
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Let’s Slam SQL: The Slammer Worm and Lessons Learned
Brian Greif
GSEC v1.4b
Option 1

Abstract

One of the most frightening events dealt with by today’s network engineers and
administrators it the realization that there is a worm or virus on their network.
These infestations are some of the most frustrating, time consuming, and
expensive areas of technical support today.

In this paper, the basic history of the Internet worm will be covered, as well as
one specific worm attack in detail. The methods by which some of these worms
work will be also be explored. The use of certain tools that can be used in order
to safeguard networked systems will also be discussed. Finally, a brief overview
will be given, regarding some best-business practices in order to help
administrators deal with worm or virus attacks in a more efficient manner.

Discussion

Since the inception of this “network of networks”, the Internet has been an
“interesting” place to be. Although never truly thought of as a safe place, at one
time it was an open group of systems where, for the most part, everyone trusted
everyone else. In a system inhabited mostly by academics and geeks, the
majority of its users would have never thought to intentionally release any kind of
harmful code or program.

That all changed on November 2, 19881, when Robert Morris Jr. released his
worm into the wild. Mr. Morris was a graduate student in Computer Science
studying at Cornell University. He wrote a self-replicating, self-propagating
program (the worm), and sent it out to the Internet. Curiously, he chose to
release it from MIT rather than Cornell. The program exploited holes in the
sendmail and fingerd programs, as well as in rsh/rexec, and also exploited weak
passwords. The problem was that the program had a bug that made it consume
the infected computer system’s resources until it was unable to function normally.
This was more destructive and caused more damage than Mr. Morris had
anticipated. Eventually, Morris’ worm caused many computers connected to the
Internet to crash or hang.

The effected computers were attached to university, military and medical
research networks, among others, and when Mr. Morris noticed how fast his
program was spreading, he called upon a friend from Harvard to help him find a
way to stop the worm from causing more damage. They eventually sent out a
message to the Internet instructing programmers on how to kill the worm and

1 Kehoe

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

prevent re-infection, but unfortunately, the message did not get through until it
was too late. Many facilities had already taken their machines off-line, and in
addition, due to the traffic that the worm had created on the Internet, other
facilities had trouble receiving the message sent to help. By the time it was all
over, the Morris worm had cost an estimated 6,000 victims between $200.00 and
$53,000.00 in damages2. Mr. Morris was charged with and later convicted
(Morris being the first conviction) of violating the Computer Fraud and Abuse Act
(Title 18). This act criminalizes the act of misusing and/or causing damage to a
computer or system either physically or by the use of harmful code.

Since then, worms and viruses have been some of the biggest “spotlight hogs”
and buzz generators in regard to the Internet and network security. One of the
core differences between worms and viruses is that a virus generally infects files
on one local machine and requires human interaction to go from one machine to
another; a worm does not. For example, if one were to receive an infected
program as an email attachment, the payload would not be released until the
user ran the infected executable. A worm, on the other hand, is designed to be
self replicating3 and autonomous, and is usually coded in order to exploit holes in
commonly run daemons or services. A worm may also exploit poorly chosen
passwords.

Once a worm has exploited a programmatic hole, it proceeds to scan the network
for other machines offering the exploitable service. While a virus sometimes has
a destructive “payload” that may destroy data, a worm usually causes havoc
based on the amount of traffic it generates due to its scanning capabilities.

These destructive programs can sometimes move extremely fast. One such
worm that reared its ugly head in recent history was the Sapphire, or Slammer
worm.

A Little Bit of Background on Slammer

The Slammer worm was released on the Internet (apparently from the Asian
region) and started to infect computer systems at approximately 05:30 UTC on
Saturday, January 25th 2003. As it propagated itself across the Internet, it began
growing at an incredible rate, doubling in size every 8.5 seconds for the first
minute. Within 10 minutes it had already infected 90% of the vulnerable systems
on the Internet. These vulnerable systems consisted of machines running
Microsoft SQL Server or MSDE 2000 (Microsoft SQL Desktop Engine). By the
time the worm began to slow down, it had infected over 74,000 (probably
considerably more) distinctly addressed computers and systems. Slammer has
been classified as the fastest spreading worm in the history of the Internet. It has
also been spoken of as a true “Warhol” worm4. The name refers to Andy

2 Kehoe
3 Simenin
4 Weaver

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Warhol’s quote: “[i]n the future, everybody will have 15 minutes of fame”, and
infers that the worm had made a tremendously significant impact on the Internet
within 15 minutes. The fact that the worm did not need human intervention in
order to fulfill its programmatic duty is one reason for this. Another reason for the
speed of the worm’s movement is that it was a small worm containing a compact,
efficient scanner. The worm’s total size amounted to only 376 bytes, and with
the UDP headers the total payload was 404 bytes.

Fortunately, Slammer did not have a malicious payload. It did, however, cause
serious damage by making use of as much bandwidth as possible in order to
scan other systems. It also had the unfortunate effect of taking many database
servers out of commission.

The Inner Workings of Slammer

The Slammer worm, as previously stated, worked its way around the Internet
very quickly. Slammer was a well-crafted worm that took advantage of the fact
that the SQL exploit could be fit into 1 UDP packet with the size of 404 bytes.
This is a relatively small packet when compared to other previously seen
scanning worms. For example, Code Red’s payload was a full 4kb, and the
payload associated with the Nimda worm was a full 60kb.5 Noting this payload
size, it is obvious that the Slammer worm was built for speed. Slammer was also
faster than previous worms due to the methodology in which network probes
were initiated. Code Red spread itself by opening many threads, with each
thread opening its own connection sequence in order to scan more addresses.
The worm then had to take the time to wait for the TCP SYN/ACK to happen if
there was a response from the scanned IP address. Because of this, Code Red
could be considered latency limited.

By contrast, the Slammer worm is considered bandwidth limited. Slammer fit its
entire payload into one small packet that was sent to UDP port 1434 and did not
have to wait for a response. This is due to the fact that UDP is a connectionless
protocol and does not have to wait for a handshake sequence to be completed.
Due to the fact that Slammer did not have to wait for a response, it could send
out a large number of packets extremely quickly. The Cooperative Association
for Internet Data Analysis (CAIDA) reported that the largest single probe rate
observed during Slammer’s most active period on the Internet was 26,000 scans
per second, with an average Internet-wide probe rate of approximately 4,000
scans/second per worm during its initial phase of growth.6 Although it sounds
incredible, Slammer’s scanning rate peaked in under three minutes with an
aggregate count of an amazing 55 million scans per second. Ironically, the fact
that the worm was so fast, and sent out packets so efficiently, eventually began
to work against itself as the bandwidth available became smaller and smaller.

5 Moore
6 Moore

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Slammer propagated itself using a technique called random scanning. This
means that the worm picked random IP addresses to scan. Given enough time
on the Internet, it is assumed that it would eventually find all hosts that were
susceptible to the exploit. This method of scanning however, eventually helped
to slow down the worm’s rate of infection as it performed repeat scans of
previously scanned and infected hosts, as well as continuing to scan machines
and nodes that were unexploitable to begin with. The scanning portion of
Slammer also had some other interesting qualities. In order for a worm to use
the technique of random scanning, it must use a randon number generator. The
Psuedo Random Number Generator (PRNG) that was written into Slammer was
flawed, and “[would] or [would] not include entire /16 blocks of IP addresses in a
cycle.”7 This means that significant numbers of Internet IP addresses were not
scanned. Although this represents a problem in the PRNG and makes it harder
for the global Internet community to track all scanned and exploited addresses,
this flaw was probably helpful in reducing the total amount of damage incurred by
Slammer.

Timeline of Attack and Proliferation

The following graph illustrates the rate of speed with which Slammer took off
once it was released on the Internet. There was a transient failure in the
University of Washington Advanced Internet Lab (WAIL)’s data collection at the 2
minute and 40 second mark that is represented by white space.

7 Moore

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

This next chart shows the response to Slammer and the rate at which the worm’s
scanning and proliferation slowed down over the 12 hours immediately following
its release. The chart helps to illustrate the fact that while Slammer was
extremely fast and prolific, network administrators were able to begin taking care
of the problem quite quickly. Fortunately, many administrators were able to
quickly stop the scanning from continuing to enter their sites by filtering (blocking)
all traffic from UDP port 1434. This would have been harder to do if Slammer
had used a port that is used for critical, legitimate Internet traffic such as TCP
port 80 (WWW) or UDP port 53 (DNS).

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

The chart above graphically represents the geographic spread of Slammer in the
thirty minutes after it was released. All three above charts are taken from
http://www.caida.org/outreach/papers/2003/sapphire/sapphire.html, Moore et. al
(January 2003)

Although Slammer did not crash HTTP servers specifically, it created so much
traffic on so many different networks that when trying to access web servers,
they themselves seemed unreachable. If Slammer had been released on a
Monday instead of a Saturday, the costs of fixing the damage done would have
been considerably higher, if only because of the fact that so many companies
use the Internet to conduct their daily business. Unfortunately, many businesses
were impacted even though the attack happened on a weekend. Some of these
businesses were critical services such as health-information network databases,
as well as ATM and other financial databases.

Mitigating the Risk of the Slammer Worm on Your LAN

The best way to keep a network secure and safe from the damage caused by a
worm like Slammer is of course not to let it in at all. There are many ways to do
this, and include things like filtering TCP port 1433 and UDP port 1434 at the
perimeter and/or desktop firewall (as stated earlier), or running your database
application with as few permissions as possible8. Applying system and security
patches when feasible also makes good sense.

One reaction to hearing about all of these problems is to say “just don’t run SQL
Server.” An interesting observation was made however, when looking at some
of the companies that were impacted by the Slammer worm. Namely, how was
so much damage done to various networks and systems that were not running
Microsoft SQL Server? The one word answer is MSDE. The Microsoft SQL

8 Johnson

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

2000 Desktop Engine is installed with a large assortment of software packages
by default9. Some of these applications are financial management packages,
network management and discovery tools and other programs that seem quite
innocuous. If an administrator had installed any of these applications and his/her
systems were not patched, the chances of compromise were quite high.
Basically, administrators need to be aware of any database-connected
applications.

One surprising fact regarding the Slammer worm and the programs that it
exploited is that Microsoft had released a patch to fix this problem on October
16th, 200210. It is interesting to note that a patch that was made public more than
six months before Slammer became a reality was not more widely implemented.
Even Microsoft itself suffered from the Slammer worm exploiting and infecting
unpatched systems on its network.

Once Slammer has hit a LAN or computer system, the best course of action
would be to disconnect the infected computers, shut down the SQL processes,
and remove the worm from memory. This could be accomplished in a number of
ways. For users of Network Associates AVERT product, a program named
Stinger will clean the worm and shut down SQL processes on an infected server.
Trend Micro users can use the System Cleaner product from the Trend Micro
website11. One important thing to consider is that after the worm has been
cleaned from an infected systems memory, the Microsoft SQL patch must be
applied in order to keep the system free from re-infection.

Lessons Learned

It seems disturbing that all this damage and lost revenue occurred due to a small
program that exploited a flaw that had a previously released patch. As stated
earlier, even Microsoft succumbed to the effects of the Slammer worm. So what
are the already overworked LAN/WAN administrators, network security
professionals, and helpdesk personnel supposed to do regarding security
patches and updates, whether worm-based or otherwise? Part of the answer to
that question lies in proper preparation and planning. Although it is a clichéd
expression that “those who fail to plan, plan to fail”, this statement really does
ring true in the network security arena.

Planning for Disaster

The first part of having a good, solid plan for mitigating the risk associated with
security patches or worms and viruses in general is knowing what you have
running on your systems and network. If a worm that exploits a certain
vulnerability is released on the Internet, is there a process in place in order to

9 sqlsecurity.com
10 microsoft.com
11 zdnet.com

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

figure out whether or not the systems and networks under your care will be
affected? One needs to know what runs on his or her systems. Each system
needs to be fully documented as to what its main functions are. It is sometimes
an even bigger help if major, similar services can be consolidated by machine.
For example, if possible, all web services can be served from one or two
machines. This applies to Oracle or SQL databases as well. This works on the
premise that, for example, if one knows that all of the Apache based web
services are being offered from one or two machines, it is fairly easy to know
which machines you need to patch when the Apache group releases a bug fix.
Although this seems intuitive, I have witnessed seasoned administrators running
around in a panic with floppies in hand and trying to remember which servers
were running certain services. If a worm exploits a flaw in the sendmail program
but the system’s MTA is Postfix, why would someone even consider installing a
patch or fix on a production server? Know your network to the greatest extent
possible.

Tools That Are Helpful in Keeping Systems Patched and Up to Date

Assuming that the systems are now fully documented regarding running services,
how is one to know if a program is in need of an update? This used to be a
daunting task for the administrator, because it usually meant spending many
hours per week perusing hard to navigate vendor/program websites or Internet
mailing lists. Fortunately, over the past few years programs have begun to
appear designed to help system administrators manage security patches,
program updates and hot fixes. I will briefly discuss a few of them.

An administrator in charge of a Windows based network may be familiar with a
program called HFNetCheck. This program is written by Shavlik Technologies
and checks for the existence of service packs and hot-fixes for the NT/2000
operating system, SQL Server, IIS and Microsoft Internet explorer. The program
then helps the user obtain these patches. The HFNetCheck program consults an
online resource in order to check for program/system updates. In order to use
this program, the computer in question must be connected to the Internet.
Another tool is a program called the Microsoft Baseline Security Analyzer
(MBSA), which performs similar checks, but offers additional functionality12. The
Windows NT Resource Kit (NTRK), is also full of programs written to help an NT
administrator better manage his or her network and systems.

A Linux system administrator, on the other hand, may be aware of programs
such as Red Hat’s up2date or Debian's apt-get. Up2date enables system
registration, creation of system profiles, and configuration of the way that the
local machine interacts with the Red Hat network. After its configuration, it
provides the conduit to receive all of the latest operating system and program
updates, as well as security patches and bug fixes.13 Unlike HFNetcheck

12 Fonseca
13 Red Hat.com

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

however, up2date can be configured to automatically update any software the
administrator desires.

The apt-get system uses a similar methodology for updating programs. In order
to use this system, the administrator would type apt-get install and the program
name. The program looks for the most recent version of the package and a
network connection is opened, the package is downloaded from the correct
archive as specified in /etc/apt/sources.list, dependancies (if any) are resolved,
and it is installed. Whole systems and environments can be automatically
updated this way.

Do All Vendor Patches Need to Be Applied?

It is important to perform a risk-based analysis before installing a patch or a hot
fix. If a patch fixes a hole that can only be exploited from the keyboard of a local
server (since the only people who can possibly access that server are trusted,
solid employees), and has a history of forcing machines into a kernel panic, a risk
analysis might show that installing that patch is more dangerous than not
installing it at all.

If after a risk assessment it is decided that a patch must be installed, the
administrator needs to make a decision regarding how long to wait before a
patch can be installed. One possible scenario might be that a flaw is found in a
certain version of Windows NT and can be exploited through a script that is
installed by default in IIS 4.0. Your Windows NT based network is running IIS
4.0. The server administrator installed IIS with all of its default options. How
long should the administrator wait to install the patch? I have read many sad
stories about network and security administrators who installed zero-day patches
only to find that when the machine was rebooted (a common event during the
patching of a Windows machine), formerly operational services no longer
worked. Unfortunately, sometimes a patch may contain code that affects another
service on the same machine. Even reputable software companies have
released patches that corrupted system or kernel level files and prevented an
important server (aren’t they all important?) from restarting at all. These issues
are important to consider when thinking about mitigating the risk associated with
system component upgrades and hot-fixes.

While it is not always possible to have a complete test or staging environment in
order to test these bug fixes, it is always important to perform as much testing as
possible. If it is not possible to test a new patch on servers at all due to the lack
of available test machines, test the patch on a number of workstations that are
running on the network. Prepare and train a “tiger team” in advance so that if a
virus or worm problem arises, a plan will be in place to minimize and mitigate
damage. It is also important to monitor some of the many mailing lists available
over the Internet. These lists contain critical information regarding patches and
bug fixes. The recent MS03-007 patch for Windows 2000 servers running IIS 5.0

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

illustrates this point very well. The patch was released in order to fix vulnerability
in a Windows component that is used by WebDAV (a set of extensions to HTTP
defined in RFC 2518). Some unfortunate administrators found out that in many
circumstances, unless the OS was patched to Windows 2000 Service Pack level
3, their servers might not reboot. The same patch also negatively impacted
machines running Macromedia Cold Fusion MX. Microsoft corrected this
problem a few days later by releasing a “fixed” version of the same patch, but the
damage had already been done. Had these administrators held off installing this
patch and consulted the mailing lists for three or four days, they would have been
aware of these problems and been prepared to more effectively manage these
risks.

Conclusion

We will never be able to truly free ourselves from the risks of worms and viruses.
Unethical people will never stop trying to exploit our networks and systems.
However, by understanding the ways that they can harm our networks with their
code, we can put into place processes that hopefully will help make their impact
much less severe.

Although Slammer’s payload was not destructive, it did cause widespread
damage to financial, governmental and commercial networks. Even though
administrators will never be able to compete with the speed of such a worm,
through proper planning, they can be better prepared to mitigate the risk of such
an attack.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Bibliography/References
1. Keyhoe, Brendan P. “The Robert Morris Internet Worm.”Zen and the art of

the Internet. January 1992. URL:
http://www.swiss.ai.mit.edu/6805/articles/morris-worm.html (18 Mar. 2003)

2. Keyhoe, Brendan P. “The Robert Morris Internet Worm.”Zen and the art of
the Internet. January 1992. URL:
http://www.swiss.ai.mit.edu/6805/articles/morris-worm.html (18 Mar. 2003)

3. Simenin, VL. “Stopping New Generation of Internet Worms: Mission
Impossible?” 6 Mar 2001. URL:http://www.pcflank.com/art18.htm
(18 Mar. 2001)

4. Weaver, Nicholas C. “Warhol Worms: The Potential for Very Fast Internet
Plagues.” 13 Feb. 2002.
URL: http://www.cs.berkeley.edu/~nweaver/warhol.html (18 Mar. 2003)

5. Moore, David et al. “The Spread of the Sapphire/Slammer Worm.”
Jan. 2003. URL:http://www.cs.berkeley.edu/~nweaver/sapphire/
(19 Mar. 2003)

6. Moore, David et al. “The Spread of the Sapphire/Slammer Worm.”
Jan. 2003. URL:
http://www.caida.org/outreach/papers/2003/sapphire/sapphire.html
(20 Mar. 2003)

7. Moore, David et al. “The Spread of the Sapphire/Slammer Worm.” Jan.
2003. URL:
http://www.caida.org/outreach/papers/2003/sapphire/sapphire.html
(20 Mar. 2003)

8. Johnson, Rees. “Protecting Your Data and Your Microsoft SQL Server.” 2
Oct. 2002. URL:
http://www.entercept.com/whitepaper/sqlserver/SQLServerSecurity.pdf
(20 Mar. 2003)

9. Author Unknown. Document Date Unknown.
http://www.sqlsecurity.com/forum/applicationslistgridall.aspx
(20 Mar. 2003)

10. Author Unknown. “Elevation of Privilege in SQL Server Web Tasks
(Q316333).” Microsoft Security Bulletin MS02-061. 28 Feb. 2003 URL:
http://www.microsoft.com/technet/treeview/?url=/technet/security/bulletin/M
S02-061.asp (20 Mar. 2003)

11. Staff Writers, ZDNet. Cleaning up after Slammer. 28 Jan. 2003. URL:
http://www.zdnet.com.au/newstech/security/story/0,2000024985,20271548
,00.htm (20 Mar. 2003)

12. Fonseca, Brian. “Microsoft defends Baseline Security Analyzer tool.”
17 Apr. 2002.
URL:http://www.infoworld.com/article/02/04/17/020417hnmsbsa_1.html
(21 Mar. 2003)

13. Author Unknown. “Chapter 2. Red Hat Update Agent.” Red Hat Network
Basic: User Reference Guide 4.0. Jan. 2003 URL:
http://www.redhat.com/docs/manuals/RHNetwork/ref-guide/up2date.html
(21 Mar. 2003)

