
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

GSEC Paper Practical Assignment Version 1.4b

David Hinshelwood

DNS, DNSSEC and the Future

1 Abstract

The domain name system (DNS) is the means by which hosts find out the IP

addresses of other machines from their universal resource locator. The key to DNS is i ts
hierarchical nature that makes delegation so easy. It is very important to set-up and
document the DNS with best practices firmly in mind or the corporate system will
crumble. The aim is to mitigate the risks of mis-configuration and attack so down time is
kept to a minimum or compensated for by reducing the single point of failure.

Best practices move us towards secure authentication of the information held in
the DNS structure by means of the DNS Security Extension (DNSSEC). Although it is
still in need of full implementation, DSSEC is the only viable path to follow for the next
generation of the domain name system.

2 Scope

This paper will discuss the Domain Name Service (DNS), the current security

issues with DNS, Good Practices needed to secure a DNS server, the use of DNS
Security (DNSSEC) additions to DNS to provide added security and possible future
directions for the security of DNS. Berkeley Internet Name Domain (BIND) will be used
as the example of an implementation of DNS discussed in this paper unless otherwise
stated. It is assumed the reader has reasonable knowledge of client/server architecture,
networks, operating systems, distributed computing, public-key encryption and TCP/IP.

3 Introduction

The Internet began with the creation of the US Department of Defence’s Advanced

Research Projects Agency (ARPA and later DARPA) ARPAnet in the 1960’s. ARPAnet
was a large network for the sharing of files, software, email exchange and connection to
remote computers. The Transmission Control Protocol/Internet Protocol (TCP/IP),
created in the early 1980s, and the virtually free Berkeley’s BSD UNIX allowed
universities and other (non-government funded) facilities to attach their computers and
LAN’s (Local Area Network) to ARPAnet. The network expanded to include thousands
of computers developing, over the years, into the Internet.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

The ancestor of the Domain Name Service (DNS) is the hosts.txt file that
contained the name to address mapping for ARPAnet. When ARPAnet contained a few
hundred hosts, the hosts.txt file was easy to manage but with the addition of universities
to the network, editing, compiling and using the file became difficult. The Stanford
Research Institute (SRI) in Menlo Park, California administrated the hosts.txt file, which
is a simple distributed database. Every computer in ARPAnet needed an updated
hosts.txt file to be able to ‘see’ the other computers. SRI needed to be informed of every
host addition, add to and compile hosts.txt then email the updated version to all current
participants of ARPAnet. Host naming, network load and consistency quickly became a
critical strain on the hosts.txt infrastructure.

The inadequacies of hosts.txt gave rise to advent of a faster and more automatic
system for name to address mapping. The core of DNS was specified in 1983 in RFCs
[1] 882 and 883 but it was not until 1984 in RFC 920 that DNS became fully specified.
Paul Mockapetris wrote the first domain name server in 1984. It was called “Jeeves”
and was used by SRI and the University of Southern California’s Information Sciences
Institute. DARPA commissioned a DNS server for Unix machines, which became to be
known as the Berkeley Internet Name Domain (BIND) package.

BIND, from conception to infancy (version 4.8.3), was maintained by the Computer
Systems Research Group at Berkeley with the aid of many other programmers. The
maintenance, from infancy to early teens (v 4.9 and 4.9.1) was carried out by Digital
Equipment Corporation (Compaq), during adolescence (v 4.9.2) by Vixie Enterprises
and from early adulthood onwards (v 4.9.3 and above) by the Internet Software
Consortium (ISC).

The current version of BIND is version 9.2.1 [2] released on the 1st May 2002 (as
of 6th February 2003).

Summarised from [3] and [4]

4 Domain Name Service

4.1 Overview

DNS is a hierarchical, distributed database that stores information for hosts

attached to the Internet to find each other. Without a naming service, such as DNS,
mapping information from host name to IP address would be an impossible task. DNS
also contains information related to email routing and data for other Internet
Applications.

The following components make up the Domain Name Service: Name Space;
Name Servers; Resolvers. The Name Space describes the position of the remote host
in the hierarchy by means of a domain name, the Name Servers contain information on
how to navigate the Name Space and the Resolvers query the Name Servers for the
location of the remote host. The Resolver is the client running on the local machine that
is given the URL (unified resource locator) of the remote machine to map to an IP
Address.

Summarised from [3] and [4]

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

4.1.1 Name Space and Domains

The Name Space is the structure of the DNS database. It is organised in an

inverted tree structure with the root node at the top as shown below in Figure 1. The
nodes are marked with a dot in the figure. Each node must have a label and that label
must be unique within its sibling group or level. Labels can be reused at differing levels
on the tree. The root node is represented by the “null” symbol. A “.” Is used to represent
the root node for convenience.

A label represents a Domain, which is a sub-tree of the domain name space from
that point downwards. As shown below in Figure 2 the entire name space is included in
the root domain (the area in light purple). To reference a distinct node the full domain
name of that node is used. Figure 1 shows a domain name for hostA in University of
Example, hostA.example.ac.uk. hostA is in the example.ac.uk domain. example is in the
ac.uk domain and so on up to root. A nodes domain name identifies its position in the
name space.

The node is associated with a Resource Record (RR) containing all the data
associated with that particular domain, or pointers to the information (see 4.1.2 for more
information).

Summarised from [3] and [4]

4.1.2 Delegation and Zones

Figure 1: DNS Structure, the
Name Space

 Figure 2: DNS distributed management,
delegation by Domains and Zones

DNS is a vast distributed database that would be impossible to administrate
(technically and politically) from a central location. To spread the responsibility of
administration the name space is split into zones or points of delegation. Zones can be
equal to a domain or a sub-set of a domain. In Figure 2 the uk domain delegates part of
its administrative tasks to the co.uk domain. This results in the domain being split into 2
zones, one containing uk and ac.uk data (RR), the other containing co.uk data. The
co.uk node is a sub-domain and a delegated zone of the uk domain. Each time an
administrator delegates a sub-domain, a new zone or unit of delegation is created.
Once a zone is created, the zone and its parent can be administered independently.
Both the parent and the child keep a record of the delegation so name servers can

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

navigation up and down the name space (the pointers are stored in the parent and child
RR). The created boundary is the point of delegation (see Figure 2). Delegation is the
key to the scalability of DNS.

Summarised from [3] and [4]

4.1.3 Name Servers and Resolvers

Name servers store the information about the name space in units called zones

(discussed above), represented by a resource record (RR). The RR is stored in the
name server at the zones delegation point e.g. for co.uk zone the RR would be stored at
nameServer1.co.uk.

Resolvers query name servers about the information they contain in their RR to
locate a remote host.

4.1.3.1 Resource Records

There are different classes of RR depending on which protocol or network the

DNS is to run on. Since TCP/IP is the protocol of choice, its associated Internet class
RR will be discussed here.

The zone file contains information about its zone, into records. Zone files normally
comprise of a Start of Authority (SOA) record, a Name Server (NS) record, an Address
(A) record, a pointer (PTR) record and a conical (CNAME) record plus some other
records that will not be discussed in this document.

The SOA record (see Figure 3) indicates where the zone starts, its point of
delegation, and states the name or names of the authoritative NS. The record also
contains some information for use by slave NS.

The NS record (see Figure 4) indicates the Name Servers for the domain. The A
record (Figure 5) points to the IP address for the host. This record is where the work is
done and can be readily compared to the hosts.txt file mentioned in section 3. CNAME
records provide a means for alias referencing.

Figure 6 shows the PTR records being used to map from IP to host name for the
hosts mentioned in see Figure 3, Figure 4 and Figure 5 below. IP to host mapping is
discussed in section 4.1.3.4.

example.co.uk. IN SOA alfred.example.ac.uk. clara.example.ac.uk. (
 1 ; Serial
 14400 ; Refresh after 4 hours
 3600 ; Retry after 1 hour
 604800 ; Expire after 1 week
 86400) ; Minimum TTL of 1 day

Figure 3: An SOA record for example.ac.uk

example.co.uk. IN NS alfred.example.ac.uk.
example.co.uk. IN NS clara.example.ac.uk.

Figure 4: A NS record for example.ac.uk

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

; Host addresses
localhost.example.co.uk. IN A 127.0.0.1
alfred.example.ac.uk. IN A 192.0.0.2
…
; Multi-homed hosts
clara.example.ac.uk. IN A 192.0.0.4
clara.example.ac.uk. IN A 192.0.0.5
…
; Aliases
ns1.example.ac.uk. IN CNAME alfred.example.ac.uk.
ns2.example.ac.uk. IN CNAME clara.example.ac.uk.
…

Figure 5: A and CNAME records for example.ac.uk

2.0.0.192.in-addr.arpa. IN PTR alfred.example.ac.uk.
4.0.0.192.in-addr.arpa. IN PTR clara.example.ac.uk.
5.0.0.192.in-addr.arpa. IN PTR clara.example.ac.uk.

Figure 6: PTR records for example.ac.uk

4.1.3.2 Authoritative Name Servers

Each zone must have at least one authoritative name server, that is, a name

server containing the complete information about its zone. A zone can have more than
one authoritative name server; a name server can be authoritative for more than one
zone.

If an authoritative name server is queried about the information it holds about its
own zone, the response is an authoritative response called the “authoritative answer”
and would have the AA flag set in the response.

The Primary Master server contains the master copy of the zone data. When it
starts, the zone file is loaded from a local file called the “zone” or “master” file. Humans
can edit this file and, when loaded, the changes will be propagated to the slave or
secondary servers. The propagation of the loaded zone file to a secondary server is
called a zone transfer. Secondary servers can receive the zone file from other
secondary servers, creating a chain of replication.

Both the primary and secondary are authoritative for the zone they inhabit; the
only difference being the secondary receives the zone file from the primary. Name
servers can be authoritative for one zone and secondary for another.

Summarised from [3] and [4]

4.1.3.3 Recursive Name Servers

Most resolvers (see 4.1.3.4) are “stub resolvers”, meaning they cannot perform a

complete DNS host name to IP address resolution. The resolvers rely on a type of name
server to do the resolution for them, called recursive name servers (RNS). These
servers perform a recursive lookup by querying other name servers (NS) for the name
resolution information until the information is found.

Name resolution would be a lengthy process if the RNS had to start from fresh
every time a new query was received. To speed up the process the RNS cache the

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

information they receive from other NS when they do lookups. After a lookup the RNS
will know the IP address and authoritative domain for all NS it talks with. This
information is useful for subsequent queries as shown below in Figure 8.

The cached information is kept for a certain period of time before it expires,
enabling updates to be propagated from the authoritative NS. This duration is called the
time to live (TTL) of the cached record. The administrator of the zone from which the
record originated sets the TTL. Too short a TTL would mean exhaustive updates and
network congestion, too long a TTL and the record could never be updated – a happy
medium should be reached. Negative caching or “not found” responses are also cached
but for a set time, 10 minutes.

Summarised from [3] and [4]

4.1.3.4 Name Resolution

1. Q: Resolver query: what is www.google.com?
2. Q: What is www.google.com? A: referral to uk server.
3. Q: What is www.google.com? A: referral to root.
4. Q: What is www.google.com? A: referral to com server

5. Q: What is www.google.com? A: referral to google server.
6. Q: What is www.google.com? A: here’s the IP for www.google.com.
7. A: Here’s the IP for www.google.com.

Figure 7: The Resolution Process (no caching)

1. Q: Resolver query: what is ftp.google.com?
2. I know google.com server. Q: ftp.google.com? A: Here is the IP for ftp.google.com.
3. A: Here’s the IP for ftp.google.com.

Figure 8: The Resolution Process (with caching)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Since most resolvers cannot perform a lookup for themselves the RNS has to do
almost all the work. A RNS will try to answer a query authoritatively (i.e. an IP of a host
in its own zone) but if it were not authoritative for the information required, the RNS
would go “hunting” (unless recursion is disabled). The “hunting” is called recursive
resolution (described in Figure 7). Another form of resolution exists, normally carried
out by authoritative and root NS, iterative resolution. Figure 7 shows iterative answers
to a query for www.google.com. The NS return the best answer they know, instead of
“hunting” for the answer.

Mapping Addresses to Names

We have discussed how to get from a name to an address, but not the converse.

At first this seems to be a needle in the haystack problem as the only way to find a host
based on its IP would be to query every host for its IP and try to find a match.
Fortunately DNS provides a method to calm this madness, the in-addr.arpa domain.
The nodes under the in-addr.arpa domain are labelled after the numbers in the dotted-
octet IP address in the range 0..255. The in-addr.arpa domain has 256 sub-domains
corresponding to first octet of the IP. The sub-sub-domain corresponds to the second
octet and so on. The IP in Table 1: IP Address split into octets would be written:
1.0.168.192.in-addr.arpa.

192. 168. 0. 1
1st
Octet

2nd
Octet

3rd
Octet

4th
Octet

Table 1: IP Address split into octets
The exhaustive search mentioned above is called an inverse query. To perform

an inverse query the resolver would send a query to a RNS. The RNS would search its
local data for the subject of the query. If no result is found the RNS would stop looking,
returning a “not found” error.

Summarised from [3] and [4]

4.2 Security Issues
Summarised from [5] and [6]

The DNS server is prone to the same threats from malicious attack and poor

configuration as any server or host attached to the Internet. Older versions of Operating
Systems, not staying current with patches, poor server set-up and poor infrastructure
configuration all play a part in leaving your DNS directory open to improper updates,
slow responses, bad data, denial of service and other problems. This section will
concentrate on the specific security issues relating to DNS, which may be more general
threats taken from the DNS viewpoint.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

4.2.1 Packet Interception and Query Prediction

If an attacker can sniff the traffic on a network used by DNS, the attacker can

intercept the DNS packets and use that information to attack by taking on the “piggy-in-
the-middle” role. This attack depends on the ability to spoof* the IP address, or assume
the identity, of the NS.

Once the attacker is positioned “in-between” the resolver and the NS and has
assumed the identity of the NS, it can intercept the queries sent to the NS. This attack
relies on the NS being silenced by either a Denial of Service (DoS) attack or simply by
the attacker being “closer” than the NS. This tends to be an information gathering stage
for more serious attacks.

If the attacker is not positioned “in-between” the resolver and the NS, a similar
attack can be attempted. The attacker must then predict the ID number [+] of the
resolver request to be able to pretend to be the NS. Since communication between
resolver and NS is done through single unsigned, unencrypted UDP packets, it is not
difficult to sniff a few packets and predict the ID number.

Even without a history of ID numbers the ID number sequence can be hacked. In a
DNS header the ID field is 16 bits, giving only 2^16 possible combinations, and with
DNS working from a well-known UDP port, brute force guessing can easily crack the
code.

Once the ID number is know the attacker is most of the way to sending the
resolver bogus information. To complete the attack the attacker needs to know what
type of query and the state of the query before the resolver can be fooled into believing
the bogus information. This can be done by forcing the target into a known state through
exploiting bugs in the operating system or crashing the target with a DoS attack, forcing
a restart.

[*] Spoofing is the means by which the attacker assumes the IP address of a

machine, the spoofed machine. The target machine (for instance the resolver) will be
fooled into believing any packet sent to it from the attacker will have come from the
spoofed machine.

[+] A simple means by which the resolver and NS keep track of the DNS

conversation. Traditionally the number was simply incremented. To make things more
difficult for an attacker a random number is used to start and increments of more than
one is applied to the ID number of each dialogue.

4.2.2 Name-based Attack

Name-based attacks or cache poisoning are a very serious threat to the data

stored in the Resource Record (RR) in a NS. Attackers use the entries in the RR with
host name on the right hand side (see Figure 3, Figure 4 and Figure 5 above) to add
false information to the NS. The most attacked records are the CNAME, NS and
DNAME [§] that can be used to direct the resolver to false hosts or IP addresses.

This attack comes after the information gathering attacks mentioned in section
4.2.1. The attacker would induce the victim to make a query, silence the authentic NS,

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

provide an answer to the query and at the same time add information to the cache of
the resolver/RNS. The victim can then be induced to use this bogus information. This
attack will only work if the victim has less reliable information about the same domain
name i.e. the information was gained from a non-authoritative NS but this is scant
protection from the attack.

Now the victim has bogus information that could be used to lead the victim to a
mock up of well-known and well-used sites. All the end user has to do is enter his/her
credit card details and the attacker has all the details necessary to defraud. The
attacker may even go to the real site to order the same product to fool the credit card
owner.

[§] The DNAME record is use to indicate a point of delegation in the in-addr.arpa

domain.

4.2.3 Voluntary Name-based Attack

This is a strange but entirely probable form of “attack” perpetrated by the servers

you dial-in to or the NS for the network you are plugging into. This kind of “attack” may
be badly configured servers, bug or virus-ridden servers or deliberate misinformation to
favour a partner company.

4.2.4 Denial of Service Attack

DNS is particularly useful to the attacker for DoS attacks since the reply is much

greater than the query. The attacker can use the NS as a multiplier to carry out DoS
attacks on other hosts or networks.

4.2.5 Zone Stealing

The DNS architecture is set up so one or many Secondary NS (see section

4.1.3.2) can retrieve a copy of the zone file direct from a Primary NS through zone
transfer. If a bogus NS can pretend to be a Secondary to the Primary NS, the zone file
will be transferred and all the information gathered can be used for future attacks. The
next step could be to use this information to discreetly poison the caches of caching NS
and resolvers as in section 4.2.1.

Summarised from [7]

4.2.6 BIND weakness

The NXT records, QUERY INVERSE records and NAMED (the names server

software in BIND) allow immediate root compromise on many UNIX and Linux systems.
The NXT and QUERY INVERSE problems are validation and buffer overrun bugs in the
BIND code while the NAMED problem is a weakness in the name server software
leaving the NS open to various “back door” exploits such as Trojans. Not all versions of
BIND are vulnerable.

This weakness is part of the SANS top 10 vulnerabilities [8].

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

4.2.7 Microsoft Windows resolver weakness

Systems running Windows 98, NT, 2000 or XP are vulnerable to intended or

accidental attacks due to the resolver on these systems accepting responses from any
IP address [9]. This means any server can reply to queries sent to the resolvers RNS
and will be accepted, as long as the reply is in the correct format and the ID number
sequence is correct.

4.2.8 BIND Surveys

Date of Survey % with at least one server running bad
BIND (v8.2.x older than v8.2.3)

30th January 2001 33.3%
Table 2: Fortune 1000 companies with bad BIND

Date of Survey % of bad BIND servers
31st January 2001 40.27%

Table 3: Bad BIND servers for .com's
Top level domains Date of Survey % of bad BIND (v8.2.x

older than v8.2.3)
.co.uk (UK) 7th February 2001 18.6%
.de (Germany) 7th February 2001 28.6%
.ch (Switzerland) 7th February 2001 22.5

Table 4: Bad BIND servers for national Top Level Domains

On 29th January serious vulnerabilities were announced for BIND versions 8.2.x.

The surveys, from Mice&Men [10], above in Table 2, Table 3 and Table 4 show the
percentage of servers vulnerable to that particular exploit just after the announcement.
These surveys demonstrate the necessity for best practices and continued revision of
these practices in response to the changing environment. Even after a considerable
time, in the tech world anyway, the % of servers running vulnerable versions of BIND
stabilised at ~10% [10].

November 2002
Errors Percentage (to 2 significant figures)
Overall Errors 69%
Single Point of Failure
All Name Servers in same subnet 28%
Only one Authoritative name server 6.6%
Zone Transfer
No server allowed to zone transfer 39%
Some servers blocked zone transfer 6.0%
All servers allowed zone transfer 55%
Delegation/Zone Access Problems
Incorrect delegation configuration 19%

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Delegation data and zone data do not match 17%
None of the authoritative name servers answered 17%
2 authoritative name servers have same IP
address

5.1%

There is only one NS record in the zone data 5.8%

Table 5: Survey of .COM name server errors and bad configurations, November
2002 carried out by Men & Mice

Table 5 shows a survey carried out by Men & Mice [11] late last year. 69% of

.COM name servers with bad configurations is very high. More will be mentioned about
these problems in section 4.3.

4.3 Best Practices

When building a server for use as a domain name server (or analysing the current

setup) the implementer/administrator needs to think about the complete picture. If the
domain name service is absolutely as secure as it can be but the server itself is running
on an insecure, unpatched operating system and the secure entry door to the room is
wedged open, there is no security. Physical security, logical security, change
management, risk assessments, vulnerability assessments, standard policies and
disaster recovery must all be in place on the server and on the network at large before
any element of security is achieved. Remember there are enough problems facing
experienced administrators without the good-intentional unsanctioned configuration
updates made by the not-so-experienced “handy man”.

4.3.1 System Best Practices

I will quickly run through some very important concerns when setting up the server

that will run as a name server (authoritative or otherwise).
Knowledge really is the key to secure system. There is no such thing as too much

knowledge in this case, but be careful to choose certified sources for the information
and keep the updates regular.

Physically secure your system by restricting access to the box and the room to
authorised personnel only. Bare in mind how easy it is for someone to accidentally turn
off your box. If this in done before you have implemented your backup and disaster
recovery procedures the system could be down for some time.

If an operating system component/service is not absolutely necessary it should be
uninstalled or turned off, the leaner the system the better. Remember to turn off all
unnecessary TCP/IP ports; an attack can’t succeed if the ports are closed. If at all
possible the name servers should be run on dedicated boxes so the leanest system can
be achieved.

The root should have a very strong password, as a compromise here would
leave the whole system open to the attacker. No service (unless absolutely necessary
should be run with root privilege).

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

The necessary services should be run with their own user names giving the
baseline privileges for the service to run. If the service is compromised, the attacker
will be limited by those privileges. Remember to turn off default user accounts.

Keep your operating system software up-to-date with all current revisions, patches
and service packs. Security updates should be downloaded as soon as they are
available but functionality upgrades may not be so immediately important.

The system should be tested and monitored periodically for vulnerabilities,
break-ins, miss-configurations, bugs and errors. Maintaining logs and proper
documentation concerning the server can be the difference between a high page fault
warning suggesting someone has hacked the server or the current version of explorer is
a bit flaky.

Without documentation there is little point in attempting to secure the server, as
there is little hope of the server being maintained in a secure state for very long. Without
a history for the server all investigations into an incident are reduced to guesstimates.
Document the server build, document all changes, document the procedures for making
changes, document the scans, document the tests… document everything!

Risk management is an ever-increasing hole companies are getting used to
throwing them selves down without truly thinking things through. Having 20 servers
vulnerable to the same attack is as good as having a pop-up on the corporate website
marked “confidential files this way”. Having no single point of failure is the Holy Grail
of securing servers. Not only must functionality be replicated over many servers but also
these servers should be managed by separate teams, run different operating systems
and software e.g. authoritative DNS server 1 running Linux/BIND v8.3.1, authoritative
DNS server 2 running Solaris/BIND v9.2.1 and authoritative DNS server 2 running
windows 2000 server and an alternative DNS software. Should these servers share the
same subnet, router, leased line, building or power grid, the Holy Grail is still at the end
of the rainbow.

Summarised from [12]

4.3.2 Domain Name Service Best Practices

Domain Name Servers should be extended greater consideration when planning

the security of the corporate site due to the special nature of the facilities provided; the
NS should be available to persons inside and outside the corporation.

Section 4.2 mentions all the bad things waiting to happen to a NS secured or
otherwise, what we are trying to do is mitigate the risk of the servers being attacked and
the impact should a server (or servers) fall. What follows is a candid introduction to the
pitfalls of NS security. The reader should follow the references at the end of this
document to gain a broader and deeper understanding of the subject.

4.3.3 Securing a Domain Name Server (BIND)

As ever the newest version of the generation of BIND should be used, with all the

up-to-date patches correctly applied. This is a good launching pad to security but by no
means have we taken off.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Consider creating two types of physically separate name server: The Advertiser;
The Recursive Resolver. Separating your servers physically separates domain name
resolution into two distinct roles. The Advertiser is available to the Internet, authoritative
for the corporate zone and only provides answers for information it holds authority over.
It is not recursive and will not go looking for answers. The Recursive Resolver is
reserved for recursively answering queries from corporate users. It caches answers and
acts as the workhorse of the DNS. Since it caches information it is prone to cache
poisoning but not being the authority for the corporate zone, the damage is limited – the
risk is mitigated.

Since the servers are on different machines they can be better protected from
vulnerabilities in other software (not that there will be much there as all unnecessary
services and software has been deleted. Section 4.3.1) running on the machine. DNS
uses UDP port 53 and TCP port 53 so everything else should be filtered by the
machines interface and by the attached router. Closing all unnecessary ports is the best
way to shut out attacks. We can be a little cleverer here and make sure external clients
can’t gain access to or receive answers from The Recursive Resolver. Within the NS,
access control lists can be set-up to only allow authorised IP addresses to access the
service, adding another layer of protection.

An attacker can learn a lot about the corporate infrastructure from a stolen zone
file (Section 4.2.5). Restricting who can initiate a zone transfer will tie one hand of the
attacker. In BIND restricting access to the file is based on IP address. This is ok but
spoofing is very easy. Authenticating the transfer is a much better approach. This is
achieved through TSIG [*], coupling something you are (IP address) with something you
know (shared secret). Bare in mind any server that is authoritative for the zone must
guard its zone file from attackers; this means both the master and slave.

Dynamic update is a mechanism to break the overhead of static zone transfers,
each time a piece of information is changed the change is sent to the other authoritative
servers. It may reduce network and server load but it opens the floodgates. TSIG
authentication and IP restrictions must also be used with dynamic updates or you will
realise all too late that although you double locked the front door, the cat flap has let in a
lion.

Even with all these precautions the NS can and will be compromised. When this
happens the attacker will be given free rein of the server, possibly using this server as a
privileged tool to attack other servers. To prevent such a catastrophe the domain name
service should be run in a “jail”. The service should be run under a restricted user and
limited to a subdirectory of the file system. If the attacker takes over the service
resources will be limited to that user and subdirectory.

[*] Transactional Signature (TSIG) is an addition to DNS that facilitates the

authentication of a host through a shared secret. It is used to secure zone transfers and
possibly to secure the relationship between the resolver and RNS.

Summarised from [3], [4], [13] and [14]

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

5 Domain Name Service Security Extension

5.1 Overview

The DNS Security Extension (DNSSEC RFC2535 [1]) was conceived to address

the limitations and intrinsic exploits in DNS described in Section 4.2.
DNSSEC has 2 main aims: to confirm the integrity of the information; to

authenticate the source of the information. DNSSEC dose not guard against poor
configuration or bad information in the “real” authoritative name server. Authentication is
obtained by means of digital signatures created using the MD5/RSA and DSA
algorithms.

In DNSSEC each resource record entry is signed allowing verification by the
zone’s public key. The zone file is also signed so servers attempting a zone transfer can
verify all information is present and correct.

The SIG and KEY records are added to the RR for authentication support. There
must be a SIG record for each entry in the RR plus a SIG for the whole file (regenerated
each time the zone file is updated). The KEY record stores the public key of the name
server, used to verify the SIG records. Figure 9 shows a simple zone file and Figure 10
shows the equivalent file in DNSSEC.

The NXT record is meant to authenticate the non-existence of a RR. The DNSSEC
RR is conically ordered with NXT specifying the next record. This is a defence against
replay attacks.

example.co.uk. IN SOA alfred.example.ac.uk. (
 1
 14400
 3600
 604800
 86400)
example.co.uk IN NS alfred.example.ac.uk.
alfred.example.ac.uk. IN A 127.0.0.1

Figure 9: A simple zone file in DNS

example.co.uk. IN SOA alfred.example.ac.uk. (…)
 IN SIG SOA 1 86400 (; RR, alg. type, TTL
 20030305120312 ; SIG expiration time
 20030205120312 ; SIG inception time
 87964 example.ac.uk ; key tag, signer’s name
 jk86HGD67*gs-%…) ; the signature
 IN SIG AXFR 1 86400 (; zone transfer signature
 20030305120312
 20030205120312
 7tRRe#3si09*’d?/…)
example.co.uk. IN NS alfred.example.ac.uk.
 IN SIG NS 1 86400 (; NS signature
 20030305120312
 20030205120312
 ?tgRe#jk86HG?!…)
 IN NXT alfred.example.ac.uk. ; NXT record
 NS SOA SIG NXT

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

alfred.example.ac.uk. IN A 127.0.0.1
 IN SIG A 1 86400 (
 20030305120312
 20030205120312
 ^09PoqE4#tty…)
 IN KEY Jjhu$^Uld49875*… ; the alfred public key
 IN SIG KEY 1 86400 (
 20030305120312
 20030205120312
 jG6^09PoqE4#…)
 IN NXT example.ac.uk. ; the next record is the
 IN SIG KEY 1 86400 (;start of the RR.
 20030305120312
 20030205120312
 wwg%qw45…)

Figure 10: The same zone file in DNSSEC

Now we have a signed RR with associated public key but we must trust the source

of the key to trust the information. DNSSEC provides a chaining mechanism to enable
this trust. Each zone is signed by its parent’s signature.

So if the resolver queried its resolving name server, the RNS would search for the
authoritative information. Once found the RNS would verify the authenticity and integrity
of the information by retrieving the signature of the zone’s parent and the parent’s
parent until a trusted signature was found. The worst case would be the chaining all the
way up to the root (the roots signatures would need to be available in a well known and
trusted place). The chain of NS to the trusted ancestor would then become trusted NS.
With trust established, the individual record required would be authenticated by its SIG.
Now the RNS can give the resolver true information.

Summarised from [3], [4], and [15]

5.2 Issues

DNSSEC is the answer to many issues threatening DNS today. Its ability to

authenticate the source and validate the information integrity prevents the attacks
mentioned in Sections 4.2.1, 4.2.2, 4.2.3, 4.2.4 and 4.2.5 but it does have some
problems of its own.

It is complex to implement. Configuring delegation is fraught with problems,
compounded by DNSSECs poor error reporting.

DNSSEC zone files are very big, loading both the network and RNS or resolver (if
its DNSSEC aware). When vulnerabilities are found in DESSEC, the large record sizes
would aid any denial of service attacks.

As with any algorithm, the public/private keys used with DNSSEC can be hacked
with time. In response the keys should be changed at various intervals to reduce the
risk of a compromise. This is very easy to implement at the lower levels of the DNSSEC
hierarchy as the public keys are not cached for very long but the root key are a problem.
Authentication is based on the root keys being known. It will be difficult to regularly
change the root keys without impacting the DNSSEC structure.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

DNSSEC RNS use absolute time to verify a signature is still valid. If an attacker
can change the RNS opinion of the current time, he/she can trick the resolver into
believing an expired signature.

Summarised from [5]

6 The Future

DNSSEC solves the current top issues with the domain name system. It is the way

forward. Without it companies, online shops, banks, governments and home users will
continue be susceptible to threats the original DNS was never designed to cope with.
Without a method of authenticating the public information held in name serves attackers
will have a very easy and effective weapon in their arsenal. The future is DNSSEC.

1 RFCs located at http://rfc.sunsite.dk/main.html
2 BIND v 9.2,1 release notes held at http://www.isc.org/products/BIND/bind9.html
3 Liu, Cricket & Albitz, Paul. DNS and BIND Third Edition. O’Reilly, September 1998,
Chapters 1,2, 4, 10 and 11.
4 BIND 9 Administrator Reference Manual. Internet Software Consortium, 2001, Chapter
2, 4, 7 and Appendix A
5 Atkins, D & Austein, R. Threat Analysis of The Domain Name System. Network
Working Group, November 2002. (2 Feb. 2003)
6 Sweetman, James. Current Issues in DNS Security: ICANN’s November 2001 Annual
Meeting. SANS, 28 Nov. 2001. (5 Feb. 2003)
7 Bellovin, Steven M. "Using the Domain Name System for System Break-Ins",
Proceedings of the Fifth Usenix UNIX Security Symposium, Salt Lake City, UT, June
1995. (20 Jan. 2003)
8 How To Eliminate The Ten Most Critical Internet Security Threats: The Experts’
Consensus, Version 1.33. The SANS Institute, 25 June 2001. (1 Jan. 2003)
9 Vulnerability Note VU#458659, CERT Advisory, 14 July 2000. (3 Mar. 2003)
10 Men & Mice Research on BIND Security: BIND Vulnerability. Mice & Men. (28 Feb.
2003)
11Domain Health Survey for .COM. Mice & Men, November 2002. (28 Feb. 2003)
12 Setty, Harish. System Administrator – Security Best Practices. SANS, 16 August
2001. (6 Mar. 2003)
13 Householder, Allen & King, Brian. Securing the Internet Name Server. CERT
Coordination Centre, August 2002. (1 Mar. 2003)
14 Liu, Cricket. Transactional Security in BIND 9: Securing DNS. Linux Magazine,
November 2001. (20 Feb. 2003)
15 Lioy, A & Maino, F & Marian, M & Mazzocchi, D. DNS Security. Dipartimento di
Automatica e Informatica, Politecnico di Torino, May 2000. (7 Feb. 2003)

