
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Robert Solomon
GSEC Practical v.1.4b

In Search of Secure File Transfer Across the Internet

Abstract

Every day, organizations all over the world move valuable data across the
Internet. Files containing sensitive information must be sent across an insecure
channel to their destination – subject to interception along the way. The standard
TCP/IP utility, File Transfer Protocol (FTP) doesn't afford any significant level of
security. And although there are command extensions to the original FTP
specification that enable the integration of FTP with the highly secure SSL/TLS
standard, FTP still possesses a dual-port/dual-session architecture which
reduces the potential for secure firewall configuration. Secure FTP, a subset of
the SSH (Secure Shell) protocol, provides FTP-style file transfer across a single
encrypted session. This paper discusses the advantages of using SFTP over
other methods of file transfer, and compares the installation, costs, and features
of three versions of Secure Shell server on the Windows 2000 platform.

Friendly-neighborhood FTP.

The Internet has become the hub of global communication, and a core set of
simple, TCP/IP-based utilities serves the crucial inter-platform objective of
performing standard data operations. These include: "http" which provides
platform-independent text presentation and data navigation; "smtp" which
provides asynchronous message/file delivery; "telnet" which offers a shell
interface for network-connected nodes; and "ftp" which provides platform-
independent file transfer capabilities. When the Internet was first conceived, the
primary consideration in the design of these utilities was access across diverse
platforms as echoed in the original FTP specifications in RFC 959:

The objectives of FTP are 1) to promote sharing of files, 2) to encourage indirect
or implicit use of remote computers, 3) to shield a user from variations in file
storage systems among hosts, and 4) to transfer data reliably and efficiently [1].

These objectives are effectively accomplished using the simple-to-use File
Transfer Protocol. FTP clients are native to every operating system in graphical
user interface (GUI) and command-line versions. Programmers and script-
writers are able to automate file transfers with ease. Windows and Unix servers
can easily exchange files with minimal effort. Operating systems of every flavor
come with an easily configurable FTP server and client.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 2

The FTP service offers a simple method of file storage and retrieval: connect via
TCP/IP, login, download, disconnect. There are no requirements for domain
membership (as is the case for typical NetBIOS file transfers in Windows domain,
trusted networks). Files are available from any internet-connected computer
(assuming the FTP server possesses a publicly-accessible IP address). Using
anonymous FTP, there is not even a requirement for a pre-configured username
and password. This is especially useful for companies who post software or
product documentation for free distribution. In the same way that web pages
provide 24x7 access to information, FTP servers also provide always-available
service. This brings us to our problem from a security perspective.

The two main drawbacks of FTP.

Number One: Weak Password Security
All FTP communications are sent in clear text. That means that if I log into my
company's FTP server with my domain password, then I am broadcasting that
password in plain sight across the Internet. A simple packet capture can yield
the key to my company's sensitive data and other resources, limited only by the
privileges granted to the stolen password. (This is an excellent illustration of the
importance of "least privilege" and "defense-in-depth" [2]. "Least Privilege"
suggests that I should set up user accounts exclusively for FTP (and perhaps
other insecure, internet zone services) that are denied access to resources in the
trusted network. That way, a cracked or intercepted password would have some
access to files in the ftp-accessible directories, but no access beyond.
"Defense-in Depth" suggests that I use multiple layers of defense. So for
example, in addition to using special, internet-zone passwords to protect my
FTP-accessible folders, I should also use file system access control lists; host-
based packet filtering; and either read-only or write-only FTP sites).

Number Two: Perimeter Defense Compromises
FTP utilizes at least two TCP ports on each machine per data transfer. The first
port (TCP port 21) sets up the “control channel” to establish an authenticated
session and an interface for subsequent commands. The replies to these
commands (e.g., directory listings; transferred files) are sent via the “data
channel”, typically port 20. The mechanism for establishing the data channel
occurs in two modes: active and passive. In Active mode, following the initiation
of the control channel session, the FTP server connects from port 20 to a random
port on the remote client machine (by default, the client port initially connecting to
server port 21 + 1). For this to work, the client-side firewall must permit incoming
traffic to all ports above port 1024: a substantial perimeter security compromise.
(Some implementations of the FTP server and client offer the ability to specify a
range of so-called random ports, which in turn gives tighter control over firewall
thru-traffic access control). This scenario is advantageous to the FTP Server
security administrator. In this case only inbound port 21 is required, although
outbound access to all ports above 1024 is also required. Note that these port

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 3

rules are only required for the IP address of the FTP server. However for the
client side security administrator, Active mode is simply too insecure. It would
require opening the entire, client-side network (to accommodate every ftp client
running on every machine) to all traffic above port 1024.

In the other transfer mode, Passive mode, the client initiates the data channel
session from it's own random port (by default, the client port initially connecting to
server port 21 + 1) to a random port on the server (usually port >1024) allocated
and communicated by the FTP server using the PORT command in response to
the client issuing the PASV command [3,4]. This alternative is more secure for
the client-side firewall, since it doesn't require the firewall to allow any inbound
TCP/IP traffic originating from the Internet. Unfortunately however, it does require
the client's ability to initiate connections from a random port to a random port – a
very open, and unacceptable firewall configuration if the firewall administrator is
trying to lock down outgoing traffic (for example, to protect against outgoing
transmissions originated from a Trojan, backdoor, or packet sniffer installed on
the internal network). Even worse, it requires the server-side firewall to allow
incoming connections to all ports above 1024: the same substantial perimeter
security comprise, this time faced by the FTP server network.

Locking Down FTP.

With the explosive growth of worldwide Internet traffic and commerce, security
has become a major concern. Whereas "back in the old days, we trusted our
neighbors and left our doors unlocked", we no longer know who our neighbors
are, and we know that some of them are primarily interested in causing mayhem
in our private networks for fun or profit. Hence, the core network services (mail,
web, shell, file transfer) all have more secure counterparts, with varying degrees
of public acceptance.

In an effort to secure FTP, a series of RFC's and file transfer alternatives were
introduced in the late 1990's. In their "FTP Security Extensions" (RFC 2228),
Horowitz and Lunt describe additional FTP commands that allow for standard
FTP sessions to proceed over an encrypted channel. [5]. Currently, the most
noteworthy implementation of this standard is FTPS or FTP over SSL (Secure
Socket Layers) and its most recent manifestation, TLS [6]. While this
implementation offers strong encryption using available algorithms such as AES,
3DES and Blowfish [7], it still suffers from the feature of FTP in which two TCP
ports are required. FTPS implementations generally require that both the FTPS
server and client both reside on public IP addresses (no NAT'ed addresses).
With the additional port negotiation complexities of FTP over SSL, the ability to
create fault-tolerant, fail-over network configurations, utilize network address
translation, and tighten firewall security becomes significantly more challenging.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 4

In situations where standard FTP servers are required for their universal
accessibility and administrative simplicity, there are published guidelines to help
system administrators and programmers configure systems to minimize
vulnerability (e.g. read-only and write-only anonymous FTP; consideration of
system resource access control; firewall configuration to protect against FTP
Bounce attacks) and write code which minimizes these vulnerabilities [8,9,10].

New Technologies Built on Secure Foundations: Secure Shell and Secure
FTP.

SFTP (secure file transfer protocol), a feature of SSH (Secure Shell), provides a
solution to the two-port problem. Whereas FTPS calls for the setup of a secure
channel (using SSL/TLS) within the context of FTP’s dual-channel, multi-session
architecture, SFTP performs file transfer within the context of SSH’s single
channel architecture. SFTP has an interface and commands that closely
resemble those available in standard FTP. SSH creates this secure channel
through an exchange of keys or certificates. The SSH client contacts the SSH
server which responds by sending the client its host public key. The client can
use this response to decide whether to trust the server in several ways. First, the
client can compare the host address/key combination with the client's own stored
key database. When the client has previously connected to this server, and if the
key is not what the client encountered previously, a warning is generated. The
user must then decide whether the key has been regenerated at the server since
last connection, or if the SSH server host is being spoofed by a would-be
attacker. Second, the client can verify the hostname against a certificate (if this
is the authentication mechanism in use). Third, the client can perform a reverse
resolution (IP to DNS) to cross check and assure that the two match up. Fourth
and last, the client can decline a connection if the server is running a previous
version of SSH, or is not prepared to use a compatible encryption method.

Assuming that the client has validated the server's authenticity and both are able
to negotiate a compatible set of encryption, authentication, and other session
parameters, a secure session is established. Essentially, this Secure Shell
session functions as an encrypted tunnel through which shell commands and
other file and data transactions can be conducted [11].

The SFTP server is a subsystem of SSH. SFTP clients (such as Putty for
Windows, and Unix native SFTP clients) initiate the SSH session and connect to
a directory on the SSH/SFTP server for the sending or receiving of files.
Standard FTP commands such as "cd" (change directory); "ls" (list directory),
"get" (receive file), "put" (send file), and "quit" (end the session) are all supported
in SFTP. This apparent similarity makes it easy for those familiar with command-
line FTP clients. (For those requiring a GUI interface, there are several listed
below in Appendix A).

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 5

Tatu Ylonen of the University of Finland created SSH/SFTP in 1995. The open
source version of SFTP (a sub-protocol of SSH) was created in 2000 by Markus
Friedl [12]. Since 1999 when SSH was first released with OpenBSD 2.6, SSH
(and later, SFTP) has become a standard utility across the Unix/Linux landscape.
Cisco routers and PIX firewalls utilize IOS-based SSH servers for secure
configuration over the Internet. Windows 2000/XP/.Net all provide native telnet,
FTP, and HTTP services, reflecting the adoption by Microsoft of TCP/IP as a
central architectural feature. However, the GUI-oriented Windows platform still
does not provide native SSH/SFTP support. The remainder of this paper
discusses the selection, installation, features, and maintenance of SSH/SFTP
server applications for the Windows platform.

Choosing a Secure File Transfer Protocol Server.

If you have decided that your organization requires a secure procedure for
transferring sensitive data over the Internet – including account passwords and
confidential files, you must now consider which software package best meets
your needs. If you are simply tightening up your existing security and you are
currently using a password-restricted FTP site, your needs may be somewhat
different than if you require the rock-solid, cutting-edge security of a financial,
medical, or military organization. In these situations, you must consider the
objectives and resources available for the project. Ultimately, you will be
considering costs (relating to purchase, implementation, and maintenance);
features (simplicity versus complexity, required commands for accomplishing
tasks); and security (does one package offer a higher level than another?). In
deciding which version to implement, this writer recommends setting up a test
lab, installing the versions under consideration (all versions mentioned are
available as evaluations), and testing operation in your particular environment.

The following discussion focuses mainly on OpenSSH/Cygwin on Windows 2000.
Subsequent brief comparisons of WinSSHD and SSH Communications
(SSH.com) along with GUI screenshots round out the picture of what different
versions may offer.

OpenSSH - Costs
SFTP servers range in cost from free (but potentially labor-intensive), open
source (under the GNU public license) versions (including all OpenSSH/Cygwin
versions), to modestly-priced (approximately $100 per server), minimum-
functionality versions (WinSSHD.com, Foxitsoft.com), to high-priced ($650-
$800), fully featured versions (SSH.com, F-Secure.com). This price range leads
many to believe that the free versions cost the least. However, implementation
costs for the free, open source versions are easy to underestimate and can be
quite significant if you attempt a full Cygwin install, compile incompatible
versions, or are not comfortable with the Unix shell environment. Moreover,
OpenSSH configuration occurs through editing the sshd_config file (in other

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 6

words, you would be well advised to begin your OpenSSH evaluation by
reviewing the man pages for "sshd_config"[13]). Other manual configuration
tasks for the OpenSSH version include 1) configuring valid paths and files for
client key-based and host-based authentication, and 2) manually editing the
passwd and group files to accept/deny individual users. Note that while the full
Cygwin install generates the passwd file from the existing local or domain user
database, subsequent changes to the Windows user account database do not
automatically update the "passwd" and "group". A utility is available with Cygwin
(mkpasswd) that can easily make these changes from the command line.
However, if accounts are frequently added and removed from the account
database (and this may be local, NT4 domain, or active directory), then the
redundant task of updating the SSHD passwd file could be cumbersome. One
final note regarding the costs of implementing the "free", OpenSSH package: all
versions of OpenSSH do not run on all versions of Cygwin. In this writer's initial
trials including minimal and full Cygwin installs, numerous hours were spent
pursuing a viable combination of packages and versions. Although there is
copious documentation on the Internet regarding installation steps for SSHD on
Cygwin, all renditions may not be comprehensive. For example, following many
of the Internet references for OpenSSH/Cygwin installation sources generally
resulted in a reliably performing SSH server, but SFTP usually would not work.
At other times, it became clear (from personal experience and exhaustive web
searches) that certain versions of OpenSSH or OpenSSL (the complementary
encryption package) were simply buggy. In the midst of this writer's odyssey to
find a reliable procedure for installing SFTP server over Cygwin on Windows
2000, this writer discovered a free Windows executable package which copies
the essential files, makes a few choice registry edits and environmental variable
changes, and offers straightforward and accurate documentation on completing
the manual (mkpasswd) changes to the passwd file. Once this writer removed
traces of the previous Cygwin installations, this version of the
Cygwin/OpenSSH/SFTP-Server package was functioning in 15 minutes [14].

OpenSSH - Features
The primary benefit of using an OpenSSH SFTP server is its ubiquity: SSH
servers abound in the Unix world, and client software, as well as performance
expectation, is geared to that fact. OpenSSH possesses all the standard
features of SSH security specifically and Unix authentication in general.
However, depending on your method of installing SSH and Cygwin, you may not
have all these options available. (Testing every authentication option and
documenting the necessary Cygwin “.dll” file required is beyond the scope of this
paper.) Suffice it to say, OpenSSH on Cygwin in any type of install will be able to
handle key generation and exchange, since this is the essential feature of SSH.
Features such as host-based (considered insecure when used exclusively due to
IP-spoofing vulnerabilities) and public key authentication require the creation of
specialized files (“hosts.equiv” for host-based authentication, and
“authorized_keys” for public key authentication) in order to function. (See next
section for server-side debug output of: 1) a keyboard-interactive, password

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 7

authenticated session; and 2) an RSA public key authenticated session. In both
cases, a PuTTY/PSFTP client connected to an OpenSSH server). Features such
as Kerberos authentication require system wide configuration changes that are
likely very difficult or impossible to implement on a Cygwin-based Windows NT
installation. Finally, other features such as user and group level access lists;
compression; designated ciphers; hash algorithms (MAC); logging levels/paths;
TCP/IP addressing and port details; and port-forwarding can all be configured in
the sshd_config file [13]. Note that most (not all) of these features characterize
the Windows SSH server versions as well. Some Windows versions offer
additional features. And all Windows versions offer a more "user-friendly (i.e.
GUI) interface.

OpenSSH - Security
Although all versions have their specific vulnerabilities (and they always will),
patches and new versions are always being created to fix these vulnerabilities.
OpenSSH is no exception. Both Open Source and Proprietary software
proponents have their arguments as to why one is more secure than the other.
The Open Source camp will argue that there is an international community of
seasoned and dedicated programmers testing and reviewing open source
software all the time. When a vulnerability is detected, a patch may be posted
and distributed within hours – as opposed to commercial software companies
who may tend to address a problem if it makes financial sense in terms of "costs
of developing the patch" versus "costs of lost business due to damaged
consumer confidence". The proponents of Proprietary software are likely to point
to the additional security offered by keeping the software code secret and
protected. They will argue that public access to open source code clearly gives
hackers all the material necessary to examine every line for errors (such as
unvalidated data fields which could be used for buffer overflow attacks) and a lot
of opportunity to discover and test potential exploits. In a casual online review of
various, published SSH vulnerabilities (especially at www.cert.org: search for
SSH + vulnerability), there seems to be a relatively equally prevalence of
vulnerabilities in open source (OpenSSH, BSD) versions and proprietary (SSH
Communications, F-Secure) versions. In general, however, version 2 of the SSH
protocol is considered secure, while version 1 is considered much less secure.
In summary, it is recommended that SSH version 2 be used; ideally with ciphers
such as 3DES, Blowfish, and AES256, rather than DES (which is not considered
secure); using RSA generated keys rather than DSA; and staying current with
patches and strong password policies. Configuration options such as disabling
root login and using privilege separation (child SSH processes run under the
client user account privilege rather than the account which the SSH service is
running under (typically with system or root privileges) are also good practices to
consider when implementing an SSH server.

Description of PuTTY/PSFTP to OpenSSH Server Sessions.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 8

Case 1: Password Authentication

In this session, a connection was made from a PSFTP client (see Appendix B for
PuTTY client configuration screen shots) to an OpenSSH server (on Windows
2000 with Cygwin, minimal install) using PuTTY default settings.

On line 1, the server is started in debug mode (-d) which enables verbose
logging to the console:

1. F:\Program Files\OpenSSH\usr\sbin>SSHd –d

Lines 2 – 11 are pre-connection. The server displays its configured operating
parameters. Items such as listening address, TCP port, and host key types are
easily configurable though the sshd_config file:

2. debug1: SSHd version OpenSSH_3.5p1
3. debug1: read PEM private key done: type RSA
4. debug1: private host key: #0 type 1 RSA
5. debug1: read PEM private key done: type DSA
6. debug1: private host key: #1 type 2 DSA
7. debug1: Bind to port 22 on 0.0.0.0.
8. Server listening on 0.0.0.0 port 22.
9. debug1: Server will not fork when running in debugging mode.
10. Connection from 192.168.0.250 port 4533
11. debug1: Client protocol version 2.0; client software version PuTTY-

Release-0.53b
12. debug1: no match: PuTTY-Release-0.53b
13. debug1: Enabling compatibility mode for protocol 2.0
14. debug1: Local version string SSH-2.0-OpenSSH_3.5p1
15. debug1: list_hostkey_types: SSH-rsa,SSH-dss

Line 16 initiates the key exchange process. On line 18, the client sends an
encryption parameter request to the server, in this case to use the AES256
cipher and SHA hash (MAC) algorithm. The key exchange completes on line 33:

16. debug1: SSH2_MSG_KEXINIT sent
17. debug1: SSH2_MSG_KEXINIT received
18. debug1: kex: client->server aes256-cbc hmac-sha1 none
19. debug1: kex: server->client aes256-cbc hmac-sha1 none
20. debug1: SSH2_MSG_KEX_DH_GEX_REQUEST_OLD received
21. debug1: SSH2_MSG_KEX_DH_GEX_GROUP sent
22. debug1: dh_gen_key: priv key bits set: 254/512
23. debug1: bits set: 1531/3191
24. debug1: expecting SSH2_MSG_KEX_DH_GEX_INIT
25. debug1: bits set: 1531/3191
26. debug1: SSH2_MSG_KEX_DH_GEX_REPLY sent

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 9

27. debug1: kex_derive_keys
28. debug1: newkeys: mode 1
29. debug1: SSH2_MSG_NEWKEYS sent
30. debug1: waiting for SSH2_MSG_NEWKEYS
31. debug1: newkeys: mode 0
32. debug1: SSH2_MSG_NEWKEYS received
33. debug1: KEX done

On line 34, the client sends an authentication method request to the server. The
first request appears to be for "no authentication". The next attempt is keyboard
interactive. This method allows for Smart Card, RSA SecurID authentication and
other methods. In some configurations of SSH, passwords are sent during
keyboard-interactive. In this session, "password" authentication (on line 44) is
requested separately:

34. debug1: userauth-request for user rs service SSH-connection method
none

35. debug1: attempt 0 failures 0
36. debug1: userauth_banner: sent
37. Failed none for rs from 192.168.0.250 port 4533 SSH2
38. debug1: userauth-request for user rs service SSH-connection method

keyboard-interactive
39. debug1: attempt 1 failures 1
40. debug1: keyboard-interactive devs
41. debug1: auth2_challenge: user=rs devs=
42. debug1: kbdint_alloc: devices ''
43. Failed keyboard-interactive for rs from 192.168.0.250 port 4533 SSH2
44. debug1: userauth-request for user rs service SSH-connection method

password
45. debug1: attempt 2 failures 2
46. Accepted password for rs from 192.168.0.250 port 4533 SSH2
47. debug1: Entering interactive session for SSH2.
48. debug1: fd 4 setting O_NONBLOCK
49. debug1: fd 8 setting O_NONBLOCK
50. debug1: server_init_dispatch_20
51. debug1: server_input_channel_open: ctype session rchan 256 win 16384

max 16384
52. debug1: input_session_request
53. debug1: channel 0: new [server-session]
54. debug1: session_new: init
55. debug1: session_new: session 0
56. debug1: session_open: channel 0
57. debug1: session_open: session 0: link with channel 0
58. debug1: server_input_channel_open: confirm session
59. debug1: server_input_channel_req: channel 0 request subsystem reply 1
60. debug1: session_by_channel: session 0 channel 0

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 10

61. debug1: session_input_channel_req: session 0 req subsystem

As this connection was initiated completely from the PuTTY SFTP client
(PSFTP), an SFTP session is automatically created following successful SSH
authentication:

62. subsystem request for sftp
63. debug1: subsystem: exec() /usr/sbin/sftp-server

Case 2: RSA Public Key Authentication

The main benefits of public key authentication include completely automated
connections, no passwords to lose or remember, complex strings that are harder
to crack with a brute force attack. Vulnerabilities include the ability of an
unauthorized user to log in if they gain access to the client machine. Also, it is
imperative that the private/public key pair are kept secure.

Again, the server is executed in debug mode. (In general, the server starts as a
service). There are a few noteworthy differences in this session. PSFTP uses
the PuTTY GUI interface to set connection parameters which are saved with an
identifying session name. (See Appendix B for PuTTY client configuration
screen shots). The PSFTP connection is made to that session name. In this
session, compression was enabled (see line 29), keyboard-interactive was
disabled, and public key authentication was enabled (key exchange on lines 39 –
56). The saved PuTTY session also allows one to configure the username for
full automation. Leaving that field blank – i.e. requiring the user to enter the
username -- would offer a slight measure of protection against console-based
intrusions from the client machine. PuTTY is bundled with a utility called
puttygen (analogous to OpenSSH's "keygen") which allows the user to generate
RSA or DSA keys with variable bits. (RSA is generally seen as a more secure
choice). When the private/public key pair are generated, the public key output is
displayed and that content is used to create the "authorized_keys" file in the
user's home directory on the SSH server (in the "%userprofile%\.ssh"
subdirectory):

1. F:\Program Files\OpenSSH\usr\sbin>SSHd -d
2. debug1: SSHd version OpenSSH_3.5p1
3. debug1: read PEM private key done: type RSA
4. debug1: private host key: #0 type 1 RSA
5. debug1: read PEM private key done: type DSA
6. debug1: private host key: #1 type 2 DSA
7. debug1: Bind to port 22 on 0.0.0.0.
8. Server listening on 0.0.0.0 port 22.
9. debug1: Server will not fork when running in debugging mode.
10. Connection from 192.168.0.250 port 4570

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 11

11. debug1: Client protocol version 2.0; client software version PuTTY-
Release-0.53b

12. debug1: no match: PuTTY-Release-0.53b
13. debug1: Enabling compatibility mode for protocol 2.0
14. debug1: Local version string SSH-2.0-OpenSSH_3.5p1
15. debug1: list_hostkey_types: SSH-rsa,SSH-dss
16. debug1: SSH2_MSG_KEXINIT sent
17. debug1: SSH2_MSG_KEXINIT received
18. debug1: kex: client->server aes256-cbc hmac-sha1 zlib
19. debug1: kex: server->client aes256-cbc hmac-sha1 zlib
20. debug1: SSH2_MSG_KEX_DH_GEX_REQUEST_OLD received
21. debug1: SSH2_MSG_KEX_DH_GEX_GROUP sent
22. debug1: dh_gen_key: priv key bits set: 252/512
23. debug1: bits set: 1601/3191
24. debug1: expecting SSH2_MSG_KEX_DH_GEX_INIT
25. debug1: bits set: 1587/3191
26. debug1: SSH2_MSG_KEX_DH_GEX_REPLY sent
27. debug1: kex_derive_keys
28. debug1: newkeys: mode 1
29. debug1: Enabling compression at level 6.
30. debug1: SSH2_MSG_NEWKEYS sent
31. debug1: waiting for SSH2_MSG_NEWKEYS
32. debug1: newkeys: mode 0
33. debug1: SSH2_MSG_NEWKEYS received
34. debug1: KEX done
35. debug1: userauth-request for user rs service SSH-connection method

none
36. debug1: attempt 0 failures 0
37. debug1: userauth_banner: sent
38. Failed none for rs from 192.168.0.250 port 4570 SSH2
39. debug1: userauth-request for user rs service SSH-connection method

publickey
40. debug1: attempt 1 failures 1
41. debug1: test whether pkalg/pkblob are acceptable
42. debug1: temporarily_use_uid: 1001/513 (e=1001/513)
43. debug1: trying public key file /bin/rs/.SSH/authorized_keys
44. debug1: matching key found: file /bin/rs/.SSH/authorized_keys, line 1
45. Found matching RSA key: 69:f1:6a:29:f2:ae:79:e9:9c:cb:0f:f0:fa:8d:e6:51
46. debug1: restore_uid: (unprivileged)
47. Postponed publickey for rs from 192.168.0.250 port 4570 SSH2
48. debug1: userauth-request for user rs service SSH-connection method

publickey
49. debug1: attempt 2 failures 1
50. debug1: temporarily_use_uid: 1001/513 (e=1001/513)
51. debug1: trying public key file /bin/rs/.SSH/authorized_keys
52. debug1: matching key found: file /bin/rs/.SSH/authorized_keys, line 1

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 12

53. Found matching RSA key: 69:f1:6a:29:f2:ae:79:e9:9c:cb:0f:f0:fa:8d:e6:51
54. debug1: restore_uid: (unprivileged)
55. debug1: SSH_rsa_verify: signature correct
56. Accepted publickey for rs from 192.168.0.250 port 4570 SSH2
57. debug1: Entering interactive session for SSH2.
58. debug1: fd 4 setting O_NONBLOCK
59. debug1: fd 8 setting O_NONBLOCK
60. debug1: server_init_dispatch_20
61. debug1: server_input_channel_open: ctype session rchan 256 win 16384

max 16384
62. debug1: input_session_request
63. debug1: channel 0: new [server-session]
64. debug1: session_new: init
65. debug1: session_new: session 0
66. debug1: session_open: channel 0
67. debug1: session_open: session 0: link with channel 0
68. debug1: server_input_channel_open: confirm session
69. debug1: server_input_channel_req: channel 0 request subsystem reply 1
70. debug1: session_by_channel: session 0 channel 0
71. debug1: session_input_channel_req: session 0 req subsystem
72. subsystem request for sftp

debug1: subsystem: exec() /usr/sbin/sftp-server

WinSSHD and SSH Communications – Feature Comparison

In researching and testing the OpenSSH/Cygwin, Bitvise (WinSSHD), and SSH
Communications SSH servers, a clear grouping emerged of command-line
versus GUI configuration. All three integrate with Windows NT (and later). Most
features are shared across all three packages (although highlighting the
differences is one of the goals of this paper). Securely configuring and
administering these SSH servers seems to be a significant factor that would
prevent many Windows systems administrators from working with the less
accessible OpenSSH version.

In the remaining discussion, selected screen shots from Bitvise and SSH
Communications are grouped based on the SSH elements they configure. Note
that the lack of a feature on a corresponding page doesn't mean that the feature
is absent in that application. It may simply mean that they are grouped
differently. Where relevant, comparisons are made with the configuration of
OpenSSH elements.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 13

Network Configuration Options

At first glance, it should already be apparent that SSH Communications
(SSH.com) offers many more configuration options than Bitvise WinSSHD. (Of
course, it is important to select an application based on the features required
rather than the mere presence of more features). In these two pages, it is shown
that both applications feature simple configuration of TCP/IP settings. For
example, a multi-homed machine can be configured to listen only on the internal
address. SSH.com and OpenSSH offer reverse DNS lookups for additional

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 14

security. Although a workstation connecting to an SSH server is unlikely to
possess a PTR record, this feature could be useful in a highly restricted host-
based authentication scenario to reduce the likelihood of an IP Spoofing attack.
(In such an attack, an unauthorized machine crafts an IP header that possesses
an allowed source IP address. However, unless the would-be intruder is also
able to change the reverse DNS (PTR) record on the server(s) which hosts that
IP address block, such a connection would be rejected (assuming the reverse
DNS feature was enabled)).

The "re-key interval" is another important feature (on Bitvise above and on
SSH.com 2 screen shots below). If a would-be intruder is sniffing packets
passing between an SSH client and server, it is possible that a session key could
be captured and used for a man-in-the-middle, session-hijacking attack. The re-
key interval generates new keys between client and server at the configured
interval to prevent the likelihood of such an attack. OpenSSH also offers key
generation interval configuration.

Finally, both applications permit the configuration of variable logging levels. Here
is a significant advantage of the Windows-based SSH servers over OpenSSH:
OpenSSH, native to Unix, looks for a local syslog service. There are syslog
servers for Windows, but this is an additional set of installations, items to
integrate, and logs to check (your SSH syslog and your NT event viewer). All
this adds to the application’s Total Cost of Ownership (TCO), which makes the
OpenSSH option not so "free". Recall that in a secure environment, "Prevention
is Ideal, but Detection is a Must!" [2].

Encryption and MAC Algorithms

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 15

Both servers possess the ability to configure which encryption and message-
hashing algorithms (Message Authentication Code) are used. (Incidentally, the
Windows-based SSH servers are exclusively SSH2, proven significantly more
secure than SSH1. OpenSSH supports both SSH versions, and supports all
standard ciphers). SSH.com supports a wider range of encryption algorithms,
including the relatively insecure DES algorithm) for backward compatibility.
WinSSHD does not support DES (which is probably just as well).

Upon installation, both servers create randomness files from which host-keys are
generated. SSH.com then creates a 2048-bit DSA host key (the bit length, key
type, and other options can be manually configured. WinSSHD creates a 1024-
bit DSA host key, but gives no options for configuring bit-length or key-type. In
case of a security breach, the key pair can be manually regenerated. The
OpenSSH package also offers fully configurable key generation commands.

SSH.com does not offer any compression options (for added performance over
slow connections), while WinSSHD offers optional zlib compression.
Compression is also a configurable option in the OpenSSH package.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 16

Logon Settings

Login settings are another critical security feature. Configuring a "maximum
number of login retries before disconnecting" discourages brute force attacks.
The Windows-based SSH servers make this setting easy to configure.
OpenSSH does not include this setting in the sshd_config file. This parameter
would normally be configured at the os level in a Unix system. However, when
attempting to connect to OpenSSH via PuTTY, the session disconnected after 2
retries. When connecting via the SSH.com client, the session disconnected after

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 17

3 tries (7 tries the first attempt, 3 thereafter). Also, the OpenSSH version of the
SSH client disconnected after 3 tries. Not too shabby for a default.

All three versions allow easy configuration of a banner message which displays
upon successful login. In some areas, such a message is a legal requirement for
subsequent prosecution of an illegal trespass.

Host-Based Authentication

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 18

All three versions allow host-based authentication. In SSH2, this type of
authentication is in addition to the primary authentication method (such as
password or public key). Thus, even though by itself, such authentication is quite
vulnerable to IP Spoofing attacks, when combined with other methods, it creates
a stronger authentication process. In OpenSSH configuration, host-based
authentication requires an additional file, /etc/hosts.equiv.

Public Key Authentication

All three SSH servers allow the use of public key authentication. Of the three,
WinSSHD allows the simplest way of configuring this. Simply deposit the client's
public key (must be in SSH2 format, either DSA or RSA) in a secure location on
the server and import it using the GUI interface. (Note that it is very important to

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 19

use a secure method to initially move the public key from the client machine to
the server. A password-authenticated SSH/SFTP session can provide this).
Each key is assigned to a specific user account that the key is checked against
when that user logs in. The SSH.com server requires the manual creation of an
authorization file that is stored in the client user's home directory. OpenSSH
uses the same procedure. When logging on with PuTTY (and other clients), a
profile may be created to log onto a specific SSH server with a specific username
and a specific private key. This allows for complete automation of the login
process. Please note that although such automation is essential for scheduled,
unattended jobs, and a convenience for users who access the SSH server
frequently, it is nevertheless a weakness in the overall security of the application.
An unauthorized user who knows a username now has access under that user's
security context. Therefore it is also imperative that the directory in which the
authorized_keys file is stored is given adequate access restrictions to prevent
unauthorized tampering.

Differences between the Windows-based versions.

WinSSHD Features.

When an SSH client logs into an SSH server for the first time, the client alerts the
user with an MD5 hash of the host's public key file (also called a fingerprint). At
that time, a user at the client end can call the SSH server administrator and
check the fingerprint stored by the SSH client against the server's fingerprint.
Assuming all checks out, the user can agree to the warning and store the
fingerprint. During subsequent connections, the SSH client checks the fingerprint
against that server. If the server returns a different fingerprint, then the client is

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 20

alerted. The user can then verify this change with the SSH server administrator
to see if the keys were regenerated. If the server administrator cannot verify this
regeneration, this could be evidence of a man-in-the-middle attack. The MD5
fingerprint is the best insurance that the destination server is who it purports to
be. This fingerprint-advertising feature is a standard feature of SSH. However,
while the OpenSSH and SSH.com applications provide command line switches
for displaying the server's fingerprint, WinSSHD displays this fingerprint in the
GUI for immediate access to this critical piece of information.

Another useful feature of WinSSHD, especially for novice users, is the provision
of a descriptive explanation of each feature in the lower pane of each
configuration window.

Beyond this context-based help, WinSSHD offers very little documentation with
the installation package (or the evaluation package at least) and little more on
their web site. However, considering the simple install and the ease of
configuration, this may not be a critical issue.

SSH Communications Features.

The primary advantage offered by the SSH Communications version is tight
integration with a Public Key Infrastructure (PKI). SSH.com has standalone add-
on products for creating a new PKI or integrating with an established one. The
screen shot above shows one of the configuration windows for trusting a
Certificate Authority, installing client certificates, and identifying directory servers
that contain databases of valid and restricted users based on their certificates.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 21

PKI is a highly secure (when implemented correctly), enterprise-scale secure
authentication system, based on centralized generation, management, and
revocation of public keys which are stored in user or machine-based certificates.
PKI interoperates with smart cards and tokens that actually store these
certificates. A widely used subset of smart cards, RSA SecurID, is also
supported in the SSH.com version. (Incidentally, such integration may also be
possible with the OpenSSH version as an input option of keyboard-interactive
authentication. However, this writer assumes that actually configuring this option
would be somewhat difficult). RSA SecurID provides two factor authentication by
requiring a consistent pin (factor 1: "what you know") along with a randomly
generated numeric string that changes every 60 seconds (factor 2: "what you
have").

SSH Communications offers excellent documentation both in the form of
administrator and user manuals, and an FAQ database. SSH.com also offers
telephone support contracts.

OpenSSH has no company or help desk to call. However there is ample online
documentation accessible by searching on google.com or other search engines.

Summary

Over the course of a quest to find out more about FTP and other methods of file
transfer, this writer arrived at Secure Shell as a flexible, versatile, and secure
application. Discovering proprietary SSH applications with GUI installers for
Windows was an easy step in this process. However, remaining in front of the
comfort of a graphic interface may not be the best way for anyone to learn the
details and options in the configuration and operation of the software. The
OpenSSH install and configuration process demanded an intense level of
involvement and yielded the reward of a deeper and broader perspective. It
seems useful to state this since implementing security must be such a dynamic
process. Which ciphers and key types provide the strongest security? What are
the vulnerabilities? What options can be used to secure SSH connections in
different environments? These are all essential questions. Without closely
examining the install and configuration of OpenSSH, this writer would not have
been able to effectively evaluate the features of the Windows-based versions.

In addition to the features of SSH described in this paper, other features such as
TCP tunneling (also known as port forwarding) deserve their own investigation.
(There are several papers available in the SANS.org reading room that address
this topic).

Once the basic setup and operation of SSH is grasped, file transfer is a simple
process. For this reason, the paper focuses mainly on the operation of SSH.
However, file transfer as a critical network task, is an extremely compelling

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 22

reason to implement SSH. Clearly, SSH can and ought to replace telnet in most
situations. But with the increasing use of GUI-based remote administration,
shell-access alone may not be sufficient reason to consider SSH. Of course,
SSH, through TCP tunneling, can provide an encrypted tunnel for any TCP-port
based application (including standard FTP!), but that is another story.

Bibliography

1. Postel, J. and Reynolds, J. "RFC 959 – File Transfer Protocol (FTP)".
October 1985. URL:http://www.ietf.org/rfc/rfc959.txt?number=959. (28
March 2003).

2. Cole, E. "Security Essentials training". SANS. Washington, D.C. October
2002.

3. Ribak, J. "Active FTP vs. Passive FTP, a Definitive Explanation". August
2001. URL:http://slacksite.com/other/ftp.html. (28 March 2003).

4. Bellovin, S. " RFC 1579 - Firewall-Friendly FTP". February 1994.
URL:http://www.rfc-editor.org/rfc/rfc1579.txt (28 March 2003).

5. Horowitz, M. and Lunt, S. "RFC 2228 –FTP Security Extensions". October
1997. URL:http://www.rfc-editor.org/rfc/rfc2228.txt. (28 March 2003).

6. Ford-Hutchinson, P., Carpenter, M., Hudson, T., Murray, E., Wiegand, V.
"Securing FTP With TLS". April 2002 (revised).
URL:http://www.isaserver.org/articles/Securing_FTP_with_TLS.html (28
March 2003).

7. Micke Pettersson. "SSL - Secure Sockets Layer ,TLS - Transport Layer
Security". 13 June 1998. URL:http://www3.tsl.uu.se/~micke/ssl_links.html.
(28 March 2003).

8. CERT Coordination Center. "Anonymous FTP Configuration Guidelines."
1995. URL:http://www.cert.org/tech_tips/anonymous_ftp_config.html. (28
March 2003).

9. Allman, M. and Ostermann, S. "RFC 2577 - FTP Security Considerations".
1999. URL:http://www.rfc-editor.org/rfc/rfc2577.txt. (28 March 2003).

10. Gromek, M. "Securing FTP Authentication". SANS Reading Room.
February 2002. URL:http://www.sans.org/rr/protocols/sec_ftp.php (28
March 2003).

11. Zwamborn, D. "An Introduction to SSH Secure Shell". SANS Reading
Room. May 2001. URL:http://www.sans.org/rr/encryption/intro_SSH.php.
(28 March 2003).

12. Author unknown. "OpenSSH: Project History and Credits". January 2002.
URL:http://www.openSSH.com/history.html (28 March 2003).

13. Friedl, M. et al. "SSHD_Config, Man support page". 1999.
URL:http://www.nevis.columbia.edu/cgi-bin/man.sh?man=SSHd_config
(28 March 2003).

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 23

14. Johnson, M. "OpenSSH for Windows". Claremont McKenna College.
2003. URL:http://lexa.mckenna.edu/SSHwindows/ (28 March 2003).

Other References and Links:

• Seeger. "FTP Related RFCs (Request For Comments)". ProFTPD
project. 15 March 2001. http://proftpd.linux.co.uk/docs/rfc.html (28 March
2003).

Appendix A: Links for SSH/SFTP Servers and Clients on Windows.

Windows Servers:

• OpenSSH for Windows v3.5p1-3– a windows executable which performs a
simple install of cygwin and cygwin-ported OpenSSH/SFTP files.
Maintained by Michael Johnson at Claremont McKenna College. Includes
daemons and clients. Minimal post install configuration, with good
documentation. Free. http://lexa.mckenna.edu/SSHwindows/

• Cygwin – the prerequisite for running OpenSSH packages.
http://www.cygwin.com/. There are many university site offering detailing
install instructions including the following University of Utah site
(http://www.pcmanagers.utah.edu/software/setupSSHD.cfm). The cygwin install
can be a bear, and getting all the necessary packages with compatible
versions can be a frustrating experience. Setting up SSHD is fairly
straightforward but the SFTPD has it's own set of problems. Free.

• WinSSHD – an SSH/SFTP server designed for Windows servers. Simple
install, easy to use and configure. Evaluation available. Not too pricey.
http://www.bitvise.com/WinSSHD.html.

• SSH.com - SSH for Windows Servers. Tatu Ylonen's original open source
work became SSH Communications. Simple install. All the configuration
options and features that you might need. Works great. Pricey.
http://www.ssh.com/support/downloads/secureshellwinserver

• Windows Access Server (includes SSH/SFTP servers). Not evaluated.
http://www.foxitsoft.com/wac/wac.zip.

• F-Secure SSH server (includes SFTP server). The other major enterprise-
level, proprietary SSH implementation. Not evaluated. https://europe.f-
secure.com/download-purchase/download-forms/sshserverwin.shtml

• VShell (SSH/SFTP server). Van Dyke Software. Not evaluated.
http://www.vandyke.com/download/vshell/index.html

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 24

Windows Clients:

• PuTTY/PSFTP – maintained by Simon Tatham. Command-line, Freeware.
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html (Putty.zip has
everything!).

• SecureFX from Van Dyke Technologies, GUI. Evaluation available.
www.vandyke.com.

• Secure Server/Client Evaluation Page at UPENN. A good resource,
perhaps a bit outdated.
http://www.upenn.edu/computing/group/secure/2000/phase1/matrix.html

Appendix B: PuTTY Client Configuration Screen Shots.

The following screen shots illustrate the GUI configuration environment for
PuTTY. Connection profiles – which can be also be utilized with PSFTP
connections -- specify destination servers, encryption and hash ciphers, terminal
environment, and authentication options.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 25

The following screen shot shows the display of the puttygen.exe program. Upon
generating the public/private key pair, the user is prompted to move the mouse
within an area of gray space to generate randomness for the seed file which is
then used as the source of the private key. The public key is displayed in the
upper window and is used for creating an "authorized_keys" file to be stored on

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.
 26

the server for public key authentication. Note that keys can be generated for
SSH1 or SSH2 in both DSA and RSA formats with variable bit lengths.

