GIAC

CERTIFICATIONS

Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?

Check out the list of upcoming events offering

"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

The Ins and Outs of
System Logging Using Syslog

Paper version 1.0

GIAC Security Essentials Certification
(GSEC) Practical Assignment

Assignment version 1.4b (amended August 29, 2002)
Option 1 - Permission Granted

Location of Course Work:
SANS Darling Harbour, Sydney Australia, February 2003

Prepared by: lan Eaton

1
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

The Ins and Outs of System Logging Using Syslog

Table of Contents

INTRODUCTION 3
WHAT IS LOGGING 4
HOW DOES IT HELP 5
INTRODUCTION TO SYSLOG 7
BEFORE YOU START LOGGING 8
LOCAL LOGGING 10
SOURCE AND LEVEL OF LOGGING 15

THE SELECTORc.ttttttteitittate ettt bttt te et st st et b et ebes b ehes st ses et st et b b e b b eh e s et st et et e s b et ebebeseb et st e et et et bbb ebenese e 15

FACILITY .ottt ettt ettt st ettt bt bt e e e b s bt s et et ea e et et e bt s bt eseenn e saeseeemnenneneeneenneneen 15

PRIORITY ..coteititeett ettt ettt et et a e st ettt b e bt e e s b e b e e s ea st ea e e et et et e s bt ebeenaesaeseeemsennenneeneenneneen 17
MESSAGE DESTINATION (THE ACTION FIELD) 18
LOG RETENTION AND ROTATION 21
LOG PARSING AND REDUCTION TOOLS 22
SECURING THE STORED SYSLOG FILES 23

GENERAL TECHNIQUEScctttieiiiitieeeeiiitteeeeeetteeeeeessseesaaassessasassssseeansseessasssssesesasssssesssssesssssssssssssssssseesssssseessssnssseessnses 23

HASHING ...ttt ettt h ettt b e bt e s b s bt s e et eh e et e bt e s bt b e e nn e saesee et e e neene e e neen 24

HOST SECURITY ..ottt sttt sttt ettt sttt e b e st st b e b e e b s bt s e ee et ea e et e b et e beebeemnesaeseeemnennenneeneenneneen 24
CENTRAL SYSLOG SERVER 26
WHERE DO I HOST MY LOG FILES? 33

LOCALLY ONLY 1ttiuteutentittettenteste sttt et ettt eteste st ses e e saesbesete st ema e st eb e e e e saesbeesseaseas e eaeeeee b et e bt ebeemsenaeseeemsennenneeneenneneen 33

REMOTE SERVER ONLY ...cutteutiieatiiueniieititeeteentetestestesueeaeessesuesssensessesseeseesesaestesssensessesseeseensensesseeseensessesueemsensensesseennenses 33

LOCALLY AND REMOTELYeiuttiuitiitettittenit ittt st sttt ettt ettt saeesbe e saeesae e sheesas e st set et e es bttt e e eate e bt embeesaeenueenae 34

COMMENTS ...ttt ettt ettt ettt b ek eh e te ettt et h et h bbbt s ot st et e et e 4 bbbk eh et st et e e e bt b b eh et st e et bt b bbb s e e 34
LEVEL AND DESTINATION OF LOGS REVISITED 35
TIME SYNCHRONISATION 36
CHANGING THE TRANSPORT PROTOCOL AND MESSAGE RELIABILITY 37
INTEGRITY AND AUTHENTICATION OF MESSAGES 39
ENCRYPTING SYSLOG TRAFFIC 41
HOW ABOUT A SYSLOG RELAY? 42
NETWORK FILTERS, INTRUSION DETECTION AND OOB NETWORKS 43
CONCLUSION 45
APPENDIX A: REFERENCES 46
APPENDIX B: RED HAT 8.0 SYSLOG.CONF 48
APPENDIX C: EXPLANATION OF TCPDUMP COMMAND AND OUTPUT 49
APPENDIX D: EXPLANATION OF HPING2 COMMAND 50
APPENDIX E: PRI MATRIX 51

2
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Introduction

The intent of this paper is to help the reader follow a process of thinking that will provide
them with the tools to understand the fundamentals of system logging. Hopefully at the
end you will be able to identify the best implementation for your particular environment.

This paper focuses on logging using syslog which has become the de facto logging
standard on UNIX based systems. Though this is syslog and UNIX specific | would hope
the general discussions on logging would be helpful for any log implementation.

The structure of this paper begins with a discussion on what logging is, how it helps and
what considerations are needed before we implement logging. We progress towards a
discussion on syslog specifics, the elements that comprise a working implementation from
the basic to the more advanced, detailing configuration options and shortcomings,
including implementation ideas.

The last parts of the paper builds upon our knowledge of syslog, we look at methods to
remove these shortcomings, and the outside factors that need consideration to provide us
with a robust and secure implementation.

Throughout thls paper | have chosen to focus on the syslog implementation that comes
with Red Hat' 8.0 which provides the main features required to perform logging but falls
short when we start our discuss on security requirements. Securing syslog could be a
very important consideration for your organisation, during these dlscussmns | have chosen
to use SDSC Secure Syslog from the San Diego Supercomputer Centre?.

Reasons for choosing this replacement will become apparent as we go deeper into syslog
and its inner workings.

Definitions

Forathe purpose of this paper some definitions of basic syslog components need to be
set”:

Log device or just device: This is the equipment that generates log messages, this could
be a server, router, firewall, or any other device that can generate syslog
event data.

Log collector or just collector: This equipment is configured to receive messages
generated by a log device where it will subsequently store these externally
generated messages local to itself.

Log relay or just relay: Like a log collector it is configured to receive messages, these
messages are not stored but forwarded to another device, usually a log
collector but could be another relay

"Further information can be found at http://www.redhat.com/
%Further information can be found at http://security.sdsc.edu/software/sdsc-syslog/
® These definitions are from RFC3164 “The BSD Syslog Protocol”

3
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

What is logging

| am yet to see anything in life that runs perfectly the first time and without a single failure,
the world contains so many variables that nothing can be predicted to 100% accuracy. In
the world of computers it is inevitable something will fail, a user will make a mistake, an
attacker will think you are an interesting target, or that easy upgrade will keep you up all
night analysing what went wrong.

During the life of an application there involves a few basic steps, we install it, configure it
for our particular requirements, set it running on our system, and monitor it. When an
application is first installed how do we know its running, how do we know it has been
configured correctly, how do we know it is still running as specified over time.

We can try some tests to see if it reacts in expected ways, we can use commands on the
host system to give us clues, like if the application is using systems resources, or it is
listening on a network port etc. What happens if this application does not function exactly
as planned or stops functioning, its not seen to be using system resources or listening on
the network, what then.

Applications are generally designed to give clues to their condition or when something
changes. This change could be from being idle to running, when an application starts or
finishes a particular action, or reaches a particular point in execution. These messages
allow us to understand what the application is doing, and how well it's functioning.

Individual applications deliver messages differently, some provide their own inbuilt
method, while others use a specialised logging application designed to handle logs from
many applications. Syslog is one such application designed to accept messages from
multiple applications running on the system and manipulate them based on a single
configuration file.

Logging is a fundamental requirement of any system, as things will go wrong, we need a
way to diagnose and isolate the cause. No matter what operating system you use one of
the best locations for diagnostic information is the system log.

4
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

How does it help

Logging gives you sight, it will provide the administrator with information on how the
system is working. Without even basic logging, when something unexpected happens you
could experience excessive downtime due to the lack of diagnostic data. With a correctly
configured logging system you can capture such information as application, kernel and
network events, as well as any other system exceptions, this can be used for many
benefits:

General network administration
With debugging problems

Network base line

Network health

Proactive system/problem analysis
Intrusion Detection

Incident Containment

Forensic analysis

Legal

Administration and debugging

Logging is a fundamental tool for the system administrator to identify unusual activity
when trying to diagnose and isolate problems, or trying to ensure systems are running as
configured. In my experience, when debugging a problem for a user, | question the user
to understand the nature of the problem and then | head for the system logs to look for
clues. | would be looking for unexpected changed in state and any messages that
indicate miss configuration.

System baseline and health

Logging can provide more information than any one person can process during any given
moment. Finding the required information can be a daunting task. This problem can be
reduced if an administrator takes time with each installed system to perform a baseline
audit. A baseline audit identifies what is normal activity for your system, what system log
entries are normal, what network traffic the system normally generates, and how the
system reacts to certain conditions.

A baseline audit will help you get the most value from syslog data. In particular, a
baseline audit helps identify what the system was like before you became suspicious of its
behaviour and will help you determine what has changed. On a day to day basis the
system logs can be used to determine network health and how well the network and
computer systems are running. This provides the ability to proactively solve issues before
the user is aware.

Intrusion detection

With the right training and tools you can use your system logs as a form of Intrusion
Detection. This could be as simple as identifying anomalies from your baseline to
performing heuristic analysis. Heuristic analysis involves the correlation of a series or
sequence of log messages to identify an attack or a total compromise.

5
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Generally, when an attacker breaks into a system their first activity is to maintain
anonymity and control without being noticed. To do this they need to cover their tracks
and ensure no footprints are left. Even a default configuration of syslog will show some
evidence of intrusion activity, therefore these logs are a prime target for the attacker to
cover their activities once a full compromise has been successful.

Incident containment and forensics

If a compromise has been identified, a structured investigation needs to be started to
determine the extent and severity of the compromise. This is when your Computer
Incident Response Team (CIRT) gets involved. It should be noted that syslog data is but
one part of the whole picture when investigating a computer incident. IDS logs, firewall
logs, router logs, and other sources are correlated together to help the CIRT paint a
complete picture of the incident.

The information from all these sources has great value to the forensic examiner in the
investigation of computer incidents. If the integrity of these logs can be satisfactorily
guaranteed (forensically sound) you can paint an accurate picture of the attacker’s activity
almost immediately.

During the initial throws of an investigation collected evidence will assist with containment.
The goal of containment is to remove the opportunity for the incident to escalate beyond
its current impact to the company.

Later this evidence will assist in restoring the systems to its intended role for the company
by indicating what needs to be done to eradicate the vulnerability once the system is
returned to production.

Evidence will continue to play an integral role in the ongoing investigation, which will
eventually be used in the court room during prosecution of an identified attacker.

Further comments

A compromise of any magnitude is damaging to your company. The size of an incident or
the motives of the attacker does not matter. Whatever an attacker does from just logging
into your system to trashing the whole hard drive, creates serious doubts in the
trustworthiness of the system. This will cause the company to spend excessive time and
money recovering from an intrusion with the likely outcome being a total rebuild in an
effort to regain confidence in the system.

Logging won’t give you total confidence in your system without a total rebuild. Even if all
the logged data is complete and verifiable the possibility remains that some portions of the
attacker’s actions have not been detected. The logged data will help you investigate what
went wrong and what is needed to ensure this does not happen again.

Logging is only one aspect of a secure network but provides a great deal of value. It
should be part of any defence in depth approach, correlated with information from other
sources it becomes a very important tool.

A defence in depth approach to system security goes hand in hand with a defence in
depth approach to logging. Each system has a different perspective of the network, not
only because of its position within the network but by how it sees the information it
monitors. IDS, Firewall, routers and hosts all provide varying degrees of logging; all these
combine to provide a complete picture of network activity. We are taking the strengths of
each component to build a robust, cohesive, and comprehensive system.

6
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Given the importance of logging, it should not be a last minute consideration, it needs to
be built into the network design from the start. The importance of logging sits with network
filtering design, IDS placement, server placement, system management, security policy
etc.

Thinking of syslog in this light will ensure you have a reliable network and system
accounting environment that should be both manageable and expandable well into the
future.

Introduction to Syslog

Eric Allman* is the original inventor and author of syslog with the first implementation on
the BSD (Burkley Software Distribution) operating system; it was designed as the logging
system for the sendmail program that was also originally developed by Eric Allman.

Due to its flexible nature the BSD implementation has enjoyed sustained use over many
years, it has been the source for an endless list of implementations on other operating
systems and devices. According to the syslog(3) man page on a Red Hat 8.0 system
under history®:

A syslog function call appeared in BSD 4.2. BSD 4.3
documents openlog (), syslog () closelog (), and
setlogmask (). 4.3BSD-reno also documents vsyslog()

Until recently there has never been a formal specification for the syslog protocol, due to
this lack of standard and the inherent insecurities associated with the protocol there have
been many implementations, they have tried to maintain backward compatibility while
extending the protocol to provide more security and flexibility.

In August 2001 an RFC (Request for Comments) document was released by the IETF
(Internet Engineering Task Force) titted RFC 3164 “The BSD Syslog Protocol”, this was
the first step towards providing a consistent and standard logging environment.

The Abstract of this document states that it “describes the observed behaviour of the
syslog protocol’; its intention is too set a base that improvements can be built upon, or a
reference paper that future implementations can refer to when adding enhancements.

The standards track for syslog is well on the way with such improvements including RFC
3195 “Reliable Delivery for syslog” and an internet draft document draft-ietf-syslog-sign-11
“Syslog-Sign Protocol”®. These documents expand on the initial RFC 3164 document
providing some of the security enhancements that have been needed from its inception.

*look @ http://www.sendmail.org/~eric/ for his home page
°To access this man page if available type “man 3 syslog” at a shell prompt

®The Syslog working group’s charter is located at http://www.ietf.org/html.charters/syslog-charter.html. These
documents can be found at http://www.employees.org/~lonvick/index.shtml while you can locate all RFC's at

http://www.ietf.org/rfc.html

7
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Before You Start Logging

Log data is so important in detecting suspicious or unusual behaviour, but during this
process you are also capturing information about legitimate users and their behaviour. If
you log every hiccup, burp or squeak your system generates you maybe violating
someone’s privacy.

A security policy should be produced by every company! A security policy will identify how
your company collects, manages, and uses information, how and what assets need to be
protected, by whom and by what methods the company uses collected data. Your
company’s attitude to the level and use of logging needs to be clearly articulated and
defined, it should identify among other things the level of logging used, who monitors
those logs, and how these logs are used.

Users need to understand what level of privacy they should expect while working on your
network environment. The security policy should be presented to all employees the first
day they start work and use company IT resources. New users need to understand and
agree to the level of privacy provided by the company.

Over time the first day of work becomes a blur and the security policy falls to the back of
the mind. Using logon banners is a great way to remind users of your logging policy while
also having the added benefit of warning potential attackers of your security policy as well.
A warning banner will go a long way to legitimising the companies position if the need
arises to prosecute anyone identified doing what they should not be doing. An example
warning banner may look like:”

This system is for the use of authorised users only.
Individuals using this computer system without authority,
or in excess of their authority, are subject to having
all of their activities on this system monitored and
recorded by system personnel.

In the course of monitoring individuals improperly using
this system, or in the course of system maintenance, the
activities of authorised users may also be monitored

Anyone using this system expressly consents to such
monitoring and is advised that if such monitoring reveals
possible evidence of criminal activity, system personnel
may provide the evidence of such monitoring to law
enforcement officials.

Not only do users benefit from a security policy but administrators as well, the policy will
discuss issues related to the network administrators’ work, they can use the policy to
understand what is involved in their job, what responsibilities they have, the required level,
use, collection, and maintenance of system logs. During an incident administrators will be
able to use the policy to identify how and by who these logs should be handled in an
investigation.

If your company plans to prosecute someone for unauthorised activity, how the evidence
is collected, stored and analysed will come into scrutiny by the defence. System logs will
be very important in your investigation so strong security, integrity and authentication of
these logs will need to be part of your syslog design.

"US DoJ Warning Message taken from the SANS institute Track 1 — SANS Security Essential + CISSP CBK lecture
notes day 6 section 3 page 24 (v1.0 — Hal Pomeranz — April 2002)

8
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

An indication of these requirements is highlighted in RFC 32278 titled “Guidelines for
Evidence Collection and Archiving”, here is an extract from RFC 3227 (section 2.4 — Legal
Considerations)

Computer evidence needs to be

- Admissible: It must conform to certain legal
rules before it can be put before a court.

- Authentic: It must be possible to positively tie
evidentiary material to the incident.

- Complete: It must tell the whole story and not
just a particular perspective.

- Reliable: There must be nothing about how the
evidence was collected and subsequently handled
that cast doubt about its authenticity and
veracity.

- Believable: It must be readily believable and
understandable by a court.

Syslog plays a part in providing for these requirements when configured to do so. A
default installation of syslog will not allow you to fulfil these requirements, the original
syslog protocol is just too insecure to be relied upon in a court of law. We will understand
why this is the case later in the paper.

Because of these issues there is a push to provide a more secure syslog protocol to
improve the storage and handling of logged information. The issues that address these
shortcomings like authenticity and reliability will be identified throughout this paper.

The systems that you use to cover the requirements stated within RFC 3227 need to be
documented within the security policy. With well educated IT staff and end users, the
process of security will be easier and provide for a less hostile and chaotic environment
when things do go wrong.

$ RFC3227 — Guidelines for Evidence Collection and Archiving, can be locate through http://www.rfc-editor.org

9
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Local Logging

Logging Device/Collector

To begin our look at logging we need to start with the basics. No matter how complex you
make your logging architecture it is always made up of basic building blocks, so we start at
the first building block, local logging. In a local logging configuration the host performs
both roles of device and collector, messages generated by the system are directed to the
syslog(d) process which 'routes' these messages to a local destination on the host
machine based on the rules set in a file /etc/syslog. conf.

Red Hat 8.0 installs syslog with local logging already configured; this requires no user
intervention and provides what would be considered a minimum level of logging.

Due to the lack of standards subtle differences exist between syslog(d) implementations
on varying operating systems, the fundamentals are essentially the same but some
features may be added to improve or simplify the implementation. It's recommended to
refer to your particular vendor documentation to look for these differences.

Red Hat 8.0 Local Logging Configuration

The Linux
Operating _Tinitialisation and startup files]
System letc/re.dfinit.d/syslog
[etc/rc.d/init.d/functions

letc/sysconfig/syslog
letc/rc.d/rc?.d/K??syslog
letc/rc.d/rc?.d/S??syslog

| " Logging
| Device
| Specific
|

Syslog(d) enabled
Applications

Syslog() API
———=

Logged
in users

Particular
User

[log rotation]
letcllogrotate.conf
[etc/logrotate.d/
syslog

Log Collector
specific

Figure 1: This diagram shows how Red Hat 8.0 systems and files interact with the syslog daemon in a standalone
local logging scenario

10
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

This diagram shows the user controllable files and software that can and do affect a local
syslog(d) configuration on Red Hat 8.0, each part is discussed in detail. The GNU/Linux
implementation is compatible with the original BSD design, it does however provide a
couple of extensions. These extensions include a separate syslog daemon dedicated to
kernel logging (/sbin/klogd) and some syntax additions for use within /etc/syslog.conf
that give the administrator more control over how messages are handled.

The Daemon

The daemon is the core of the syslog system. It effectively routes incoming messages
directing then from varied sources to many potential destinations. On a Red Hat 8.0
system there are two daemons:

/sbin/syslogd
/sbin/klogd

/sbin/syslogd is the primary daemon that runs on all syslog implementations this is the
workhorse of the whole syslog implementation and routes messages to their pre
configured destination.

The /sbin/klogd daemon on the other hand is specific to GNU/Linux and is dedicated to
kernel logging; developers decided kernel logging required a daemon designed to cater to
the requirements of a Linux kernel.

Syslog(d) can still handle kernel messages if configured to do so but by default kernel
messages are handled by /sbin/k1logd which sends messages it receives from the kernel
to /sbin/syslogd which then redirects them as configured.

A file created after the daemons are started is /var/lock/subsys/syslog that indicate
the daemons are running. In addition to this, a file is created for each running daemon
that holds its process ID:

/var/run/syslogd.pid
/var/run/klogd.pid

Having a file that contains the process ID is handy for programmers and makes the writing
of scripts to handle running daemons easier.

Managing the daemons

These *.pid files are used by the GNU/Linux start-up and shutdown scripts executed by
the host operating system. The scripts listed here control the syslog daemons, and are
responsible for bringing the daemons into a running state:

/etc/rc.d/init.d/syslog
/etc/rc.d/init.d/functions
/etc/rc.d/rc0.d/K88syslog [linked to /etc/rc.d/init.d/syslog]
/etc/rc.d/rcl.d/K88syslog [linked to /etc/rc.d/init.d/syslog]
/etc/rc.d/rc2.d/S12syslog [linked to /etc/rc.d/init.d/syslog]
/etc/rc.d/rc3.d/S12syslog [linked to /etc/rc.d/init.d/syslog]
/etc/rc.d/rcd.d/S12syslog [linked to /etc/rc.d/init.d/syslog]
/etc/rc.d/rc5.d/S12syslog [linked to /etc/rc.d/init.d/syslog]
/etc/rc.d/rc6.d/K88syslog [linked to /etc/rc.d/init.d/syslog]
/var/lock/subsys/syslog

/etc/sysconfig/syslog

11
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

After basic initialisation of a GNU/Linux system is complete the systems init process
checks the /etc/inittab file to know what run level the system is to be started under. If
the system is configured to perform without a GUI (Graphical User Interface) the scripts
for run level 3 will be executed, these are located under the /etc/rc.d/rc3.d/ directory
and will bring up all the services for that run level.

The script /etc/rc.d/rc3.d/s12syslog Will start both the syslogd and klogd daemons,
this file is a symbolic link® to /etc/rc.d/init.d/syslog. This script can be executed
directly by an adequately privileged user, providing the correct parameters you can start,
stop (kill), and restart syslogd and klogd.

The /etc/rc.d/init.d/functions file provides reusable functions for scripts within the
/etc/rc.d/init.d/ directory including the /etc/rc.d/init.d/syslog script, this is used
to streamline code and ensure programmers don’'t have to “reinvent the wheel” so to
speak every time they need to write a new start-up script.

The syslog(d) daemons can be started with various options which are set within the
/etc/sysconfig/syslog file. This is read by the /etc/rc.d/init.d/syslog script when
initialising the daemons. On a Red Hat 8.0 system the default options are:

SYSLOGD OPTIONS="-m 0"
KLOGD OPTIONS="-x"

This will place syslog(d) in a mode where regular (mark) messages are not sent to the
syslog message destination, mark messages are time stamps sent at regular intervals.
Klogd is started with options indicating it should not process any “oops” messages.

Looking for the daemons

There are a couple of places to see if syslog(d) is running on your system, one way is to
execute the command netstat -na | more; this should show a line like:

unix 3 [] DGRAM 73135 /dev/log
/dev/1log is @ UNIX domain socket from where local syslog(d) messages are read.

Another way to see if syslog(d) is running is by executing the command ps ax | grep
syslogd looking for output like:

3445 2 S 0:00 syslogd -m O
Also running ps ax | grep klogd Will show output like:
576 ? S 0:00 klogd -x

As you can see the switches sent to the daemon are also viewable.

°A symbolic link is a special file that points to another file on the system

12
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Daemon Configuration

As the daemon starts up it reads a configuration file /etc/syslog.conf to determine the
actions it should perform with messages.

Although this file is read during initialisation, syslog(d) can be forced to re-read the file if a
SIGHUP signal is received. This file is configurable by the system administrator and tells
syslog(d) what to do with all the messages it receives, which include, but are not limited to:

Sending messages to all logged in users

Sending messages to a particular user (hopefully they are logged in).

Sending messages to a log passing program

Sending messages straight to a file (usually located within /var/1og/)

Sending messages to another server over the network (we will see more on this
when we talk about central log servers)

Documentation

The best place to learn more about syslog(d) and the configuration files is to look at the
documentation that comes with your Red Hat 8.0 system:

/usr/share/doc/sysklogd-1.4.1
/usr/share/man/man2/syslog.2.gz
/usr/share/man/man3/syslog.3.gz
/usr/share/man/man3/vsyslog.3.gz
/usr/share/man/man5/syslog.conf.5.gz
/usr/share/man/man8/klogd.8.gz
/usr/share/man/man8/sysklogd.8.gz
/usr/share/man/man8/syslogd.8.gz

To access this documentation use the command /usr/bin/man, type man man at the
command line for information on how to use man

Log Rotation

As will be discussed later in this paper log files can become rather large, even to the point
of being unmanageable. To help manage these files a process of log rotation is used.
These files set the parameters of log rotation, frequency of rotation, weather to use
compression on the saved logs and when to purge old logs from the system.

/usr/sbin/logrotate
/etc/logrotate.d/syslog
/etc/logrotate.conf
/etc/cron.daily/logrotate

13
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Log passing/reduction

Another subject that will only be touched on here is log passing tools, on a Red Hat 8.0
system a program named “logwatch” is used to analyse the system logs and report via
email to the root user what it finds. Files related to this process are:

/usr/sbin/logwatch

/etc/log.d/logwatch.conf

/etc/log.d/conf/services/syslogd.conf

/etc/log.d/scripts/services/syslogd
/etc/cron.daily/00-logwatch

Other files

Other files related to the syslog system are

/usr/include/sys/syslog.h
/usr/include/syslog.h

These are called header files and provide definitions for applications using syslog to log
their messages.

Not only applications can log messages, scripts or even users may want to log messages,
you may want to test that you daemon is working, this can all be done with:

/usr/bin/logger’

Any user can send a message to your syslog(d) daemon, we will use this tool more but as
an example of its ability you can type this at the command line:

/usr/bin/logger -p localO.notice -t APP “this is a user message”

You will understand the parts that make up this command as we read further, on a default
Red Hat 8.0 system this message will be found in /var/log/messages. You need root
privileges to view this file but you will see an entry towards the end like this:

Mar 30 09:49:25 localhost APP: this is a user message

With adequate rights you should see the file by typing tail /var/log/messages at the
command line.

In this section we covered the core files that make up a working syslog implementation on
Red Hat 8.0. Next we will learn more about how to configure local logging for our specific
requirements.

¥Type “man 1 logger” at command prompt for more details

14
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Source and Level of Logging

The Selector

Syslog(d) compatible applications are designed to produce a message when they reach a
particular event during operation, when these events are reached the system utilises the
syslog API" to deliver a message to the host operating system.

Syslog(d) can receive messages from many sources and choose to log or not to log
depending on the level set by an administrator within the /etc/syslog.conf file.

Each line that is not a comment'? contains two basic fields separated only by tabs, it has
been known to cause problems on some implementations if anything but a tab is used to
sperate these fields, the basic structure is:

[selector] <action>

The action part will be discussed further in the next section but it should be sufficient to
say this tells syslog(d) where to direct the messages defined by the selector.

The selector contains two parts, facility and priority, these are separated by a period (.) so
a correctly formatted line within /etc/syslog.conf will look like:

<facility>.<priority> <action>

An application will generate messages that will include, at a minimum, where the system
message came from (the facility), the level of importance the message dictates (the
priority), and any relevant information regarding the event that elicited the condition (the
message itself).

These parts will be seen in greater detail when we look into the structure of a syslog
message during our discussion of Central log servers.

Facility

The facility helps syslog(d) differentiate the source of the message and who or what
generated the message. There are 24 possible facilities and these identify the system
that generated the message. These facilities are not application specific but are system
specific. For example, the mail facility (2) would receive messages from mail related
applications.

On a mail server we could configure a mail daemon (eg Exim) with anti spam (Spam
Assassin) and anti virus (AmaVis) applications, these will log mail related messages to the
mail facility while also logging information about start-up and shutdown events to another
facility like 1ocal7.

13 14

Looking at parts of a default Red Hat 8.0 /etc/syslog.conf file we can further

illustrate how the facility works.

authpriv.* /var/log/secure
mail.* /var/log/maillog

"'To understand more about the syslog API review the man page by typing “man 3 syslog”
Blank lines or lines that start with a '#' are considered comments

3For a more detailed explanation of this syntax please consult the syslog.conf man page

"For a full copy of a Red Hat 8.0 syslog. conf file please look at appendix B

15
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

The facility is the first part of each line preceding the separator character (.), the priority is
indicated by a '*' symbol, a * in this position simply means all priorities.

The first line directs syslog(d) upon receiving a message with facility authpriv (10)
indicating an event related to security and authorisation of any priority level send it to the
file /var/log/secure. The second line directs syslog(d) to send messages with any
priority and a facility of mail (2) indicating a message from a mail daemon, send it to the
file /var/log/maillog.

All 24 facility values

Numerical Facility RFC3164 Facility™ Red Hat 8.0 Facility'”

Code name

0 kern kernel messages kernel messages

1 user user-level messages random user-level messages

2 mail mail messages mail system

3 daemon system daemons system daemons

4 auth security/authorisation messages (note 1) security/authorisation messages
5 syslog messages generated internally by syslogd messages generated internally by syslogd
6 Ipr line printer subsystem line printer subsystem

7 news network news subsystem network news subsystem

8 uucp UUCP subsystem UUCP subsystem

9 cron clock daemon (note 2) clock daemon

10 authpriv security/authorisation messages (note 1) security/authorisation messages (private)
11 ftp FTP daemon FTP daemon

12 - NTP daemon reserved for system use

13 - log audit (note 1) reserved for system use

14 - log alert (note 1) reserved for system use

15 - clock daemon (note 2) reserved for system use

16 local0 local use 0 (local0) reserved for local use

17 local1 local use 1 (local1) reserved for local use

18 local2 local use 2 (local2) reserved for local use

19 local3 local use 3 (local3) reserved for local use

20 local4 local use 4 (local4) reserved for local use

21 local5 local use 5 (local5) reserved for local use

22 local6 local use 6 (local6) reserved for local use

23 local7 local use 7 (local7) reserved for local use

Note 1 - Various operating systems have been found to utilise Facilites 4, 10, 13 and 14 for
security/authorisation, audit, and alert messages which seem to be similar.

Note 2 - Various operating systems have been found to utilise both Facilities 9 and 15 for clock (cron/at)
messages.

If you were only interested in keeping track of events from particular systems you can
direct that facility anywhere you choose just by adding a line within the /etc/syslog.conf

file e.g.
kern. * /var/log/kernel
user.* /var/log/user
mail.* /var/log/mail
daemon. * /var/log/daemon
auth.* /var/log/security

If you were not concerned with segregating messages from a particular facility you can
direct messages from all facilities with a '*' symbol.

15Asdahwdin/usr/include/sys/syslog.h1ﬂeonaRﬁd}hl&Osymem
'°As defined in REC3164 “The BSD Syslog Protocol”
17Asdeﬁnedin/usr/include/sys/syslog.hﬁleonaRedHatS.Osystem

16
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

There are many very interesting and flexible ways of configuring a Red Hat syslog.conf
file tqsachieve your aims, it is recommended the reader refer to the syslog.conf man
page .

Priority

Syslog(d) messages indicate a “level of importance” or priority and gives the administrator
further flexibility when filtering messages.

There are 8 priority levels from debug to emergency.

All 8 priority values

Numerical Code Severity name” RFC Severity”

0 emerg Emergency: system is unusable

1 alert Alert: action must be taken immediately
2 crit Critical: critical condition

3 err Error: error condition

4 warn Warning: warning condition

5 notice Notice: normal but significant condition

6 info Informational: informational messages

7 debug Debug: debug-level messages

Looking again at a real world example taken from a default Red Hat 8.0 syslog.conf file:

*.emerg *
uucp, news.crit /var/log/spooler

A standard entry tells syslog(d) that all messages from the indicated facility with an
identified priority level and above require the specified action.

In the above example the first line directs syslog(d) to send messages from any facility (*)
with priority emerg (0) to all logged in users (This is shown by a '*' symbol in the action
field). Receiving a message of this priority indicates that the system is in an unusable
state.

The second line specifies messages from two different facility levels uucp (8) and news (7)
with a priority crit (2) or above should be sent to the file /var/log/spooler. In other
words messages with a priority of critical (2), alert (1) and emergency (0) will be
directed to the file /var/1og/spooler.

Red Hat 8.0 offers some extra flexibility when specifying which priority levels to perform
actions on. It is recommended the reader refer to the syslog.conf man page.

You can direct any priority anywhere you choose just by adding a line within the
syslog.conf file e.g.

* emerg /var/log/emergency
* alert /var/log/alert
*.crit /var/log/critical
* . err /var/log/error

18Type“man syslog.conf” ata command line to view the syslog. conf man page.
19Asdeﬁnedin/usr/include/sys/syslog.hﬁleonaRedHatS.Osystem
?As defined in RFC3164 “The BSD Syslog Protocol”

17
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Comments

How much should be logged depends on what information you need from your logs. The
more you log the better chance you have at debugging that annoying problem, and the
more likely you are to start ignoring those copious entries. If you don’t log enough you
may miss important information while excessive logging could have an impact on system
performance, though today’s servers should, under normal circumstances, have adequate
capacity.

The security policy should describe the level of logging your company requires to do
business and maintain knowledge of network health. If your policy does not mention this
or you are identifying what needs to be in your policy, the best way to determine your
requirements is through experimentation and look at best practice.

Too much is better than not enough but if you are prone to ignoring logs because they are
too copious for your needs, then you may wish to limit your logging to the most
appropriate subsystem on your host only if this ensures you will look at them on a regular
base.

Personally, | would log the maximum possible and use another tool to scan through these
logs and isolate interesting or important entries which will be looked at on a daily basis. If
there is something that piques your interest you can use the entire log and investigate
further. This will minimise the administrative impact of excessive logging while giving the
flexibility to review them when the need arises. The use of log passing scripts/software
will be expanded upon later

We have seen where messages come from and the varying levels of priority they can
have, we will now see what syslog can do with all these messages.

Message destination (the action field)

Now we know where messages may come from we need to think about where to send
them. The manual page for syslog.conf21 indicates what actions can be taken against
messages selected by their facility and priority as they arrive. On Red Hat 8.0 systems we
have 6 actions that can be performed:

Directed to a specific terminal or console;
A selected list of users;

Everyone logged on;

A regular file;

To a named Pipe; or

Over the network to a remote Machine.

21Type “man syslog.conf” at the command line.

18
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Terminal, Console or Users

The first three items will direct messages to a console. You can specify a particular
terminal or console, a list of users that must be logged in to receive the message (eg your
admin account) or everyone logged into the system at the time the message is generated.

This form of logging will provide real time delivery of messages which could be very
important for messages with a facility and priority combination that you don't expect to see
a lot of messages from. If there are messages of this type you may just require real-time
response.

A good example of this would be to log all authentication messages to the console, that is,
all messages of priority debug and above on a system that has very little user or
administrator interaction (Such systems could be your DNS or mail server within your
DMZ/screened subnet). On such a system you should not see many messages. As soon
as you do there could be a serious issue with you machine.

If messages are sent to a particular console, this console needs to be in constant view of
an administrator. There is no use logging to a console if the machine is stuck in a room
infrequently visited. Messages sent to a particular user may never be seen if that user is
not logged, or even at the console. A lot of machines within a security gateway will be
headless, (no monitor) so logging to a console in this case will not be effective.

If this machine is in an open location where the monitor can be viewed by anybody as they
walk by, you could be giving a potential attacker some great reconnaissance right there on
the screen.

The main problem with these message types is they could clutter your screen while you
are trying to do work. Too many messages and you could loose data if not seen before it
scrolls out of the screen buffer, not to mention the frustration involved when these
messages constantly appear as you are trying to work.

Personal Experience: When administering a Gauntlet firewall built on
a BSDi operating system, a subset of messages was displayed on the
main console, this was really a great feature, | did not have to be
logged in to see important messages as they scrolled past. While |
was in the server room at one point | saw a port scan happen right in
front of me. As | observed the screen, the messages scrolled across
the screen too fast for me to understand what was really happening so
I logged into the terminal to investigate further but was hampered by
the continuation of these messages, what | needed to do was log into
an alternate console so | could continue the analysis.

From this story you can see some of the benefits and the downside of console logging.
To get the benefit of real time alerts you need to have constant observation. These
messages are not a permanent record of events and they will not be useful for forensics
as you probably won't be able to view these messages the next day or even an hour later.

19
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Regular file

Sending your logs to a regular file seems to be the most used action and for good reason.
It provides a permanent record within a text file, these files are easily viewed and parsed
through a third party tool or script. Storage and maintenance of text files is easy on a
UNIX system as there are so many tools and programming languages that make
management of text files very easy.

Sending a message straight to a file removes the benefit of real time alerts. A script could
regularly parse the logs looking for interesting events and then alert you via other means,
but you will always have a delay.

Named pipes

Named pipes allow you to send messages directly to third party programs or scripts for log
reduction or special types of alerting etc. This can improve the notification of important
messages while also increasing the complexity and configuration by involving additional
applications. This maybe the best way to get near real time alerting with a custom
program or script.

Remote machine

Sending your logs to a remote machine is an ideal solution for central log management,
the pro's and con's of logging to a remote machine will be discussed when we talk further
about log collectors

20
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Log Retention and Rotation

Log retention refers to the length of time log data is maintained on the local system before
you feel comfortable permanently removing it. This should be part of your security policy
and could be a legal requirement. If syslog is configured to log to a file, it will continue to
append messages as they arrive with no regard to the size of the file or available space on
the system. At a minimum, keeping the logged data for at least a month is advisable, but
before you decide to delete the logs they should be backed up to more permanent storage
like tape or CD ROM.

So these files don't become unmanageable, syslog files should be rotated at regular
intervals; depending on the quantity this could be on a weekly, daily or even an hourly
basis. If log files get quite large then a daily rotation should work well, with a weekly log
rotation cycle being reserved for the least active machines.

I recommend rotating logs on a daily basis in a server environment. Rotate them into a
file name that represents the date the logs were generated. This makes it extremely easy
to identify the log you are seeking and keeps a clean chronology of log data. As an
example you could quite easily generate log files named:

20030323 messages
2003-03-23-messages
2002032315 messages

The first two file names would hold all the logs for the 23™ of March 2003, the last
example would also hold logs from this day but only from 3:00.00pm to 3:59.59pm.

Log files are just text documents and can be easily compressed. Compressing past logs
will save considerable disk space allowing you to maintain a longer history.

Log files consume space. Anything that could increase the rate your log files are filled
could be a denial of service or faulty software that could eventually consume all available
disk space and kill your server.

UNIX systems have a file system structure that is fundamental to its operation. This
structure starts with the / or root partition. If all the directories branching from this root
partition are on the same physical disk partition and this fills to capacity, your system will
stall and or refuse to function normally.

A solution to this is to create a separate physical partition that you mount as directories
with in the root partition. All log files should be placed into a separate physical partition
normally labelled /var. Not only do you reduce the chance that your log files will cause a
denial of service condition but there are further benefits to doing this that will be discussed
in the next section.

Red Hat 8.0

Red Hat 8.0 has /usr/sbin/logrotate to perform log rotation, the man page says:

Logrotate 1s designed to ease administration of
systems that generate large numbers of log files. It
allows automatic rotation, compression, removal, and
mailing of log files. Each log file may be handled
daily, weekly, monthly, or when it grows too large.

21
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

This program can be easily configured to provide the features that you need, relevant files

are:

/usr/sbin/logrotate
/etc/logrotate.d/syslog
/etc/logrotate.conf
/etc/cron.daily/logrotate

Rotating logs keeps them both manageable and available.

Log Parsing and Reduction Tools

When you have performed a baseline audit of your systems you will have an
understanding of normal activity. Using a log reduction tool you can hide or remove those
events that you deem normal behaviour, thus reducing the size of the logged information
and providing a more concise view of the system.

These scripts can do a few things, remove messages that you know are benign, draw your
attention to messages that you know are important, and show you any messages that you
have not seen before. Don't use these scripts to only display messages you think are
important as you may miss something. Scripts should be designed to remove only what
you know is ok; there is no way that you will know every possible message that the system

will generate. Unusual entries need to be analysed and appropriate action taken.

Red Hat 8.0

Red Hat 8.0 uses /usr/sbin/logwatch to look at the log files, the man page states:

Logwatch i1s a customisable, pluggable log-monitoring
system. It will go though your logs for a given
period of time and make a report in the area that
you wish with the detail that you wish. Easy to use
- works right out of the package on almost all
systems.

This program can be easily configured to provide the features you need, relevant files are:

/usr/sbin/logwatch
/etc/log.d/logwatch.conf
/etc/log.d/conf/services/syslogd.conf
/etc/log.d/scripts/services/syslogd
/etc/cron.daily/00-logwatch

Over the last few sections we have looked how we can manipulate log files, we need to
now look at how to secure them, how to assure integrity.

© SANS Institute 2003,

22
As part of GIAC practical repository.

Author retains full rights.

Securing the Stored Syslog Files

The reason for securing your logs is to ensure log integrity and accuracy. If you need this
level of confidence in your logs they need to be secured from attack, either intentional or
accidental. Here we look at some of the methods that can be used.

General Techniques
Printers

One of the best ways to maintain the security and integrity of your logs is to send them all
directly to a printer as they are generated. One major draw back to this approach is the
quantity of paper consumed; you will need to keep a steady flow. Having your logs on
paper removes your ability to parse these logs through a software filter. This will have to
be done manually, a tedious and error prone process. Very important logs in a mission
critical system may require this kind of treatment.

WORM device

An alternative to the printer is to send the logs to write once media also know as a WORM
device or a CDROM drive or another device that is infeasible to destroy electronically from
over the network. This method provides the benefit of having an electronic copy of the
logs but has the downside of always needing to be fed with new media.

Serial Line

Having a separate machine attached by a serial line over which messages will pass
provides a great alternative for a log repository. You can have a large storage capacity
and access to a machine that can parse your logs. This protects the stored log files as
they are isolated electronically from an attacker.

Jusr/bin/chattr?

Using the /usr/bin/chattr command you can set log files to be append only. The
command chattr +a <filename> Will set the file so it can only be opened in append
mode for writing. This poses a problem for your log rotation script and so must be
reversed just before rotation and then reset when completed.

Another feature of the chattr command is its ability to set a file immutable with chattr
+1 <filenames. A file with this attribute cannot be modified, that is it can't be deleted,
renamed, opened for writing, or even linked against. This type of attribute is only
applicable for log files that are not currently being used by syslog to write log data, you
can set this on your log history.

An attacker needs root level access to change these attributes. If they have this level of
access you have a lot more to worry about.

Separate partition

Another benefit of separating your file system into partitions is that you can control how
each file system is mounted, the /var directory can be mounted with append only
attributes. The mount point can be remounted without this setting but this can only be
done by a root privileged user and we hope that you will notice this.

22Type “man chattr” at the command prompt for more details of this command

23
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Comments

You should use at least one of these techniques, if not more, to protect your log data. The
main goal is to make it so difficult for the attacker that they have to jump through many
hoops to achieve their objective. It is hoped that the activity will be observed before they
manage to hide their tracks. Once an attacker has root status a lot of these systems will
not be protection enough to stop root from manipulating log data. This is where we need
to try and maintain the integrity of the log files

Hashing

When we take a static file, we can use a hash algorithm to create a number (hash value),
this hash value represents the file being hashed. This is an irreversible, one-way
transformation. The size of the hash file is fixed and is nothing more that a representation
of the static file. If the file never changes, then each and every time the same hash
algorithm is used against the file the same data will be generated. Any change, even a
single bit, will change the hash value.

File integrity software like Tripwire?® and AIDE** work on this premise. If a file is changed
it would change the hash value and the system administrator would be alerted to this
serious problem. This is another method used to determine changes from your baseline.
Tripwire should be run during the initial build of any system, it will create and store hash
values of selected files and as you rerun a check on the host during its life you use these
stored hash values to determine what, if anything, has changed.

A log file, on the other hand, is not a static file. Messages are continually being generated
and therefore changing the files attributes. This type of activity is not conducive to a
normal form of file hashing. For syslog, hash techniques can really only protect the
configuration files and binaries, and after the log file has been rotated, a hash can be
generated of the now static log file.

Actually, we can hash syslog data, it just takes a fairly complicated configuration to get it
to work right. We will look at this issue a little more when we discuss authenticating syslog
traffic.

Host security

Physical security of your host is of great importance to any networked device, once
physical access is obtained by an attacker there is not much that an attacker cannot do.
Very few devices are physically secure once in the hands of your adversary. Cisco routers
and any common operating system are all vulnerable to very easy physical attacks.

On the flip side, there is no point in having your systems in a vault if it is not protected
from remote access. There are many treatments on the methods required to harden a
host from remote exploitation that will reduce the chance an attacker will get onto your
host and have the opportunity to observe, modify or destroy your logs. Hardening a
system at both the physical and electronic level is required for effective security.

“For the open source version of tripwire http://sourceforge.net/projects/tripwire and http://tripwire.org
**AIDE or Advanced Intrusion Detection Environment can be found hitp://www.cs.tut.fi/~rammer/aide.html

24
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

System hardening resources

OpenNA book: “Securing & Optimizing Linux: The Hacking Solution (v3.0)” can be located
at http://www.openna.com while a free earlier release can be found at:

http://www.openna.com/products/books/sol/solus.php, from the website:

Securing & Optimizing Linux: The Ultimate Solution (v2.0)
has been written and achieved with tightening security to
an incomparable level in mind. One of its main features
is the easy path from beginning to end in a smooth

manner, step by step for beginners as well as

for
experts.

The SANS store http://store.sans.org/ offers papers on securing Linux like “Securing
Linux: A Survival Guide for Linux Security”

Red Hat hardening script named Bastille Linux can be found at:

http://www.bastille-linux.org/, from the website

The Bastille Hardening System attempts to "harden" or
"tighten" Unix operating systems. It currently supports
the Red Hat, Debian, Mandrake, SuSE and TurboLinux Linux
distributions along with HP-UX and Mac OS X. We attempt
to provide the most secure, yet usable, system possible.

25

© SANS Institute 2003, As part of GIAC practical repository.

Author retains full rights.

Central Syslog Server

[| i

B :
Log Device Log Device Log Device Log Device

Log Collector

The basic idea of central log server design is to consolidate and centralise logs from many
devices in an attempt to make administration easier. In any distributed system, if there is
task that needs to be done on multiple systems and at regular intervals, it is a real benefit
if you can consolidate that task and do it from a single location.

Directing all your syslog data to a central server provides a single location for log
management. All the tools we have talked about for managing your syslog data can be
applied at one location, providing more convenience in backup, management,
manipulation, and monitoring of your whole enterprise in one place.

With all this flexibility there have to be some negatives and one of the biggest negatives is
that the standard syslog protocol uses UDP as its transport protocol. UDP has
characteristics that are not conducive to secure and reliable system logging. In short,
UDP is a connection less, non reliable protocol that does not guarantee message delivery.
If a message gets lost, neither the log device nor the collector is going to know or care.

There is no connection between the two communicating hosts as UDP is a drop (onto the
network) and forget protocol. If there is a network fault between communicating hosts
(this could be caused by a physical break, miss configuration or DoS attack)
communications would be disrupted and your logging ability will be lessened as messages
will go missing. This places the administrator in a bad position as all the information
required to diagnose the problem may not be available or there may be a missing entree
that would reveal what is truly going on.

Messages can be injected onto the network directed towards the log collector, and due to
the lack of authentication, these will be received and processed according to the rules
within the collector’s version of /etc/syslog.conf without once checking the authenticity
of the message. Using a flood of specially crafted packets directed towards the collector,
an attacker could cause a DoS (Denial of Service) of your syslog daemon or bring about
misinformation to both the Network Administrator and the Intrusion Investigator.

To improve the level of reliability for syslog(d), required features need to be built above the
UDP protocol, possibly within the application. An alternative is a total replacement of the
UDP protocol with another more reliable one like TCP. TCP is a connection-oriented
protocol that provides reliable communication between two hosts by establishing a
connection before sending any data. Running syslog messages over TCP will make it
infeasible to inject messages though it can't prevent aggressive forms of DoS. There are
many ways to help reduce the impact of a DoS but this is beyond the scope of this paper.

26
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Red Hat 8.0

On Red Hat 8.0 syslog(d), by default, is configured for local logging only and will not
accept or process any messages from outside sources. Some additional configuration is
required by the administrator on both the device and the collector before we can utilise

central logging.

Red Hat 8.0 Log Collector

The Linux
Operating
System

e ___T=
|

| Device
| Specific

Syslog(d) enabled
Applications

[Initialisation and startup files]
letc/rc.d/init.d/syslog
letc/re.dfinit.d/functions
letc/sysconfig/syslog
letc/re.d/rc?.d/K??syslog
letclrc.d/rc?.d/S??syslog

|

|

|

1L Syslog(APL _ _
| |

I

/sbin/sylogd

[config files]

|
|
|
|
|
|
/etc/syslog.conf/ |

in users

—
|
T
|
e Jeeeaaaa

Log Collector
specific

[log parsing tool]
Jusr/sbin/logwatch

Particular [log rotation]
User letcl/logrotate.conf
letc/logrotate.d/

1
Syslog core files |

[
|
|
|
|
|
|
|
|
syslog :

Red Hat 8.0 Log Device

The Linux

Operating _injtialisation and startup files]
System letc/re.dfinit.d/syslog
letc/re.dfinit.d/functions
letc/sysconfig/syslog

e
|

| Device
| Specific

Syslog(d) enabled
Applications

[etc/re.d/rc?.d/K??syslog
letc/re.d/rc?.d/S??syslog

letc/services

e

---------------- fr--- /sbin/sylogd

|

|
|
|
|
|
| Syslog APL_ _ 1.1
|
|

[config files]
/etc/syslog.conf

Logged
in users

Particular
User

Log Collector
specific

|
T
|
e Jeeeaaaa
|
|
|
|
|
|
|
|
|
|
|
|
-

letc/logrotate.conf

[log rotation]

letc/logrotate.d/
syslog

Figure 2: This diagram shows how Red Hat 8.0 systems and files interact with the syslog daemon in a log device
and collector scenario

This diagram represents the interlinking of user controllable files, software and the

network that can and do affect a central logging configuration on Red Hat 8.0.

In this

diagram you can see the interaction of the log device and the log collector. Remember, a
log collector will also be a log device as it generates messages internally.

Daemon configuration

We need to make sure there is an entry in the /etc/services file that indicates the
service port number that syslog should use for communication. UDP port 514 has been
assigned to syslog and this entry needs to be on both the collector and the device:

syslog

514 /udp

The collector needs to be specifically configured to accept log messages from an external
source. For this to work the syslog daemon needs to be restarted with an additional -r
switch. To do this edit the /etc/sysconfig/syslog file with a line like:

© SANS Institute 2003,

27

As part of GIAC practical repository.

Author retains full rights.

SYSLOGD OPTIONS="-r -m 0"

When the service restarts it looks for an entry in /etc/services. If not found the daemon
will fail to initialise. RFC 3164 states:

It is recommended that the source port also be 514
to indicate that the message is from the syslog
process of the sender.

Once an entry on the device is added to the /etc/syslog.conf file that directs syslog(d)
to send messages to a collector, a UDP port is opened with the port number defined in
/etc/services. Though this port appears to be open, a port scan indicates it is open,
and sending syslog packets fills up the receive buffer, the messages never seem to be
processed.

To ensure the port is active run the command netstat -na --udp on each machine, if
syslog(d) is listening on the required port number 514/udp you will see a line like:

udp 0 0 0.0.0.0:514 0.0.0.0:%*

This port number can be easily changed as long as it is still a UDP port and not required
by another service running on the machine. Doing this will only obscure the location of
syslog in a way that will prevent only an unsophisticated, or scripted attack but make your
job more difficult, as you will have to maintain this change across your whole enterprise.
The daemon will fail to open a listening port if this is changed to a non UDP port.

To see if syslog(d) is running and with what switches, run the command ps ax | grep
syslogd you should see a line similar to:

3445 2 S 0:00 syslogd -m 0 -r
Name resolution

Name resolution is used by both the collector and device, there are two main methods for
name resolution: centrally with DNS server or locally via a /etc/hosts file.

The log device requires host name to IP resolution. When you define a log collector within
the /etc/syslog.conf file you would usually add the entry with a host name. This host
name needs to be resolved to find the collectors IP address. A typical entry on the log
device would look like:

* Lk @collector

IP address to name resolution is required by the log collector during the process of writing
a message to the log file. Syslog(d) records the source IP address of the message and
resolves the IP address to a host name as the message is written to the log. An example
of this will be seen when we test this configuration.

For most network administrators, DNS would be considered a good idea because it
provides central management of names and IP addresses that can be utilised by all
systems. For our logging system to maintain communication, the DNS server needs to be
always available. If it is not available due to a DoS attack, break in, or system failure,
messages may cease to flow due to the inability to resolve IP addresses.

28
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Though adding administrative overhead, a far more secure method of name resolution is
through the use of a /etc/hosts file. Add all the required entries to this file and unless
the file is deleted or modified names will continue to be resolved correctly.

Testing your installation

To test the new configuration and see a syslog message as it crosses the network we can
generate a message on the log device using the program /usr/bin/logger®™. A
command may look like:

logger -p localO.notice -t DEVICEl "message localO.notice devicel™"

This tells logger to deliver a message with a facility of 1ocalo and a priority of notice.
The -t option sets a tag that in this case is bEvicEl making it easier to identify the source
of the message with the text in quotes being the actual message.

Using tcpdump with options like®:
sudo /usr/sbin/tcpdump -s0 -X -vv -nn -i ethO

We can capture a packet showing the collector IP address as 192.168.201.10 and the
device IP as 192.168.201.20:

16:36:06.298930 192.168.201.20.514 > 192.168.201.10.514: [udp sum ok] udp
44 (DF) (ttl 64, id 0, len 72)

0x0000 4500 0048 0000 4000 4011 2735 cO0a8 c914 E..H..@.@.'5....
0x0010 c0a8 c90a 0202 0202 0034 6d77 3c31 3333 t.ieeeeens 4mw<133
0x0020 3e44 4556 4943 4531 3a20 6d65 7373 6167 >DEVICEl: .messag
0x0030 6520 6¢c6f 6361 6c30 2e6e 6£74 6963 6520 e.localO.notice.
0x0040 6465 7669 6365 310a devicel.

This packet is of type UDP with the source and destination ports being 514 /udp, you can
see the direction of the packet is from device (192.168.201.20) to collector
(192.168.201.10) by the arrow. When we convert the packet into ASCIl we can read the
message as expected because the syslog packet as defined in RFC 3164 consists of
ASCII codes?’.

Once the packet has been processed by the collector and sent to a file, this is what can be
seen if the collector is unable to resolve the host name of the log device:

Apr 2 16:09:57 192.168.201.20 DEVICEl: message local0O.notice devicel
And this is what should be expected if the collector is able to resolve the host name:

Apr 2 16:35:30 devicel DEVICEl: message localO.notice devicel

“*Type “man logger” to see a full explanation of these and other switches
“Refer to Appendix E for a short explanation of the command line and resultant output
*"USA Standard Code for Information Interchange, USASI X3.4-1968

29
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Red Hat 8.0 syslog packet vs. RFC 3164
From RFC3164:

It is RECOMMENDED to transmit a syslog message
in the format specified in this document, but
it is not required.

Red Hat 8.0 syslog packet does not fully conform to the recommended format. To have a
syslog daemon that does fully conform you need to replace Red Hat Syslog daemon with
another. The one that | have chosen as a replacement is SDSC Secure Syslog from the
Security Technologies group at the San Diego Supercomputer Centre. This daemon fully
conforms to RFC3164 and has other benefits that will be highlighted later.

As an example of a message as specified within RFC3164 here is the payload generated
by SDSC. It contains three major sections, the PRI, the Header and the message and
some of these are further sub divided:

[PRI] [header 1 I message]
[PRI] [(timestamp) (host)] [(tag) (message)]
<133>Apr.28.15:12:30.devicel.logger: .message.with.SDSC.syslog.using.UDP.

The PRI part contains a number representing the facility and priority of the message, and
is bound by angle brackets. More information on how to interpret this field is in Appendix
E which has a convenient table to decipher the facility and priority from this number.

The header consists of two fields, a timestamp and a hostname. The timestamp
represents the local time of the device while the hostname is what the device knows itself
without the domain part (the simple host name, eg devicel, not
devicel.localhost.localdomain). The hostname is preferred, but could also be the
IPv4 or IPv6 address of the machine if the hostname is unknown.

The message part also contains two fields, the tag and the message itself. The tag field
contains the name of the program or process that generated the message while the
message part is a free form text message that indicates what the problem being reported
actually is.

This is an example Red Hat 8.0 payload:

<133>logger: .message.with.RedHat8.syslog.using.UDP.

If we compare this with the SDSC secure syslog output we can see it does have a PRI
part, the header is missing, and the message including the tag is present.

Syslog DoS or adding a mysterious entry

The syslog daemon on the collector does not provide any authentication for messages as
they arrive and there is no control from whom it will accept messages. This scenario is
ripe for abuse from a DoS or even the more nefarious activity of adding random messages
to confuse the administrator. What makes this activity even easier is the fact that
RFC3164 states:

The payload of any IP packet that has a UDP
destination port of 514 MUST be treated as a
syslog message.

30
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

The implications of this can be demonstrated quite easily by using a tool named hping2®.
The first ste;) in this process is to understand how an IP packet holding a UDP payload is
constructed” then understand what a correctly crafted syslog message looks like to place
within the UDP packet

First, we create a plain ASCI text file on a single line containing a correctly crafted syslog
message. This will become the UDP payload. | used a text editor on Red Hat named vi
to create a file udpbody with the content:

<133>DEVICEl: message local.notice spoofed with hping
Now using hping2 we can create a spoofed packet to send to the collector®’

sudo ./hping2 -I eth0 -c 1 -a 192.168.201.20 -y -2 -g 514 -p 514 \
-d 54 -E ../udpbody 192.168.201.10

Hping was used on a machine with the IP address 192.168.201.1 and directed to our
collector with IP 192.168.201.10 spoofing the source address to be from device1 with IP
192.168.201.20. Using tcpdump We can see the packet as it traverses the network

13:44:00.341787 192.168.201.20.514 > 192.168.201.10.514: [udp sum ok] udp
54 (DF) (ttl 64, id 43674, len 82)

0x0000 4500 0052 aa9a 4000 4011 7c90 cOa8 c914 E..R..@.@.|
0x0010 c0a8 c90a 0202 0202 003e 7229 3c¢c31 3333 ..., >r) <133
0x0020 3e44 4556 4943 4531 3a20 6d65 7373 6167 >DEVICEl: .messag
0x0030 6520 6¢c6f 6361 6c2e 6e6f 7469 6365 2073 e.local.notice.s
0x0040 706f 6f66 6564 2077 6974 6820 6870 696e poofed.with.hpin
0x0050 670a g.

As you can see it is very similar to the legitimate packet generated by our Red Hat 8.0 log
device seen earlier. When we look at the collectors log files we can see the entry created
by this packet

Apr 5 13:59:02 devicel DEVICEl: message local.notice spoofed with hping

The collector assumes that the packet is legitimate and processes it, even resolving the
assumed source host name as being from device1. A separate packet generated with
hping2 with a different but still spoofed source IP address of 192.168.201.11 was still
accepted by the collector, processed and written to a log file. The only difference is the
fact the collector was unable to resolve the host name:

Apr 5 14:04:40 192.168.201.11 DEVICEl: message local.notice spoofed with
hping

Using a simply obtained tool we are able to add random messages to the log files on the
collector and create a state of confusion for the administrator. Any packet directed at
UDP port 514 containing any form of ASCII text is processed and logged as a legitimate
message. If a packet is not correctly constructed or does not contain expected
information syslog will still process the message using the default facility and priority
values of user.notice.

**Hping2 can be found at http://www.hping.org/
Best source for this information is “TCP/IP Illustrated, Volume 1 — The protocols” by W. Richard Stevens
ThlS is defined within RFC3164 “The BSD Syslog Protocol”
*Look at appendix D to see an explanation of this command

31
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Packet filtering

Because syslog provides no discrimination for packets that arrive, we need to use a third
party product to perform this task. Packet filters are designed to control communications
between networked devices. This filtering can restrict which device can send messages to
the log collector while also restricting with whom the log collector in turn can communicate.

There are two common places to put such filters, firstly on a dedicated firewall separating
the device and collector, and/or a host based firewall installed on each device and
collector. When we consider defence in depth, we would place filters at all possible
locations. This not only protects the network segments (on each leg of the firewall) but
also the device within its designated segment (from local attack).

Although this is not a total solution, it will lessen the chance of a DoS attack being directed
towards your syslog service. Remember that we are dealing with UDP traffic. If we spoof
a legitimate device IP address we are still susceptible to a DoS. This does require the
attacker to have a greater knowledge of your network.

Host security

As discussed with local logging, hardening the operating system of any device before
deployment is essential. Unlike a log device the log collector should only collect, manage
and store syslog messages.

A log collector should be accessible over the network on at most two ports (22/tcp and
514/udp). You should know by now what port 514 /udp is for, but port 22/tcp is used by
secure shell* (ssh). With secure shell you can have secure, authenticated and encrypted
command line communications with the log collector that is very similar in behaviour to
telnet. If you are even more paranoid and you have easy and secure physical access to
the collector then only having the syslog port open would be the most ideal.

For system hardening refer to the examples mentioned within the local logging section on
host security.

All hosts should be firewalled on each interface with a packet filter even if they are behind
a dedicated firewall within a DMZ or screened subnet. Each device needs to fend for itself
to ensure that a neighbour, if compromised, does not attack adjacent machines. A firewall
will provide general protection to the screened subnet but can not protect you from locally
generated traffic. This is part of a defence in depth approach to network design.

All production servers within an environment should be physically secured from everyone
except authorised staff. This is not only for protecting the data. Controlled access is
required for any investigation when the integrity of the logs is placed into question.

Comments

Although syslog does have some fundamental security problems, it does posses many
positive aspects. Centralising your syslog data is an ideal way to mange these messages
for any networked environment. Care needs to be taken to limit the known security
implications and these issues should be addressed with the design and implementation of
the network from the start. Syslog is not the only service that needs a secure, well thought
out environment to improve its underlying security.

%1 o0k at http://www.openssh.org/ for more information

32
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Where do | Host my log files?

Now that we have seen what is involved with local logging and what a basic central log
collector configuration looks like, we should consider the best approach for log location.
Do you log locally, centrally, or is it better to do both?

Locally only

Although local logging is the default configuration for Red Hat 8.0, making it very easy to
implement, its usability is limited for any serious multi host analysis. When debugging a
problem on a single machine its good to have logs there with the machine you are working
on, it can be quite a pain dealing with two machines to diagnose a problem.

The typical attack sequence is well documented. An attacker breaks into a machine and
the first thing they do, once they have total control, is sanitise the logs. These logs will
have some evidence of the intrusion and it is imperative for the attacker to not only hide
his current actions but the actions that they took to break into the machine.

A root user can change anything within these logs and there are many root kits that will
remove the whole log or just an entry. This poses a serious problem if this is your sole
source of log information. Once the device is compromised you don't have full control of
the machine and the integrity of your logs is questionable.

In a gateway environment, being able to backup your systems on a regular basis can be
very difficult. The security systems a typical gateway has makes centralised backup very
complex. Back up devices on every device is both expensive and difficult to administer.
Backing up your data is essential.

If you monitor a small quantity of servers, or there are budgetary and staffing constraints
local logging may be the only viable solution.

Remote server only

When correlating messages from multiple hosts, having these logs centralised minimises
the need to view logs on each device. If the company policy mandates daily inspection,
centralised logging will reduce administration. You can derive greater benefit from your
log reduction tools in a central configuration thus assisting the administrator to detect
unusual behaviour, network faults, network health etc. This may make it easier to identify
a specific malfunctioning host.

If a log device is attacked, log data will not be available to the attacker to sanitize their
actions. The log collector should be highly secured and well out of reach for the attacker.
This provides a more reliable store of events and, once correlated with other data sources
(eg IDS or Firewall logs), is integral to intrusion detection, incident containment and
forensic analysis.

Back up is improved with the collector being the only device requiring back up. You will
find when specifying requirements for a central log collector you will need to place special
emphasis on disk space, hardware redundancy and a suitably specked backup device.

Hardware redundancy is very important for the log collector. RAID, dual NIC's, etc maybe
necessary to assure the required uptime, and there may be a need to consider two central
log servers. Two log collectors will ensure that there is somewhere to send log messages
if for any reason one of them becomes unavailable.

33
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

This machine becomes integral for reporting. If the system was to fail for whatever reason
there will be no logging what so ever until either this machine is restored, you update the
configuration on all the log devices, or you update the name resolution to redirect
messages to another collector.

Locally and Remotely

There are very few negatives to this configuration: it is the best of both worlds. If there is
a failed network path between the client and the server you have logs available on the
local server, if not the full set. An idea is to place a smaller subset of logs to assist in local
trouble shooting and hold a central repository with your entire log to get a larger picture of
network health.

The complexity of this configuration can be a little daunting. There is extra planning
required and each log device requires configuration of log level, rotation and retention.
You should find that you can reproduce the configuration across all log devices with a
special configuration needed for the collector's thus reducing this complexity.

Comments

No matter where you log, the integrity of each device and the collector is paramount. All
major network components need to be well secured physically and hardened at both the
OS and application to the highest recommended levels. This may not always be practical
as a log device will usually be performing an integral role, eg web, DNS, ftp server, or
router.

A central log server holds what could be very valuable information. It has only one role in
life and therefore should be easier to secure from a network and physical perspective. A
defence in depth approach is essential when designing a network infrastructure. This
approach includes, but is not limited to, firewalls, antivirus, intrusion detection systems,
filtering at the device and logging.

In my experience, the most vulnerable systems are the ones within a DMZ or screened
subnet. In a highly secure environment, servers within these volatile locations have their
configurations stored on a central image server. If compromised the machine is
forensically imaged for an investigation, and a fresh clean image applied and, if possible
modified to prevent the recurrence of the incident. A central log server is integral in this
scenario, all vital forensic data is directed away from the DMZ devices.

34
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Level and destination of Logs Revisited

In a central logging scenario we have a few extra options. There are now two locations
where we can store data and we should take advantage of this flexibility. It takes a bit of
planning and experimentation to know how much logging should be sent to each
destination, but with the benefits of central logging, an easy decision should be to send all
you logs to a central log device. The time consuming part in this equation becomes how
much log data is require locally, and how much information do you provide an
administrator for local problem solving.

The CERT Coordination Centre has put together a lot of great documentation covering all
sorts of security related issues. Here is an example logging policy based on a
recommendation from CERT>?

e Forward all messages to a log collector
e Log device store some messages
o Messages directed to the console
= All messages with priority “err” or higher
= All messages with priority “notice” for the more
critical facilities “kern” and “mail”
= All messages from daemons and authentication
system
o Messages directed to a single file
= All messages with priority “err” or above
= All messages from facilities “auth”, “daemon”,
“mark”, and “kern”
= All messages from facilities “user” and “mail” with
priority “warning” or above
o Important messages directed to a separate file
= All messages from facility “Ipr” to 1pr.1log
= All messages from facility “mail” to mail.1log
= All messages from facility “daemon” to daemon. log
= All messages from facility “auth” to auth.log

This should give you a great start that you can tailor to your specific needs. Refer back to
our previous discussion on message destination to understand the benefits of this
configuration.

33Example based on a paper from the CERT Coordination Centre paper: Configuring and using syslogd to collect
logging messages on systems running Solaris 2.x, see References.

35
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Time Synchronisation

When you have many dispersed assets, time synchronisation becomes all the more
critical if you want to get the most from your logs. As soon as you need to correlate
information from multiple devices, including Intrusion Detection Systems, Firewalls,
routers, etc, it will be much easier when everything is in sync.

If these systems are not in sync you add more complication. You will need to perform
rather complex calculations to determine the time difference between systems to identify
the true order of events and create an accurate time line.

There are many Internet based time sources that you can synchronise your machines
with. Highly secure environments will not use these sources though, as the idea of
trusting a time source from an unknown third party to synchronise all your machines, can
leave you open to certain attacks. To reduce your risks, use an independent source like a
GPS system. These systems can be expensive so for smaller networks using an internet
based time source is preferred over no time source at all.

According to RFC3339** “true interoperability is best achieved by using Coordinated
Universal Time (UTC)”. The reason for this is UTC does not take into account daylight
saving time, time is not repeated because UTC does not change when an hour is reversed
to cater for daylight savings local to the device. An offset is calculated by subtracting the
UTC time from the local time, this offset may change due to daylight saving but the base
UTC time does not.

Utilising a common time source with a common method of representing your time is very
convenient for log file continuity for not only local networks but networks spread across
many time zones. As an example, here is a log entry taken from SDSC syslog. We will
talk more about this implementation later, but one feature is its ability to use RFC3339
formatted time stamps. This feature though is not consistent with the standard BSD
syslog and at this time will work only with SDSC syslog.

<133>2003-04-27T21:49:28+10:00.devicel.logger: .My.message.with.SDSC.syslog.

This represents 49 minutes and 28 seconds after the 21% hour of April 27" 2003 with an
offset of +10:00 from UTC

Another aspect of syslog that helps with log correlation is the mark message. Mark
messages should be turned on to make it easier to analyse the time line. When these
messages are sent at regular intervals they can help identify possible gaps within log files.

To turn on mark messages you need to restart the syslog daemon changing the switches
used during start-up, to do this we edit the /etc/sysconfig/syslog file with a line like:

SYSLOGD OPTIONS="-m 10"

The -m switch takes a number as an option, this is how many minutes should transpire
between each mark message. An example message will look like:

Apr 25 16:16:26 devicel -- MARK --

Time synchronisation and mark messages help with log analysis particularly when we are
dealing with more than one log device.

* RFC 3339 — Date and Time on the Internet: Timestamps, locate a copy through http://www.rfc-editor.org

36
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Changing the transport Protocol and Message Reliability

We have discussed the security issues regarding the UDP protocol. There is no
guaranteed delivery or error control in the UDP protocol. Simply put, the receiving host
does not have a communications association with the sending host, it does not know that
the packet is coming, and does not care if it does not arrive.

The TCP protocol is quite different in its implementation. It can guarantee delivery, it does
provide error control, and, via a three way hand shake a communications association is
set up before data is delivered. A lot of the improved Syslog implementations use TCP
as their transport protocol because of these benefits. Example replacements are Syslog-
ng, msyslog, and SDSC Secure Syslog.

To take advantage of these benefits on a Red Hat 8.0 system we need to replace the
syslog daemon with one of these implementations. | have chosen to use SDSC Secure
Syslog from the Security Technologies group at the San Diego Supercomputer Centre.
SDLC Syslog is fully compatlble with RFC3164 by using the traditional UDP protocol, it
also fully implements RFC3195° “Reliable Delivery for syslog”. This RFC specifies how to
transfer messages over TCP for reliable delivery of messages.

Here is an edited tcpdump trace to highlight the benefits of using TCP as a transport
protocol again the collector IP address is 192.168.201.10 and the device IP is
192.168.201.20:

01 -> 15:26:15.471298 192.168.201.20.1038 > 192.168.201.10.514: S
2954639064:2954639064 (0)

02 -> 15:26:15.472369 192.168.201.10.514 > 192.168.201.20.1038: S
2851226966:2851226966 (0) ack 2954639065

03 -> 15:26:15.473165 192.168.201.20.1038 > 192.168.201.10.514: . 1:1(0)
ack 1
Packet 04 to 17 not shown
18 -> 15:26:47.660483 192.168.201.20.1038 > 192.168.201.10.514: P
654:766(112) ack 393
F. R R..ANS.1.3...271.87.0..<133>Apr.28.15:26:45.2
003 +1000 devicel.logger: message with.SDSC.syslog.using.BEEP.RAWE
ND.
19 -> 15:26:47.661366 192.168.201.10.514 > 192.168.201.20.1038:
393:393(0) ack 766
9... .. S...... R.o.....

Firstly lets talk about packets 01 to 03. These 3 packets make up the 3 way hand shake.
In very simple terms, log device1l requests to communicate with the collector (packet
#01). The collector responds acknowledging this request while also asking for a return
communications path with device1 (packet #02). pevice1l finishes by acknowledging this
reverse communications path (packet #03) finishing the three way handshake which has
established a duplex communications path between device1 and the log collector.

To understand these protocols refer to “TCP/IP Illustrated, Volume 1 — The protocols” by W. Richard Stevens
*®RFC3195 — Reliable Delivery for syslog, locate a copy through http://www.rfc-editor.org

37
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Devicel and the collector have established a relationship. Any information that travels
between these two machines through this path will be acknowledged by the other party, as
shown with packets 18 and 19. Packet 18 contains a syslog message from log devicesl.
(the message is highlighted in blue) Once the collector receives this packet it performs
some integrity checks to make sure the packet has not been corrupted during transit and
then sends an acknowledgment of recept back to device1 (packet #19). This forms the
basis of reliable delivery; the continual checking and acknowledging of packets as these
two machines communicate.

By using TCP as the transport protocol we have some form of acknowledgement that is
performed at the transport layer. RFC3195 adds another level of acknowledgment and
reliability by utilising the Blocks Extensible Exchange Protocol Core®’ (BEEP). BEEP is a
toolkit that can be used for building application protocols.

The main concept behind using the BEEP protocol is to simplify development of network
applications, it provides the key ingredients developers need when designing an
application protocol. RFC3195 uses BEEP to provide a required protocol framework
without needing to design it from scratch.

This section looked at how messages once sent from a log device will be reliably received
by the collector. The question then becomes, is this message the same one sent by the
log device in the first place? Has this message been changed in any way during transit
over the network or while being stored on the log collector.

We provide some level of message integrity by using RFC3195 to provide reliable
delivery, and using some of the techniques talked about in “securing the stored syslog
files” to protect the log files from tampering. In the next section we look at how to verify all
these forms of protection have worked and the once the message has been generated it
has not been tampered with.

3T RFC 3080 “The Blocks Extensible Exchange Protocol Core” explains in detail how BEEP works, locate a copy
through http://www.rfc-editor.org

38
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Integrity and Authentication of messages

Protecting our files from outside attack or manipulation is important. We also need to
consider how to ensure the integrity of these messages, is the message saved on the
collector the exact same message generated by the log device. The process of
authenticating syslog messages give us the ability to ensure that messages have not been
tampered with in any way.

The TCP protocol performs certain checks on packets as they arrive, allowing the
receiving system to verify the integrity of the message. TCP does this by means of a
checksum. This checksum is calculated by the sending host and added to the packet
before placing it onto the network. Once the receiving host opens the packet, it
recalculates the checksum and compares its calculation with the one in the received
packet. If they match, then authenticity of the packet is confirmed, and this packet is
deemed to be the same packet as sent.

This provides message integrity while it traverses the network, once saved within a log
collector message integrity becomes an issue again. Once this has been done, the
authentication data associated with TCP is stripped off and the remaining message is sent
up to the syslog application. To perform integrity checks on this message now, another
form of authentication needs to be implemented by the syslog application itself.

During our discussion on hashing, we discovered only static files are valid candidates for
hashing. A local log file is continually changing so does not fit this profile. If we consider
that each message within a log file is static in of itself, we can hash each message
individually and keep a separate table of these hashes.

Syslog sign

A draft RFC titled “Syslog-Sign Protocol” has been issued that hopes to grovide this form
of message authentication (as of this writing draft-ietf-syslog-sign-11.txt 8). Taken from
the Abstract:

Syslog-sign, a mechanism adding origin
authentication, message integrity, replay-
resistance, message sequencing, and detection
of missing messages to syslog.

The SDSC Secure Syslog implementation that we have covered in this paper has this as a
mandatory requirement39 for implementation once the RFC is ratified for future releases.

The main idea behind syslog sign is to provide a mechanism that can be easily built on top
of an RFC3164 compliant syslog daemon with minimum impact. Syslog messages are
generated and delivered as normal, with syslog sign adding two additional message types
that provide the true benefits of this protocol, signature blocks and certificate blocks.

Syslog sign is designed to utilise UDP as the transport mechanism but recognises
RFC3195 may be used to provide reliable delivery of messages. Though all messages
must conform to RFC3164, there is a slight superficial variance between this RFC and the
original RFC3164. The tag field is now considered part of the header rather than the
message or content. A less superficial change is RFC 3339 formatted timestamps should
be used, we talked bout this during our discussion on time synchronisation.

38 This document can be found at http://www.employees.org/~lonvick/index.shtml
% http://security.sdsc.edu/software/sdsc-syslog/requirements for the items they plan to incorporate in SDSC syslog

39
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

As each message is generated a signature of the entire syslog message is generated
using a predetermined hashing algorithm. These signatures are collected together and
placed within a signature block containing signature information of up to 99 hash values.
Each individual hash ensures that non of the information has changed since when it was
generated.

There are many fields within a signature block that help with message integrity, replay
resistance, message sequencing, and detection of missing messages. The signature
block has information to allow syslog sign protocol to keep track of how many signature
blocks have been sent previous to this one, and how many message hashes have been
sent previous and which are included within this signature block.

Syslog sign uses public key technology for key exchange. Keys are transported by
certificate blocks which form part of the key management process used to verify
messages as they arrive or after they have been saved to disk. Syslog sign uses these
certificate blocks to share key material before sending messages. The keys are carried
inside the payload block within the certificate block which has the role of getting the
payload block to the collector.

There are two methods of verifying messages online and offline. This means you can
verify messages as they arrive at the collector by building an authenticated log file, or an
administrator may verify and view messages at regular intervals offline, as you would a
normal log file. In reality it is a little different because an extra process of authentication is
included.

When reviewing messages offline all messages are sent to a file as they are received,
complete with signature blocks and certificate blocks. The administrator can then use a
script to separate the certificate block, signature blocks, and messages into three separate
files. The payload block contained within the certificate block is used to verify the integrity
of the signatures which in turn verify the generated messages and show if there are any
missing entries.

Online analysis is the real-time verification of messages as they arrive. The collector
builds up a log file of messages that have been verified by the signature blocks as they
enter.

40
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Encrypting Syslog Traffic

Throughout this paper we have seen network traces of log messages. So far they have all
been in clear text, and they have been open for anyone to read who can sniff the network.
This can provide an opening for attackers to gather some very valuable reconnaissance,
such as what information you are monitoring or what actions will generate a response.
This can allow an attacker to tailor their next move so that it might not be recorded.

Encrypting your data removes the chance that an attacker will be able to read your
messages in real time. The attacker still has the ability to capture this traffic and then try
to break the encryption code to read the message off line. The length of time it takes an
attacker to break this code depends on the strength of the algorithm. The stronger the
algorithm, the longer this will take, hopefully cracking the encryption will take so long that
once it is decrypted the message is of no value any longer.

Take note of this very important point: the strength of the algorithm used should be
determined by the length of time that you wish to keep the message secret.

How important is it to keep these messages private? In the case of authentication
messages this could be very important. If there is an authentication message that sends
failed username and password combinations within the syslog message it would be very
easy for an attacker to use this against you. Most likely this error message is created by a
user that has just incorrectly typed their password, which may only be by one character
giving an attacker the keys to your systems. You should ensure that these types of
messages are not generated in the first place. Knowing of a failed logon attempt is
important, not the password/username combination.

With encryption of other messages you are reducing the attacker's ability to obtain
reconnaissance from these messages, though there are other ways to obtain this
information. Traffic analysis can still be performed by testing to see what actions will
generate a message, even though the message is not readable you still have a clue as to
the actions that will generate a message.

One way to combat this is to have a consistent flow of data that is both regular and
consistent in size. Somehow you should be able to send all the legitimate data inside
these packets and when there aren't any interesting logs to send, fake data is sent within
the packets. These issues are consistent with the way we have to deal with IDS (Intrusion
Detection System) traffic. The issue is that you remove your real time alerting, the
information will need to be delayed until the next scheduled packet.

An encrypted packet provides protection because when it is encrypted only the people or
systems with the right keys can decrypt the message. Firewalls and Network Intrusion
Detection systems are unlikely to hold these keys.

One of the facets of a Network Intrusion Detection (NID) system is its ability to match
pattens in the traffic. When this traffic is encrypted a NID has no ability to scan for
suspicious behaviour and this reduces their effectiveness. One way to perform Intrusion
Detection on this traffic is to look for suspicious behaviour at the sending or receiving host
using Host Intrusion Detection (HID). The packet is decrypted at the host because it does
have the required keys and the HID system can monitor the effects of this packet to make
sure it does not do anything suspicious.

41
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

SSH is a program that allows you to send traffic through an encrypted tunnel. This tunnel
can hold any type of data, it does not have to be syslog data. If we send this encrypted
tunnel through a firewall, the firewall can do only one of two things, let the packet through
or drop it. Dropping the packet could cause serious problems with communication, but
because the packet cannot be further inspected, letting it through provides a path for any
traffic to pass through the firewall that would otherwise not be allowed, a very undesirable
result.

One way to still perform filtering on these packets it to decrypt them somewhere between
the two communicating hosts. The firewall is one place where you could decrypt the data,
perform the required filtering actions, and optionally re-encrypt the data before forwarding
it onto the destination host. This can be complex and requires the firewall to hold required
keys to perform this task. There are many issues that make this problematic.

How About a Syslog Relay?

General network design, and designs for secure environments, data is usually directed
through choke points. These choke points are ideal places for security controls such as
packet filtering, Intrusion Detection, bandwidth limiting, etc. Some common locations for
choke points are between departments or sites, between networks that have different
levels of trust, like the Internet and your screened subnet and the screened subnet and
your internal network.

Generally you will see a firewall at these points filtering the traffic as it passes through. A
firewall can itself be a log relay or an additional box can perform this task. A Syslog relay
placed at these points helps to control messages by limiting the source of data and
forwarding required logs to your desired destination, which could be more than one log
collector. In very large networks it may be beneficial to deliver logs within a local network
to a log relay which in turn can forward these logs to a central log server at you head office
or network operations centre.

A Syslog relay can perform another very important function and that is to convert non
standard messages into standard ones. RFC3164 describes the requirements of a relay if
it receives a message that is non standard in section 4.3. To sum up, if a non standard
message is received by a relay agent it must modify the message to conform to RFC3164
before sending it on to the collector or another relay.

42
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Network Filters, Intrusion Detection and OOB networks

There are many aspects to network security, various security systems rely on other
systems like firewalls, IDS systems, logging and network design, play a role in a whole
security system. There are many points where these security devices actually interact and
use the strengths that each other provide to build a total security solution.

Network Filters

Iptables is the traffic filtering module built into the Linux 2.4.x kernels. When loaded and
configured correctly it acts as a firewall that can be installed on a gateway located at a
choke point, or on each individual host to protect it from local network based attacks. In a
defence in depth approach, packet filtering should be on every host as you never know
where that attack may come from, it could be the local network.

Syslog and iptables need each other, iptables logs messages to syslog and syslog needs
iptables to protect the machine it is running on.

OOB networks
@ Internet Router

Screened Subnet

)

Firewall Mail/smtp www/ftp Database

Log Device Log Device Log Device

Out of Band Network

° Management Neltwork Log Collector
Internal Network °
I I
C 5 Firewall /;7 B
i y | ‘ ’
Log Collector IDS and FW 'ﬁ/ i = . = [
apto
Management plop Client Log Collector ~Samba server
Log Device

Figure 3: Dual firewall network configuration depicting 3 possible log collector locations

Network design that has security as a key requirement is very important. One design
consideration is to use management and OOB (Out Of Band) networks. These networks
provide protection because they are separated from data that flows over commonly used
paths. No public network traffic should be seen on these networks.

A log collector would be protected in any of the three locations identified in the above
diagram, lets take a look at the considerations of each location.

43
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Position A

A log collector in this position is protected from being directly accessed from over the
internet. This is a good position but relies on the security of each host within the screened
subnet. If any of these hosts are compromised then it is only a matter of time before the
attacker discovers the OOB network and try’s to discover a way to further compromise
your network.

Although | recommend placing filters on each interface for hosts within your perimeter they
are not designed to be network filters and should not be relied upon for this function.
Hosts on a screened subnet will have services that could have vulnerabilities discovered
and therefore the system is at risk unless you patch or turn off the affected service. As
long as you offer these services there is a level of risk. We have reduced this risk by
placing these hosts on their own network segment but we should not rely on them to
protect the log collector.

Position B

This looks like an even better idea. We now have a firewall that can reliably filter the
traffic on the OOB network further before it enters our internal network. We still have a
problem as many attacks are known to originate from the internal network. We have our
log data situated in a compromising position, open to probing from internal users.

When considering the security policy for the internal firewall, | prefer to block all traffic
from entering the internal network from any outside network, the firewall only allows traffic
initiated from the inside. Having the log collector here would violate that good security

policy.
Position C

Probably what could be considered the most secure position on your network is the
management network. This network does not have user access, it does not have public
access, only trusted administrators can access any of the systems on this network. The
filtering into and out of this network should be very strict so if a host on the screened
subnet is totally compromised the collector is still protected and users from the inside are
unable to attack the collector.

Sending your data over the OOB to your management network still provides the ability for
an attacker to sniff the traffic, but if the management network is correctly configured they
will be able to do very little else.

Attacks can come from anywhere and you need to protect your valuable assets from all
attack vectors internal or external. (I know | seem overly paranoid, but you need to
consider everything). The eventual position you place your collector depends on your
budget and aversion to risk. As has been stated many times the collector contains very
important and confidential material, due diligence in protecting this machine the best way
practical is required.

44
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Conclusion

There is a lot of material covering syslog and its implementation, hence the reason this
paper is so long. Many people do not understand or even know many of the
considerations when designing a networked environment. | hope | have opened your eyes
to even one element that you had not considered before.

We have looked at ways to implement logging on your network, both local and network
based. We covered ways to manage, store and secure logs, as well as the networking
requirements with a central log collector. Finally we looked at the requirements to make a
central log server more secure by using an alternate syslog daemon that provides RFC
compliant reliable and secure logging.

A lot of material was covered and depending on your environment only certain aspects
may be applicable. Hopefully you see logging in a new light and can make more informed
decisions on how important it is to your company, including what needs to be done to
secure a syslog implementation for maximum benefit.

Though there is much more that can be said about logging | hope | have covered the most
essential elements, while also giving people who do not use syslog as their form of logging
some ideas for use with what ever implementation they use.

45
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Appendix A: References

These are the reference that in one way or another helped form the content contained
within this paper.

Books

TCP/IP lllustrated, Volume 1 — The protocols
W. Richard Steven

Copyright © 1994 by Addison Wesley

ISBN 0-201-63346-9

BEEP: The Definitive Guide

Marshall T Rose

O'Reilly & Associates; 1st edition (March 2002)

(During the discussion on BEEP, some details were taken from the sample pages hosted

on amazon.com
http://www.amazon.com/exec/obidos/tg/detail/-
/0596002440/gid=1055727969/sr=8-5/ref=sr 8 5/002-0229526-
3729618?v=glance&s=books&n=507846

Request for Comments

RFC's can be located via http://www.rfc-editor.org

RFC 3080 “The Blocks Extensible Exchange Protocol Core”
M. Rose (Invisible Worlds, Inc.), March 2001

RFC 3164 “The BSD syslog Protocol”
C. Lonvick (Cisco Systems), August 2001

RFC 3195 “Reliable Delivery for Syslog”
D. New, M. Rose (Dover Beach Consulting, Inc.), November 2001

RFC 3227 “Guidelines for Evidence Collection and Archiving”
D. Brezinski and T. Killalea, February 2002

RFC 3339 “Date and Time on the Internet: Timestamps”
G. Klyne (Clearswift Corporation) and C. Newman (Sun Microsystems), July 2002

Internet-Draft
Draft-ietf-syslog-sign-11.txt “Syslog-Sign Protocol”

J. Kelsey (Certicom) J. Callas (PGP Corporation), April 4, 2003
http://www.employees.org/~lonvick/index.shtml

CERT Coordination Centre

Establish a policy and procedures that prepare your organization to detect signs of
intrusion
http://www.cert.org/security-improvement/practices/p090.html

Identify data that characterize systems and aid in detecting signs of suspicious behaviour
http://www.cert.org/security-improvement/practices/p091.html

Manage logging and other data collection mechanisms

46
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

http://www.cert.org/security-improvement/practices/p092.html

Monitor and inspect system activities for unexpected behaviour
http://www.cert.org/security-improvement/practices/p095.html

Configuring and using syslogd to collect logging messages on systems running Solaris 2.x
http://www.cert.org/security-improvement/implementations/i041.08.html

Internet sites

Log Analysis Resources
Hosted by Counter Pane and maintained by Tina Bird

This site is highly recommended for further information on logging.
http://www.counterpane.com/log-analysis.html

Internet based papers

Presentation on Syslog from the ThaiCert “Thai Computer Emergency Response Team”
http://thaicert.nectec.or.th/event/itsec2002-material/logserver.pdf

Secure Remote Log Servers Using SCP by Kristy Westphal (February 2001)

http://www.securityfocus.com/infocus/1394

Complete Reference Guide to Creating a Remote Log Server by Eric Hines (August 2000)

http://www.linuxsecurity.com/feature stories/remote logserver-1.html

Advanced Log Processing by Anton Chuvakin (August 2002)

http://www.securityfocus.com/infocus/1613

Take Command: The System Logging Daemons, syslogd and klog by Michael A. Schwarz

(July 2000)
http://www.linuxjournal.com/print.php?sid=4036

Linux Administrator's Security Guide - Log files and other forms of monitoring

by Kurt Seifried

http://www.windowsecurity.com/whitepapers/Linux Administrators Security Gui
de Log files and other forms of monitoring.html

Defending your log files by Ed Skoudis (September 2001 _
http://www.informit.com/isapi/product id~%$7BF8B603B4-72C2-44EF-893C-
58B6E9D1F5F1%7D/content/index.asp

Do you trust your system logs? By Alejo Sanchez (December 2001)
http://ezine.daemonnews.org/200112/1log protection.html

Rethinking UNIX System logging with SHARP by Matt Bing and Carl Erickson
http://www.csis.gvsu.edu/sharp/sharp.pdf

Securing Syslog on FreeBSD by Albert Mietus
http://eurobsdcon.org/papers/mietus presentation.pdf

Syslog Overview v1.3 by Counterpane
http://www.counterpane.com/syslog-overview.pdf

47
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Syslog Replacements

SDSC Secure Syslog, an RFC3195 compliant syslog replacement
http://security.sdsc.edu/software/sdsc-syslog/

Msyslog (Modular Syslog)
http://sourceforge.net/projects/msyslog/

Syslog-ng (Syslog Next Generation)
http://freshmeat.net/projects/syslog-ng/

Red Hat 8.0 man pages

This is a list of man pages that | referenced throughout the paper. Use the man command
access these pages. For a description on how to use the man command type “man man”
at the command prompt.

To look at the man pages listed here type “man <number> <command>" for example type
‘man 3 syslog” to view the syslog(3) man page.

syslog(2) klogd(8) logrotate(8) mkfifo(1)
syslog(3) sysklogd(8) logwatch(8)
syslog.conf(5) setlogmask(3) logger(1)

Appendix B: Red Hat 8.0 syslog.conf

Log all kernel messages to the console.
Logging much else clutters up the screen.
#kern.* /dev/console

Log anything (except mail) of level info or higher.
Don't log private authentication messages!
*

.info;mail.none;authpriv.none;cron.none /var/log/messages

The authpriv file has restricted access.
authpriv.* /var/log/secure

Log all the mail messages in one place.
mail.* /var/log/maillog

Log cron stuff
cron.* /var/log/cron

Everybody gets emergency messages
*.emerg *

Save news errors of level crit and higher in a special file.
uucp,news.crit /var/log/spooler

Save boot messages also to boot.log
local7.* /var/log/boot.log

48
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Appendix C: Explanation of tcpdump command and output

Tcpdump command line options:

sudo /usr/sbin/tcpdump -s0 -X -vv -nn -1 ethoO

Command description

sudo

This allows a normal user to execute commands as another user, in
this case as root, tcpdump needs root privileges to open the
network interface in promiscuous mode.

/usr/sbin/tcpdump The actual executable that captures data from the network. The

-s0

'A%

-nn

-i etho

reason | use the full path is to ensure | am running the correct
executable not another one that could be in my path, just a
paranoid though good habit to be in.

Capture the whole packet.
Tells tcpdump to print the packet in hex as well as ASCII.
Print very verbose information.

This is a command switch that stops tcpdump from resolving the
names of IP address, protocol and port numbers as it collects data.
This saves processing power and time. Besides, in my opinion, it is
easier to work with numbers. If | need the name | will look it up via
other means.

this command switch directs tcpdump to listen to a particular
network interface ‘ethQ’

Tcpdump example of a UDP packet:

16:36:06.298930 192.168.201.20.514 > 192.168.201.10.514: [udp sum ok] udp
44 (DF) (ttl 64, id 0, len 72)

0x0000 4500 0048 0000 4000 4011 2735 c0a8 c914 E. H..@.@.'5....
0x0010 c0a8 c90a 0202 0202 0034 6d77 3c31 3333 ..., 4mw<133
0x0020 3e44 4556 4943 4531 3a20 6d65 7373 6167 >DEVICEl: .messag
0x0030 6520 6¢c6f 6361 6Cc30 2e6e 6f74 6963 6520 e.local0.notice.
0x0040 6465 7669 6365 310a devicel.

Output description:

[Timestamp] [Source IP and Port] [Destination IP and Port]
16:36:06.298930 192.168.201.20.514 > 192.168.201.10.514
[Status of UDP checksum] [protocol used] [Data bytes in UDP body]
[udp sum ok] udp 44
[Signal not to Fragment packet] [Time to live] [IP ID]
(DF) (ttl 64, id o,
[Total length of IP packet]
len 72)

[HEX output of packet] [ASCII of packet]
0x0000 4500 0048 0000 4000 4011 2735 cO0a8 c914 E..H..@.@.'5....
0x0010 c0a8 c90a 0202 0202 0034 6d77 3c31 3333 ... 4mw<133
0x0020 3e44 4556 4943 4531 3a20 6d65 7373 6167 >DEVICEl: .messag
0x0030 6520 6¢c6f 6361 6c30 2e6e 6£74 6963 6520 e.local0.notice.
0x0040 6465 7669 6365 310a devicel.

49

© SANS Institute 2003,

As part of GIAC practical repository. Author retains full rights.

Tcpdump example of a TCP packet:

10:09:04.971538 207.228.225.5.511 > x.x.x.194.511: SF [tcp sum ok]
2118914133:2118914133(0) win 1028 (ttl 29, id 39426, len 40)

0x0000 4500 0028 9a02 0000 1d06 dlec cfed €105 O
0x0010 xxxx xxc2 01ff 01ff 7ed4c 1055 7beb aB83a ..., ~L.U{..:
0x0020 5003 0404 c336 0000 0000 0000 0000 P....6..ouu...

Output description:

[Timestamp] [Source IP and Port] [Destination IP and Port]
10:09:04.971538 207.228.225.5.511 > X.x.x.194.511:
[TCP flags] [Status of TCP checksum] [TCP sequence numbers]
SF [tcp sum ok]
2118914133:2118914133

[Bytes of data in TCP data] [TCP window size] [Time to live]
(0) win 1028 (ttl 29,
[IP ID] [Total length of IP packet]
id 39426, len 40)

[HEX output of packet] [ASCII of packet]
0x0000 4500 0028 9a02 0000 1d06 dlec cfed el05 R
0x0010 xxxx xxc2 01ff 01ff 7e4d4c 1055 7beb a83a ..., ~L.U{..:
0x0020 5003 0404 c336 0000 0000 0000 00O0O P....6........

For a more comprehensive description of tcpdump please refer to the tcpdump man page
by typing ‘man tcpdump’ on a *NIX host that has the product running or visit
http://www.rt.com/man/tcpdump.1.html for an online version taking particular note of the
section labels ‘Output Format’.

Appendix D: Explanation of hping2 command

sudo ./hping2 -I eth0 -c¢ 1 -a 192.168.201.20 -y -2 -s 514 -p 514 \
-d 54 -E ../udpbody 192.168.201.10

Command description

sudo this allows a normal user to execute commands as another user, in
this case as root, hping2 needs root privileges to open a raw network
socket.

./hping2 the executable that generates the packet.

-T etho send the packet out this interface.

-c 1 creates only one packet and finish.

-a 192.168.201.20 use this as the source address (spoof IP address).

-y Don't fragment the packet.

-2 Use the UDP protocol.

-s 514 Use source port 514.

-p 514 Use destination port 514.

-d 54 Use a payload size of 54 bytes for the UDP packet.

-E ../udpbody Use the contents of file as the UDP payload.

192.168.201.10 Send packet to this address.

50

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Appendix E: PRI matrix

Within a syslog packet there is a PRI field specially calculated from the numerical value of
the facility and the numerical value of the severity. According to RFC 3164 (4.1.1):

The priority value is calculated by first
multiplying the Facility number by 8 and then adding
the numerical value of the severity.

This table is designed to make it easy to determine what Facility and Severity a message
is when all you have is the calculated number, this could be the case if you are debugging
a problem while sniffing traffic over the network. For example a Red Hat 8.0 syslog packet
as it traverses the network may look like:

<13>shutdown: .shutting.down.for.system.reboot.

The PRI value is 13; looking at the matrix we can see this was a message for the user
facility with a severity of notice (user.notice)

Severity
Emerg Alert | Critical | Error Warn | Notice | Info Debug
Facility Level 0 1 2 3 4 5 6 7
Kernel 0 0 1 2 3 4 5 6 7
User 1 8 9 10 11 12 13 14 15
Mail 2 16 17 18 19 20 21 22 23
System 3 24 25 26 27 28 29 30 31
Security 4 32 33 34 35 36 37 38 39
Syslog(d) 5 40 41 42 43 44 45 46 47
Line printer 6 48 49 50 51 52 53 54 55
Network news 7 56 57 58 59 60 61 62 63
UUCP 8 64 65 66 67 68 69 70 71
Clock 9 72 73 74 75 76 77 78 79
Security 10 80 81 82 83 84 85 86 87
FTPd 11 88 89 90 91 92 93 94 95
NTPd 12 96 97 98 99 100 101 102 103
Log audit 13 104 105 106 107 108 109 110 111
Log alert 14 112 113 114 115 116 117 118 119
Clock daemon 15 120 121 122 123 124 125 126 127
Local 0 16 128 129 130 131 132 133 134 135
Local 1 17 136 137 138 139 140 141 142 143
Local 2 18 144 145 146 147 148 149 150 151
Local 3 19 152 153 154 155 156 157 158 159
Local 4 20 160 161 162 163 164 165 166 167
Local 5 21 168 169 170 171 172 173 174 175
Local 6 22 176 177 178 179 180 181 182 183
Local 7 23 184 185 186 187 188 189 190 191

51
© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

