, ICAT
provides a normalized, searchable index of
the sources previously listed in the
Vulnerabilities section, in addition to the
following data sources [10]:

• Neohapsis
• Microsoft

The metabase is freely available for
download in several formats, and is also
accessible through the ICAT website.
Figure 2 shows the ICAT entry for CVE-
2002-0055 provided by the ICAT website.
Note that ICAT adds a great deal of
additional information based on the CVE
references. This includes patch
information if available.

The download section of the website also
includes a documentation file discussing
the schema. An examination of the
schema will provide the interested reader
with an exact understanding of the
different dimensions which can used to search for vulnerability information. Searches
can be based on, but are not limited to, keyword, source of information, vulnerability type
(e.g. buffer overflow or race condition), vulnerable software, loss type (e.g.
confidentiality or availability), and operating system [12].

Figure 2 Example ICAT Entry [9]

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

In summary, ICAT provides a single interface to many vulnerability information sources
that can be used to search based on various attributes. The entries provide classification,
severity/impact statements, patch details, and other descriptive information. With the
combination of CVE and ICAT, vulnerabilities can be openly discussed and understood
with little or no confusion. One issue not addressed by these technologies is a
standardized way to test for the existence vulnerabilities.

Open Vulnerability Assessment Language (OVAL)
The Open Vulnerability Assessment Language (OVAL) is another product of the MITRE
Corporation announced in late 2002. An OVAL query specifies how to test for, and can
potentially be used to test for, the existence of vulnerabilities based on system
configuration information. Just as CVE has standardized the names of vulnerabilities,
OVAL standardizes how to test for them. It is meant to help avoid some of the issues
that arise when using assessment tools, such as conflicting results due to the use of
different testing techniques for the same vulnerability [18].

For a given vulnerability with a CVE number, an OVAL query is written along with a
synopsis and submitted by anyone who cares to join the “OVAL Community Forum”.
The synopsis section should include information related to two main items: the
vulnerable software and the vulnerable configuration(s). The query itself should use the
OVAL schema and be written using the Structured Query Language (SQL) with
comments. For those that aren’t aware, SQL is the language of choice for interacting
with relational databases (a discussion of SQL details is outside the scope of this paper),
and a schema defines the organization of the data contained in a database. The OVAL
schema is currently designed to support the following operating systems [17]:

• Microsoft Windows 2000/NT
• Sun Solaris 7 and 8
• Red Hat Linux

Below are the contents of the “Query Synopsis” section for OVAL query number 30.

Vulnerable Software
• Windows 2000
• Affected smtpsvc.dll versions
• Patch Q313450_W2K_SP3_X86_EN.exe not installed
• Windows 2000 Service Pack 3 (or later) not installed

Vulnerable Configuration
• SMTP service enabled

The reader should have a basic understanding of what the OVAL query will be testing for
from the synopsis section, and then be able to use the details provided in the SQL query
to carry out the test.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

The SQL for OVAL30
is shown [19]. The
reader will notice that
the test details for
elements listed in the
synopsis are included in
the various “EXISTS”
clauses. For example,
the first EXISTS clause
test for the appropriate
version of Windows.

As can be seen from the
example, the queries are
typically formatted and
commented such that
the vulnerable software
and vulnerable
configuration sections
are easily
distinguishable. In
addition, the items
listed in the synopsis
are usually included in
the relevant comment
sections and expanded
upon. By combining
this common format
with knowledge of SQL
(a fairly common
language), many people
are able to easily and
unambiguously
understand how testing
of the given
vulnerability should be
performed.

It should be noted that
the use of SQL to
describe testing procedures does not limit users of OVAL to SQL based solutions. An
obvious application of OVAL is to directly apply the queries to an existing asset
management database system, but OVAL is meant to solve a more fundamental problem.
It helps to solve the same problem CVE and ICAT address, effective communication in
the security field through standardization. The last section of this paper will return to the

SELECT 'CVE-2002-0055' FROM Placeholder WHERE EXISTS
-- ### BEGIN VULNERABLE SOFTWARE EXISTS
--
-- Windows 2000
-- This query is for Windows 2000 Professional, Server, and Advanced Server.

(SELECT 'Windows 2000 Installed' FROM Win2K_RegistryKeys WHERE
RegistryKey = 'HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows
NT\CurrentVersion' AND
EntryName = 'CurrentVersion' AND
EntryValue = '5.0')

AND EXISTS
-- Affected smtpsvc.dll versions

-- Build the FilePath for smtpsvc.dll by retrieving the value of
-- SystemRoot from the registry, and concatenating it with
-- '\System32\inetsrv\smtpsvc.dll' (using || concat. operator):

(SELECT 'File %windir%\System32\inetsrv\smtpsvc.dll version <
6.0.2600.28' FROM Win2K_FileAttributes WHERE
FilePath = (SELECT EntryValue || '\System32\inetsrv\smtpsvc.dll' FROM
Win2K_RegistryKeys WHERE
RegistryKey =
'HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows
NT\CurrentVersion' AND
EntryName = 'SystemRoot') AND

-- To avoid lexical (string) comparisons of file versions, the
-- version string (e.g. '6.0.2600.28') is broken into its
-- components, stored as numbers.

(Version1 < 6 OR
(Version1 = 6 AND Version2 = 0 AND
(Version3 < 2600 OR
(Version3 = 2600 AND Version4 < 28)))))

AND NOT EXISTS
-- Patch Q313450_W2K_SP3_X86_EN.exe installed

(SELECT 'Patch Q313450' FROM Win2K_RegistryKeys WHERE
RegistryKey = 'HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows
NT\CurrentVersion\Hotfix\Q313450' AND
EntryName = 'Installed' AND
EntryValue = '1')

AND NOT EXISTS
-- Windows 2000 Service Pack 3 (or later) installed

(SELECT 'Windows 2000 SP3 Installed' FROM Win2K_RegistryKeys WHERE
RegistryKey = 'HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows
NT\CurrentVersion' AND
EntryName = 'CSDVersion' AND
EntryValue >= 'Service Pack 3')

-- ### END VULNERABLE SOFTWARE EXISTS
--
-- ### BEGIN VULNERABLE CONFIGURATION
AND EXISTS
-- SMTP service enabled

(SELECT 'SMTP Enabled' FROM Win2K_RegistryKeys WHERE
RegistryKey =
'HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\SMTP' AND
EntryName = 'Start' AND
EntryValue != '4')

-- ### END VULNERABLE CONFIGURATION
;
[19]
[

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

issue of testing for vulnerabilities and show how providing one more point of common
ground can help create more effective and interoperable tools, processes and products.

Defense and Response
Threats, such as crackers, use vulnerabilities to compromise systems. In order to
minimize the chances of being compromised defensive tactics must be used, and when a
compromise does occur there must be a response. This section highlights two efforts
currently in progress in Internet Engineering Task Force (IETF) working groups. Both of
these efforts are currently in draft status. They are also both based on the Extensible
Markup Language (XML). A brief introduction to XML will be provided.

The first working group is the Intrusion Detection Exchange Format or “idwg” and the
work being discussed in this paper is the “Intrusion Detection Message Exchange Format
Intrusion Detection Message Exchange Format Data Model and Extensible Markup
Language (XML) Document Type Definition.” The second working group is the
Extended Incident Handling or “inch” working group. The work related to the “Incident
Object Description and Exchange Format Data Model and Extensible Markup Language
(XML) Document Type Definition” will be discussed.

Extensible Markup Language (XML)
The Extensible Markup Language (XML) is a subset of an ISO standardized language
called Standard Generalized Markup Language (SGML), which is much larger and more
complex. XML is technically a metalanguage, or a language to describe languages [23].

XML should not be confused with HTML. The Hypertext Markup Language (HTML) is
an application of SGML. It uses a predefined set of tags such as “<title>” and “</title>”
to mark the content that falls between them as a title. For example, given the HTML
snippet “<title>Common Ground</title>” a web browser knows that “Common Ground”
is the title of this document, and can use it accordingly, because the title tags are part of
the HTML specification. When XML is applied, tags are also used, but one of the major
differences is that the set of tags available is defined by the user and can represent
anything, not just document structure and formatting elements.

An application of XML is shown below that could be used to describe someone’s home.

<RESIDENCE>
<GARAGE>1 car</GARAGE>
<ROOMS>
 <KITCHEN floor=”first”></KITCHEN>

<BEDROOM floor=”first”>
<FURNITURE>bed</FURNITURE>
<FURNITURE>nightstand</FURNITURE>

</BEDROOM>
</ROOMS>

</RESIDENCE>

For the purposes of this paper, you need to understand a few basic aspects of XML. The
first has been mentioned; the ability to define the set of tags (also referred to as elements
and at times classes) will be. Also, it is important to understand that an XML element

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

can have attributes. In the above example, the KITCHEN element and BEDROOM
element have an attribute called “floor” both with the same value “first”. The XML
schema could be changed to have a generic element called ROOM with two attributes
“floor” and “type” where the value for “type” could be “kitchen” or “bedroom”. The last
aspect of XML that will be useful is an understanding of what a Document Type
Definition (DTD) is.

A DTD formally defines what elements will exist, what attributes those elements will
have and how elements can be combined. The DTD for the example shown would
indicate that a RESIDENCE can consist of a GARAGE element and a ROOMS element,
a BEDROOM element has a floor attribute and can have zero or more FURNITURE
elements … and so on. A DTD is not required. Without a DTD, an XML document can
still be used and processed, but it cannot be formally verified against a given data model.
In those cases where the DTD is not available, users who want to understand the
underlying data model are left to inspection methods such as source code inspection or
reverse engineering the data model from sample XML documents. When working with
sample XML documents, the derived data model may be incomplete since attributes and
elements may be optional and the sample dataset may not provide proper coverage.

Intrusion Detection Message Exchange Format (IDMEF)
The Intrusion Detection Message Exchange Format (IDMEF) Data Model currently in
draft format uses XML and a DTD to provide a data model to be used by automated
intrusion detection systems for reporting alerts. It is hoped a standard format:

will enable interoperability among commercial, open source, and research
systems, allowing users to mix-and-match the [security products] according to
their strong and weak points to obtain an optimal implementation [6].

Figure 3 shows a typical network configuration. There are multiple segments protected
by filters on the access router, the firewall, and an intrusion detection system. The
intrusion detection system will typically consist of network and/or host probes and a
management console.

Figure 3 Sample Network Configuration

Figure 4 shows an overview of the data model presented in the current IMDEF draft.
There are currently five message types defined (shown directly connected to “IDMEF-
Message”). In the sample network configuration shown the “IDS Probes” and any host
based probes would send these messages to the IDS/Security management system(s). If

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

firewall and router vendors choose to implement IDMEF functionality, those network
elements could also issue these messages, allowing an IDMEF aware management
system to correlate information from a variety of security devices from various vendors.

Figure 4 IDMEF Data Model Overview [6]

The Heartbeat message is used by an analyzer to communicate its current status.
Referring to the IDMEF data model, there are four main elements associated with a

Heartbeat message: Analyzer, CreateTime,
AnalyzerTime, and AdditionalData. Many of
the elements in the data model are self-
explanatory. For example, the Analyzer
element is used to identify the source of the
Heartbeat message, and the CreateTime
indicates the time the message was created.
Note that not all elements are required and
some can be included multiple times. For
example, the AnalyzerTime element is
optional, and if included is limited to one
entry, while the AdditionalData element is an
example of an element that can be included
zero or more times. The AdditionalData
element is provided to permit the inclusion of
information not directly supported by the data
model. As certain added elements become
commonplace, they will be considered for
inclusion in the standard model. The details
of which elements are optional or can be

multiply included can be found in the draft, and will not be further discussed unless
necessary [6].

The IDMEF Alert message contains all of the elements of a Heartbeat message and adds
five more: DetectTime, Source, Target, Classification, and Assesment. The purpose of
the message is to relay all pertinent information related to what the analyzer considers an
“event”. Some of the core classes defined in the IDMEF standard are shown in Figure 4
under the Source and Target elements. The first of these core classes shown, the Node
class includes a free form text location value, zero or more Address entries, a name entry
and the category entry (which indicates one of 13 defined values such as “unknown”,
“DNS” or “Windows NT domain”) that has been used as the basis of the Node
information. The design of the Address class is fairly robust. It can be used to represent
a wide range of address types. Support for VLAN information is also built in. Some of
the addressing schemes supported include IPv4, IPv6, ATM, hardware (e.g. MAC), and
application (e.g. e-0mail addresses). Another high-level class used by the Source and
Target elements is the User class. This class is basically a container for UserId entries,
which contain username, ID-number and type (e.g NIS) information. The Process class
as expected describes processes being executed and includes such items as the name,
process ID, path and arguments [6].

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Like the Node and many other IDMEF classes, the Service class will prove to be very
useful for a variety of applications discussed later in this paper. The basic Service class
generically describes network services, where a network service is defined by a name, a
port, the combination of a name and port, or set of ports (an optional protocol can also be
specified). It has already been extended in the draft to include two sub-classes, the
SNMPService and WebService classes, to provide more focused information such as an
SNMP object identifier or a URL [6].

The two remaining high-level elements included in Alert messages are the Classification
and Assessment elements. The purpose of the Classification element is to allow the
manager who receives the Alert messages to be able to obtain additional information. To
accommodate this, a name, URL and the source of the name are included. The current
list of valid source values includes “unknown”, “vendor-specific”, and not surprisingly,
CVE. The Assessment class provides information related to the analyzer’s assessment of
the impact, action(s) taken, and confidence level in relation to the observed event [6].

 <IDMEF-Message version="1.0">
 <Alert ident="abc123456789">
 <Analyzer analyzerid="bc-sensor01">
 <Node category="dns">
 <name>sensor.example.com</name>
 </Node>
 </Analyzer>
 <CreateTime ntpstamp="0xbc71f4f5.0xef449129">
 2000-03-09T10:01:25.93464Z
 </CreateTime>
 <Source ident="a1a2" spoofed="yes">
 <Node ident="a1a2-1">
 <Address ident="a1a2-2" category="ipv4-addr">
 <address>192.0.2.200</address>
 </Address>
 </Node>
 </Source>
 <Target ident="b3b4">
 <Node>
 <Address ident="b3b4-1" category="ipv4-addr">
 <address>192.0.2.50</address>
 </Address>
 </Node>
 </Target>
 <Target ident="d7d8">
 <Node ident="d7d8-1">
 <location>Cabinet B10</location>
 <name>Cisco.router.b10</name>
 </Node>
 </Target>
 <Classification origin="cve">
 <name>CVE-1999-128</name>
 <url>http://www.cve.mitre.org/</url>
 </Classification>
 </Alert>
 </IDMEF-Message>

[6]

Below is an example based on one in the IDMEF draft. This shows what an Alert
message would look like when an analyzer detects a Ping-of-death attack (CVE-1999-
128) from IP address
192.0.2.200 targeting two
hosts, 192.0.2.50 and
Cisco.router.b10:

Referring back to figure 4,
three special messages, which
provide information about
other Alert messages, are
available for use. The
CorrelationAlert message
provides a mechanism for
grouping previous alerts
together by providing the
name/reason for grouping them
along with the list of alert
identifiers. The ToolAlert is
basically a special type of
CorrelationAlert where the
name is typically the name of a
specific tool and additional
“command” details can be
provided. The last message
type is the OverflowAlert.
This message type allows
analyzers to provide details of
the buffer overflow attacks,
such as the targeted program and overflow data [6].

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

To Summarize, the IDMEF data model provides a standardized mechanism for intrusion
detection devices to deliver alert and heartbeat information. The classes and relationships
that have been defined are well designed for their intended purpose and many of the core
classes are generic enough to be applied in other areas. In the next section, the reader
will see how the IDMEF work, even in draft format, has been leveraged to attempt to
improve organizational communication issues at the organizational level. A discussion of
how this work can be applied to network assessments will then be presented.

Incident Object Description and Exchange Format (IODEF)
Computer Security Incident Response Teams are established to perform functions
necessary to protect and secure critical assets for an organization [3]. The organization
can be, but is not limited to, a company, country, or geographic region. The Incident
Object Description and Exchange Format (IODEF) are currently in draft status, being
worked on by the INCH working group. The purpose of the work is to provide:

a format for Computer Security Incident
Response Teams (CSIRTs) to exchange
operational and statistical incident information
among themselves, their constituency, and
their collaborators. It can also provide the
basis for the development of interoperable
tools and procedures for incident reporting
[15].

By no coincidence, IODEF shares many similarities
with IDMEF. Compatibility with IDMEF is one of
the goals of the IODEF work. As previously
described, IDMEF messages contain information
from intrusion systems. Incident response teams, for
investigation and documentation purposes, use this
same information and can include it in an IODEF
document. In some cases, the core IDMEF classes
have been enhanced; these will be discussed as
needed [15].

Figure 5 provides an overview of the IODEF data
model. There are two classes currently defined:
IncidentAlert and Incident. The IncidentAlert class is
basically a wrapper for IDMEF messages. The
IDMEF messages generated by analyzers are
encapsulated as AdditionalData elements and
appropriate Authority and History information is
included.

Additional details have been shown for the Incident
class in Figure 5. Notice that the Attack class contains Source and Target elements. The

Figure 5 IODEF Data Model
Overview [15]

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

IODEF versions have two additional elements, “OS” and “Program”. The OS element
indicates the operating system. The Program element indicates the program used to
perform the attack when used with the Source class and represents the program being
attacked when used with the Target class. Both of these additional elements are optional
The other elements of the Attack class include a free form text description and three tim
based values indicating when the attack started, stopped

.
e

and was detected [15].

Information related to real world entity(ies) or people is specified via the Attacker and
Victim classes. These classes correspond to the Target and Source elements.
Information such as personal names, postal addresses and Internet registries (e.g. ARIN
or APNIC) can be encapsulated. The method(s) for determining this information is not
defined by IODEF and rests in the hands of the individual CSIRTs [15].

The Method class refers to the technique used to perform the attack. It is another
‘wrapper’ class, combining a description with an IDMEF Classification element. Recall
that IDMEF Classification elements are based on well-known vulnerabilities from
sources such as Bugtraq and CVE (vendor-specific entries can also be used) [15].

The Assessment class is modeled on the IDMEF format, but is semantically different.
The assessment contained in an IDMEF message is based on the viewpoint of the
analyzer sending the message; the assessment in an IODEF Incident message is based on
the CSIRT’s viewpoint.

The CSIRT, specified through the Authority element, which created the incident report
may wish to include information that is not supported by any of the classes discussed so
far. This information includes actions taken, significant events that occurred, exported
data from monitoring tools, or the results of forensics investigations. The Record,
History, and AdditionalData elements are used to detail this supportive information.

An interesting part of the IODEF design that differentiates it from IDMEF is support for
“restriction” tagging. Supported by all elements, the restriction attribute allows the
creator of the IODEF description to indicate that data is sensitive and should be handled
accordingly. This is an optional attribute. The current values defined for this attribute
are default, public, internal, and restricted. The purpose of IODEF is to facilitate
communication between organizations. Restriction tagging should encourage more
organizations to share their information since it allows them to easily sanitize
information.

Prevention through Network Assessments
Most of the discussion to this point has focused on standardization efforts with only
minor references made to the actual use of those standards in the real world. The OVAL
section covered a language used to specify exactly how to test for vulnerabilities. It was
mentioned how OVAL entries could be used along with detailed information about
network resources to determine if the exhibit a known vulnerability or exposure. Some
may see this as a great alternative to actively probing systems with scanning tools, but it
is probably better to view OVAL as a complimentary technology since the configuration

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

information may be stale or incorrect. This section provides a detailed discussion of two
popular CVE enabled vulnerability scanners SARA™ and Nessus. A detailed discussion
of the tools’ capabilities, options and functionality will not be provided since there are
many excellent papers that address these aspects of the tools, and the documentation for
both is quite good and readily available. The main focus is on the XML reports and how
some of the standardization technologies already discussed are being used, and how
others could be applied to improve their usefulness of this class of tools.

Security Auditor’s Research Assistant (SARA™)
SARA™ is a free, modular vulnerability scanning tool based on the Security
Administrator’s Tool for Analyzing Networks (SATAN). It is designed to interface with
existing tools (e.g. nmap) rather than recreating them. The integration and reporting
capabilities provided by this tool have made it a popular assessment tool [22].

The “SARA Report Writer” generates well-
organized, useful reports in several formats. By
choosing the comma separated value (CSV)
report format, an XML based report is also
generated. Figure 6 shows an interpretation of
the data model based on an analysis of the
report writer scripts [21] and an examination of
a few sample reports (an official DTD could not
be found).

As far as I have been able to determine, only the
highest-level element, SARA_SCAN, and
HOST element (under DETAILS) make use of
XML attributes. The SARA_SCAN attributes
consist of an identifier, date, version, and attack
level. The HOST element has only one
attribute, IP_ADDRESS (shown in braces in the
figure).

With the exception of details that have been
omitted from the SCAN_INFO and
VULNERABILITY_SUMMARY elements, the figure shows all of the information that
is presented as output. A typical XML report contains one entry for the SCAN_INFO,
VULNERABILITY_SUMMARY, and DETAILS elements, with the DETAILS
containing many HOST entries. Depending on the results of the scan, there could be
multiple VULNERABILITY entries for each HOST entry.

Figure 6 SARA™ XML Output Overview

HOST entries contain a description section and potentially vulnerability entries. A
VULNERABILITY entry contains up to 6 types of elements. The SEVERITY element
provides a color value such as brown, yellow, red, grey or green. The SERVICE element
consists of only a name and port. The CLASS element contains a text description such as
“possible backdoor found” or “possible http cgi access found.” The DATA section

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

provides additional information such as a detailed description. The FALSE_POSITIVE
element is used to mark discovered information accordingly after the vulnerability has
been investigated.

Nessus
Nessus, like SARA™, is a modular
vulnerability scanning tool. For those
wondering what the name means, don’t worry
it’s not an acronym and doesn’t really have
any significance other than being the name of
one of the most popular free vulnerability
scanners.

At the time of writing, the latest stable release
of Nessus available is 2.0.1. There is a DTD
provided with the nesses source code. The
DTD version is 0.2 and comments indicate
that it was last modified 2000-11-21. This
version of Nessus provides two versions of
XML output, the standard version and the
“old” version. The DTD provided appears to
match the old style and one specifically for the
new version could not be found. Figure 7 is
based on an examination of reports generated using the “new” version of the XML report,
all further discussion will be based on this style.

Figure 7 Nessus XML Output Overview

The first two elements for a Nessus XML report, Info and Config, contain the same type
of information represented by the SARA SCAN_INFO element. The Plugins element
contains individual Plugin entries, each with a Nessus specific integer-based identifier.
The Plugin entries also specify information such as a name, version, family (e.g. CGI
abuses), CVE-ID, Bugtraq-ID, category, risk, and summary. Examples of the category
values include “attack”, “infos”, “denial”, “scanner” and “mixed” [2]. The risk elements
have values such as “Serious”, “High”, “Medium” and “Low” rather than the colors used
for SARA severity levels. The values for Plugin entries are established in the plugin
scripts.

New modules, or plugins, are continually added to Nessus to test for new vulnerabilities
and add other functionality. Many of these plugins are written in the Nessus Attack
Scripting Language (NASL). NASL plugins designed to test for a CVE vulnerability are
supposed to call the “script_cve_id()” function to enable all of CVE related functionality
provided by the tool (for example, in the reports) rather than simply putting the CVE-id
in the description. The “script_id()” function sets the internal Nessus identifier. The
following table shows a code snippet (some lines have been omitted or truncated to
conserve space) taken from the plugin that tests for CVE-2002-0055, the vulnerability
discussed in previous sections. Also shown is how the XML report presents this
information. For example, the “script_cve_id("CVE-2002-0055");” and

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

“script_bugtraq_id(4204);” lines in the plugin map to the “<cve_id>” and
“<bugtraq_id>” elements of the XML document respectively. With the current XML
design, the Plugin entries contain the CVE information and the plugin-id is used in other
elements to link back to the CVE information rather than directly inserting it. For
additional details on NASL and creating plugins, refer to reference [2].

Description Section of Nessus Plugin [7] Nessus XML Report Element
if(description)
{
 script_id(10885);
 script_cve_id("CVE-2002-0055");
 script_bugtraq_id(4204);
 script_version ("$Revision: 1.13 $");

 name["english"] = "MS SMTP DoS";
 script_name(english:name["english"]);

 desc["english"] = "
It is possible to make the remote SMTP
server fail
…
Solution :
http://www.microsoft.com/technet/security/b
ulletin/MS02-012.asp
Risk factor : Medium";

script_description(english:desc["english"])
;

 summary["english"] = "Checks if the remote
SMTP server can be restarted";

script_summary(english:summary["english"]);

 script_category(ACT_ATTACK);
 script_copyright(english:"This script is
Copyright (C) 2002 Renaud Deraison");
 family["english"] = "SMTP problems";
 script_require_ports("Services/smtp", 25);
}

<plugin id="10885">

<name>MS SMTP DoS</name>
<version>$Revision:
1.11$</version>
<family>SMTP problems</family>
<cve_id>CVE-2002-0055</cve_id>
<bugtraq_id>4204</bugtraq_id>
<category>attack</category>
<risk>Medium</risk>
<summary>Checks if the remote
SMTP server can be
restarted</summary>
<copyright>This script is Copyright
(C) 2002 Renaud
Deraison</copyright>

</plugin>

Referring back to Figure 7, the last portion of a Nessus XML report is the Results section.
The Result entries contain practically the same information provided by the Host entries
in a SARA™ report. For example, a Host element with two attributes, “name” and “ip”,
is used in Nessus rather than the SARA™ style Host element, with an IP_Address
attribute and a Host_Description sub-element with the name buried in it. Similarly,
SARA™ uses a list of Vulnerability entries for each Host element and Nessus uses a list
of Port entries (which typically contain the related vulnerability information) for each
Result (which are essentially per-host). Basically, both of these tools report the same
basic information, with some tool specific differences, in XML formats that share very
similar high-level structure. Unfortunately, trying to combine output from these tools
would require separate parsing tools to address the significant low-level differences. A
standard format for representing assessment information in XML would bring with it the
same types of benefits to the network assessment area that work like IDMEF and IODEF
hope to bring to the intrusion detection and incident handling areas.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Opportunity for Improvement
An overview has been provided of some standardization efforts that have had an impact,
such as CVE, and some that are still under development, such as IDMEF. It has been
shown how CVE is tied into two of the more popular free network vulnerability
assessment tools, and how these tools
present their results in XML format. In this
section, the discussion turns to how IDMEF
and IODEF could be applied to network
assessment tools and processes. A data
model is suggested (this model is merely a
suggestion meant to stimulate discussion of
this topic (there wasn’t enough time to start
a new IETF working group and churn out a
requirements document and a few 100+
page drafts to come up with a solid design).

Figure 8 shows the cursory design of the
suggested data model for representing
network assessment data. Two main
elements are provided, the ScanAlert and
ScanReport. This model is based on a
comparison of the latest versions of
SARA™ and Nessus XML reports, and the
latest IDMEF and IODEF drafts. As
previously described, IODEF reuses many
of the IDMEF elements either directly or by
sub-classing them to add functionality. The
two top-level elements in the IODEF
specification, Incident and IncidentAlert serve as models for the suggested ScanReport
and ScanAlert respectively.

Figure 8 Suggested XML Assessment Data

The ScanAlert is modeled on the IncidentAlert, but provides a different type of ‘service.’
The IODEF IncidentAlert is used to simply alert someone/something to the occurrence of
an incident and provide relevant information (such as raw IDMEF messages). The
ScanAlert would alert an intrusion detection management system or other
network/security management system that a scan is going to be performed. As part of
this alert, the scanner would provide ScanInformation and TargetInformation (detailed
below).

If implemented by a tool such as Nessus, the model provided by the ScanReport element
would either replace the current XML output format, or more likely be an alternative.
The ScanInformation section is meant to encapsulate information such as the tool that is
performing the scan, information about the network node(s) that are being used to launch
the scan, time information for documenting scan duration(s), and a general description. If
a common format such as the one suggested here were developed, the design of the
ScanInformation class would be the main area of new work since the core classes

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

provided by IDMEF and IODEF cover most of the required elements. The
TargetInformation element would be used to document the target of the scan and would
contain items such as address ranges, network names, and/or network domains. The
addition of the AttackResult element(s), differentiates the ScanReport from the
ScanAlert.

The AttackResult element is meant to take the place of SARA Details and Nessus
Results. It is closely tied to the IODEF Attack class, which in turn shares a great deal of
structure with IDMEF Alerts. By using the IDMEF/IODEF Target class, a standard
format for representing the ‘host’ specific information is achieved. This includes support
for the many different types of addresses and names defined in the IDMEF draft. By
using the IODEF version, it is also possible to accommodate the type of operating system
for a target, useful for tools make use of stack fingerprinting and other OS detection
techniques. The reuse of the Method and Assessment classes provides a uniform
specification of how the attack was performed and an evaluation of the result. If tightly
defined, this would help address the issue of different risk scales (e.g. color levels vs.
HIGH/LOW). Finally, the ever-popular AdditionalData element provides a catch-all to
accommodate items that have not been directly addressed by the data model.

So what does this buy us? First, as the user of these tools you would have a standards
based format that allows you to easily share information and combine it other datasets
from a variety of compliant tools and systems. If XML is chosen as an implementation it
is possible to immediately combine your assessment information with your intrusion
detection information (assuming it is IDMEF compliant). Local statistics, from the
intrusion alerts, could be used to perform focused scans of high-priority threats. The
ScanReport(s) will detail vulnerable systems and have the potential to be easily used for
automatic validation of perimeter defenses, by comparing AttackResults and Alerts since
both datasets are based on IDMEF. In addition, there may be reasons for sharing
scrubbed assessment information in a manner similar to the sharing of IDMEF messages
via IODEF in order to gather statistics, the suggested data format would simplify this
exchange of information. Finally, having a common interface or framework encourages
others to invest in new or improved products, services and approaches.

Summary
By providing areas of common ground, more effective communication is possible.
Various standardization efforts in the security area have been covered which have, or
have the potential to, improve communication between existing security tools, products
and groups. These include CVE, ICAT, OVAL, IDMEF, and IODEF. In addition an area
of potential improvement in the network assessment arena has been identified and a data
model based on the IDMEF/IODEF work proposed.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Acknowledgements
I would like to thank the following people who took a few minutes to respond to my
inquiries including:

• Robin Cover, OASIS/xml.org
• Renaud Deraison, nessus.org
• Dale Waldt, OASIS/xml.org

References
[1] “About CVE.” 18 June 2002. URL: http://www.cve.mitre.org/about/ (09 Mar. 2003).
[2] Arboi, Michel. “NASL2 reference manual.” 06 Feb. 2002. URL:

http://www.nessus.org/doc/nasl_doc/ (09 Mar. 2003).
[3] “Computer Security Incident Response Team (CSIRT) Frequently Asked Questions

(FAQ).” 02 July 2002. URL: http://www.cert.org/csirts/csirt_faq.html (09 Mar. 2003).
[4] “CVE-Compatible Products and Services.” 03 Mar. 2003. URL:

http://www.cve.mitre.org/compatible/ (09 Mar. 2003).
[5] “CVE (version 20020625).” 25 June 2002. URL:

http://www.cve.mitre.org/cve/downloads/full-cve.html (09 Mar. 2003).
[6] Curry, D. and Debar, H. “Intrusion Detection Message Exchange Format Data Model

and Extensible Markup Language (XML) Document Type Definition.” 30 Jan. 2003.
URL: http://www.ietf.org/internet-drafts/draft-ietf-idwg-idmef-xml-10.txt (09 Mar.
2003).

[7] Deraison, Renaud. "MS SMTP DoS.” Revision: 1.13.
URL: http://cvs.nessus.org/cgi-bin/cvsweb.cgi/~checkout~/nessus-
plugins/scripts/mssmtp_dos.nasl (09 Mar. 2003).

[8] “Frequently Asked Questions.” 21 Mar. 2002. URL:
http://www.cve.mitre.org/about/faq.html (09 Mar. 2003).

[9] “ICAT Metabase: A CVE Based Vulnerability Database.” 01 Apr. 2002. URL:
http://icat.nist.gov/icat.cfm?cvename=CVE-2002-0055 (09 Mar. 2003).

[10] “ICAT Metabase: A CVE Based Vulnerability Database.” 01 Apr. 2002. URL:
http://icat.nist.gov/icat.cfm (09 Mar. 2003).

[11] “ICAT Metabase Documentation.” URL: http://icat.nist.gov/icat_documentation.htm
(09 Mar. 2003).

[12] “ICAT Text File Download Documentation.” URL:
http://icat.nist.gov/icat_textfile_doc.htm (09 Mar. 2003).

[13] McAlearney, Shawna. “Vulnerable Commodity.” Feb. 2003. URL:
http://www.infosecuritymag.com/2003/feb/news.shtml#top (09 Mar. 2003).

[14] Mann, David E. and Christey, Steven M. “Towards a Common Enumeration of
Vulnerabilities.” 8 Jan.1999. URL: http://www.cve.mitre.org/docs/cerias.html (09 Mar.
2003).

[15] Meijer, J. J., Danyliw, R. and Demchenko, Y. “Incident Object Description and
Exchange Format Data Model and Extensible Markup Language (XML) Document
Type Definition.” Oct. 2002.
URL: http://www.ietf.org/internet-drafts/draft-ietf-inch-iodef-00.txt (09 Mar. 2003).

[16] “Merriam-Webster OnLine.” URL: http://www.webster.com/ (09 Mar. 2003).

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

[17] “Official OVAL Schema.” 04 Nov. 2002. URL: http://oval.mitre.org/oval/schema.html
(09 Mar. 2003).

[18] “Open Vulnerability Assessment Language (OVAL).” 04 Nov. 2002. URL:
http://oval.mitre.org/about (09 Mar. 2003).

[19] “OVAL30.” 05 Dec. 2002. URL:
http://oval.mitre.org/oval/review/queries/OVAL30.html (09 Mar. 2003).

[20] Regan, Keith. “Groups Develop Granular Security Info.” Feb. 2003. URL:
http://www.infosecuritymag.com/2003/feb/news.shtml#8 (09 Mar. 2003).

[21] SARA™ source code. sara_info_database_csv.pl and sara_report_svc.pl.
URL: http://www-arc.com/sara/downloads/sara-4.1.4b.tgz (09 Mar. 2003).

[22] “Security Auditors Research Assistant.” 15 Aug. 2002. URL http://www-arc.com/sara/
(09 Mar. 2003).

[23] “The XML FAQ.” v.3.01. 14 Jan. 2003. URL: http://www.ucc.ie:8080/cocoon/xmlfaq
(09 Mar. 2003).

