GIAC

CERTIFICATIONS

Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?

Check out the list of upcoming events offering

"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

GSEC Practical Assignment

(v1.4b Option 1)

© SANS Institute 2003,

HTTP Tunnels Though Proxies

By Daniel Alman
July 30, 2003

As part of GIAC practical repository.

Author retains full rights.

A S A O . .o 3

HTTP Tunneling EXPIaINEAdoouniiiieee e 3
The fundamentals of HTTP tunneling.....cccuuiveniieeiiieieeeeee e, 3
WAt iS @ HT TP PrOXY 2. .eeieiiie et e e e e e e e e e e e e e e eaeeanaes 4
A = TR TS 1 4

A =L ESTR S TS 4
What is @ HTTPS tUNNEI? ...t 6
What are the FISKS 2 .. e et e e e e e e 7
SIMPIE HTTP TUNNEIS .. e e eeas 8
LT]) 1o o PP 8

| ES =S PURPN 9
Simple TuNNEl EXAMPIE ... e e 10

I L AT 0T =) (o 10
NEtWOrK DIagraml......ccouieeiii e e e e e e e e e e e 11

T ET o] Lo o PPN 11

[I YA e AN I VT 0 =Y £ 13
TS]) 1o PSP 13

U SBS it e e e e e e e e e e rea e ae e eaenaas 14
Limiting the risk of HTTP tUNNEISovniieieeee e 14
(7o) oo [V 17T o | 16
LA o] o ST O (=Y o 17

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Abstract

Hyper Text Transport Protocol or HTTP is the protocol used for web traffic. Its
specification allows the use of proxies. Proxies are used in a large number of
companies and network environments to protect internal machines from attack,
accelerate web browsing, filter destinations, and to authenticate users. However,
due to a weakness in the CONNECT method of HTTP, the proxies are capable of
blindly passing more then just HTTP traffic and can be used to check email,
connect to P2P (peer to peer) networks, and even allow bidirectional VPN (virtual
private networks) traffic to bypass firewalls and other security devices. All that is
needed to exploit HTTP tunnels is basic web browsing privileges through a
proxy. Detecting this unauthorized traffic is difficult because it is often hidden in
ways that make it almost indistinguishable from normal authorized traffic.
However, with proper configuration of the proxy server the risks can be
minimized.

HTTP Tunneling Explained

The fundamentals of HTTP tunneling

Hyper Text Transport Protocol or HTTP web proxies are used in many network
environments. A proxy can be a network device such as Network Appliance’s
“‘NetCache,” appliance (http://www.netapp.com/products/#netcache) or is often
part of a firewall as with Secure Computing’s “Sidewinder G2” Firewall. No mater
where it is implemented, a proxy makes the actual request to the web server on
behalf of the client system and hides the clients IP (Internet Protocol) address
from the destination web server. This behavior is often seen as increasing the
overall security of the network because the proxy breaks the outbound network
connection to the web server and prevents direct inbound access to the client
machine from outside the network.

Proxy’s do prevent direct inbound access to a protected machine. However, they
can be bypassed using HTTP tunnels. Using HTTP tunnels an individual can
cerate arbitrary connection into or out of a protected network. All that is needed
to tunnel through a proxy is an individual inside the network with basic web
browsing access.

One technology that makes bypassing HTTP proxies so effective is encryption.
While encrypting network traffic offers the client and server privacy and security
for their communications, the lack of inspection can reduce the over all security
for the network environment it is used in. When encapsulated network traffic is
encrypted and passed though a HTTP tunnel, network connections can be
created that allow arbitrary, bidirectional connections to remote destinations.
When encryption technologies are used in this manor, Virtual Private Networks or
VPNs can be created between internal and external machines. The VPN pushes

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

the network perimeter of the protected network beyond the firewall, router or
other network security device. This opens the protected network up to the
possibility of attack or misuse.

Whatis a HTTP proxy?

A HTTP proxy is a network device or application that sits between the client’s
web browser and the web server. The proxy’s main job is to make requests to
web servers on behalf of a client. This allows the proxy to offers several key
benefits to the client systems. Such benefits are security, caching of web pages,
content filtering, web usages logs, and authentication. Proxies are often part of,
or used in conjunction with, firewalls to allow internal users to access the public
network without exposing the internal machines to direct attack.

Whatis a SSL?

Secure Sockets Layer or SSL “is a protocol developed by Netscape for
transmitting private documents via the Internet. SSL works by using a private key
to encrypt data that’s transferred over the SSL connection“(Webopedia).

While SSL was developed and is the standard for secure web traffic, a wide
range of applications can make use of SSL. Using toolkits like OpenSSL,
(http://www.openssl.org/) SSL authentication and encryption can be built into
almost any type of application. Furthermore, by using a SSL wrapper program
like Stunnel you can encrypt arbitrary TCP connections inside SSL. Stunnel is
available on both Unix and Windows and Stunnel can allow you to secure non-
SSL aware daemons and protocols (like POP, IMAP, LDAP, etc) by having
Stunnel provide the encryption, requiring no changes to the daemon's code
(Stunnel).

What is SSH?

SSH (Secure Shell) was designed as a secure replacement for the UNIX “r” tools
such as rsh (remote shell), rcp (remote copy), and rlogon (remote logon)
(OpenBSD).

All three "r" programs require a method for authenticating that you have
permission to login or execute programs on the remote machine. They do
not prompt for passwords. Rather, each system first assumes that you
have the same login account name on both machines, and then verifies
that your account on the remote machine is equivalent to your account on
the local machine. Two methods of account verification are provided:
system-to-system, or user-to-user (Farrell).

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

(1]

SSH was developed with the intent of keeping the “r” tool’s flexibility, ease of use,
and functionality. But unlike the “r” tools SSH allows for stronger authentication
methods. For example, SSH requires that the user prove his/her identity to the
remote machine using public/ private key pairs, passwords, or hostname and
account name information (OpenBSD). SSH main advantage is that it can
“provide secure encrypted communications between two untrusted hosts over an
insecure network” (OpenBSD). SSH has become a standard for administering
remote systems and has largely replaced telnet and ftp where network security is
needed.

One feature of SSH that goes beyond the “r” tools is its ability to create encrypted
TCP tunnels between the local and remote system. SSH can create both local
and remote tunnels between the systems. Local tunnels (Figure 1) listen on the
local (client) machine and relay the traffic to the server. The server then delivers
the traffic to its final destination. The tunnel can be set to listen on the loopback
interface or 127.0.0.1(RFC 3330) of the client machine. This is convenient when
configuring a locally running application to use the tunnel. However, SSH is not
limited to listing on the loopback interface. The tunnel can be set to listen on a
specified port on the network IP of the client system, allowing any machine on
the local network to leverage the SSH tunnel. The final destination for the tunnel
can be the server’s loopback interface, network IP or even a separate system
that is reachable by the server system.

Figure 1
SSH tunnel final
destination could be the Local SSH Tunnels
SSH serv’er
®e
e
L
“ SSH tunnel could listen on
= the network IP of the client
Clear text |SES s, allowing another system to
D o~ Nevrond %%,eo,’ = pass traffic through the
= M o ot SSH encrypted tunnel
SSH tunnel final Cleartex
destination could be a third SSH tunnel could listen on
party system the loop back IP of the =
client allowing locally Computer
running application to use
the encrypted tunnel to
reach its final destination

Remote tunnels (Figure 2) differ from local tunnels by listening on the remote
(server) system. Like local tunnels, the remote system can listen on the loopback
interface or the network IP and relay traffic to the client machine. The final

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

destination from the tunnel can be the client’s loopback interface, network IP or
even a separate system that is reachable by the client system.

Figure 2

SSH tunnel could listen on
the loop back IP of the Remote SSH Tunnels
server allowing locally

running application to use
the encrypted tunnel to

reach its final destination

— =
Clear text E Computer

D / Clear text

SSH tunnel final
destination could be a third

SSH tunnel could listen on . party system
the network IP of the SSH tunnel final
server allowing another destination could be the
system to pass traffic client

through the SSH
encrypted tunnel

Whatis a HTTPS tunnel?

One of the challenges to implementing HTTP security through a proxy is the
proxy should not have access to any more information then is necessary to
insure delivery of the data stream. As Ari Luotonen states in his expired Internet
Draft “Tunneling SSL Through a WWW Proxy”:

When tunneling SSL, the proxy must not have access to the data being
transferred in either direction, for sake of security. The proxy merely
knows the source and destination addresses, and possibly, if the proxy
supports user authentication, the name of the requesting user.

The solution was to take advantage of the HTTP CONNECT method as specified
in RFC 2616 (http://www.cis.ohio-state.edu/cs/Services/rfc/rfc-text/rfc2616.txt).
Unfortunately, this solution effectively allows arbitrary communication to take
place through an HTTP proxy, because the CONNECT method is like an escape
sequence telling the proxy not to interfere with the transaction (CERT
VU#150227). Using the HTTP Connect method in this manor to pass SSL traffic
is referred to as HTTPS.

For what the CONNECT is traditionally used for, tunneling SSL connections for
secure web traffic, blindly passing the traffic ideal behavior. Once the proxy sees
the CONNECT syntax the proxy assumes the traffic will be encrypted and blindly

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

forwards traffic between client and server. The blind forwarding of traffic is
necessary to support the end-to-end security model of SSL. This blind passing of
data through the proxy is referred to as tunneling, describing the fact that the
content of the connection passes under or tunnels through the proxy.

The blind passing of traffic through the tunnels presents a security risk. Some of
the security risks of the CONNECT method are detailed in CERT VU#150227.
“The CONNECT method can be exploited to conduct port scanning, send
unsolicited email, and even denial of service attacks if the proxy allows recursive
connections.” But as shown in this report, tunnels are a key weakness in HTTP
proxies that can be exploited to establish VPNs or virtual private network
connections, run chat applications, send and retrieve email, and bypass content
filtering.

What are the risks?

Allowing any unmonitored or inappropriate traffic in or out of a network carries
risk. Since HTTP tunneling can be leveraged by a wide verity of applications, the
risks tunnels represent is very great. Unfortunately, because SSL is a necessary
technology for conducting commerce and maintaining privacy on the Internet,
some of the risks have to be accepted. But some of the risks are to great to
ignore.

One risk is that someone inside the network would use Internet bandwidth for
personal or inappropriate use and cause service interruption or network
degradation to legitimate business traffic. For example, many of the file sharing
P2P networks have clients that support HTTP proxies. These applications can
utilize large quantities of bandwidth if allowed to run unchecked. Chat programs
that allow file transfers can also eat up significant quantities of bandwidth.

A major risk is that employees may use tunnels to conduct behavior outside of
the security or employee code of conduct polices. An employee using tunnels to
bypass firewalls and IDS to access inappropriate content in violation of the
security policy or code of conduct must be dealt with appropriately. Also, the use
of company networks and equipment for file swapping of copyrighted martial or
illegal images can open up the company to the risk of lawsuit and other legal
action.

Furthermore, using a tunnel to check personal email or to conduct chat sessions
can open up a potentially dangerous virus vector. Even if a well thought out
security architecture is in place to prevent viruses from spreading through email
and web browsing, tunnels make it possible for viruses to enter behind the
cooperate network defenses and directly infect a users machine.

The greatest problem that tunnels pose is that they are very difficult to detect.
This makes all the other risks listed far harder to prevent. HTTP tunnels are

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

difficult to detect mainly because they need to be allowed to pass HTTPS traffic,
and normal HTTPS traffic is encrypted end-to-end, preventing inspection. Some
steps can be taken to limit exposure to the risks posed by HTTP tunnels. But, a
determined individual with administrative access to a client system inside the
network environment will likely be able to exploit HTTP tunnels in some way.

Simple HTTP Tunnels

Description

Simple HTTP tunnels are an unencrypted connection through a HTTP proxy to
an arbitrary destination. The tunnel takes advantage of the HTTP CONNECT
method normally used for HTTPS (secure web traffic) to connect to the
destination server. A typical HTTPS connection through a proxy should look like:

CONNECT remote-server:443 HTTP/1.0

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 4.0)
Host: remote-server

Content-Length: 0

Proxy-Connection: Keep-Alive

Pragma: no-cache

In the example above, a tunnel is established between the client and the remote-
server with a destination port of 443 or the standard SSL port. If someone
wanted to make a connection to another-server on anyport all that is needed is
to send the following connection request instead.

CONNECT another-server:anyport HTTP/1.0

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 4.0)
Host: another-server

Content-Length: 0

Proxy-Connection: Keep-Alive

Pragma: no-cache

As shown in the above example, HTTP tunnels are not restricted to web or SSL
ports. Rather, HTTP tunnels are capable of passing any outbound traffic on any
TCP port as long as the client warps the appropriate HTTP CONNECT header
around the data stream.

Simple tunnels typically do not require control of the destination server. All that is
needed is a remote server with a known listening service. Put another way, the
server does not have to be modified in anyway to accept a TCP connection that
passes through a simple HTTP tunnel.

While the server does not need modification, some work will need to be done on

the client side to properly wrap the connection with the HTTP header. The client
application may have proxy support built-in and is able to directly create the

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

tunnel. However, a bridging application may be used to allow unmodified
applications to pass through the proxy. One example of a bridging application
written in PERL is connect-tunnel-0.03
(http://search.cpan.org/author/BOOK/connect-tunnel-0.03/) as detailed later in
the simple tunnel example.

While simple tunnels are very useful and are the basic component of all the other
more advanced tunnels, they do have their limitations. One limitation to simple
tunnels is that each connection to a remote TCP port requires a separate tunnel.
Another limitation is that they do not encrypt the connection and pass the data in
the clear. If the data needs to be encrypted, it is up to the application to only
pass encrypted data through the tunnel. For example, using a simple tunnel to
check a pop mail account over the Internet would pass all mail messages in the
clear over the Internet. To protect the contents of the mail messages an
advanced tunnel employing some form of encryption would need to be employed.

Uses

Simple tunnels are limited to outbound TCP connections, but they still can be
used for a wide variety of tasks. They can be used to check, receive, send
external e-mail. IRC (internet relay chat) can also be used through a HTTP
tunnel. The tunnels can be used to make FTP (File Transfer) connections to
remote servers. Tunnels can even be used to have remote desktop access using
programs such as VNC (Virtual Network Computing
www.uk.research.att.com/vnc). If the tunnel is terminated at another HTTP proxy
a user can even avoid most content filtering and destination restrictions
implemented at the local proxy (Figure 3).

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Figure 3

Internet

The tunnel

terminates on the
listing IP and port ﬁ
of the remote

proxy server

Local Network

The tunnel allows the
user to effectively
bypass the local proxy
and firewall

—»

= == Remot1Proxy —
Corporate User Local proxy i
Firewall w/tunnel / This tunnel
allows the user
o= = == = Simple tunnel - access to
The tunnel is set up to arbitrary web

listen on port 8000 on the
loop back interface of the
user’s machine

sites

Almost any application that only uses outbound TCP connections can be passed
through a HTTP proxy. Even many of the popular P2P network applications such
as eDonkey (www.edonkey2000.com) and Kazaa
(http://www.kazaa.com/us/index.htm) with the aid of Kazaahttp
(http://www.iprisma.com/kazaahttp/index.htm) can be used through a HTTP

proxy.

ICQ (www.icq.com) a popular chat program also has HTTP proxy support
implemented. When applications that allow file transfer like ICQ and the P2P
network clients are used from behind firewall they pose a unique threat to the
local network. All an attacker would need to do is to offer a virus infected file or
backdoor program to everybody in a public way and lure an unsuspecting tunnel
user into downloading the file. The result is that the machine that is thought
protected by network security and network antivirus devices has just been
successfully infiltrated and is ready to be exploited.

Simple Tunnel Example

This example will show how a simple tunnel can be created to pass telnet traffic
thought the HTTP proxy.

Network setup

In this example there are three systems.
1 The client system in a Windows NT system with PERL and connect-
tunnel-0.03 (http://search.cpan.org/author/BOOK/connect-tunnel-0.03/)
installed.

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

2 The Proxy server is a windows XP system running Proxy+ 3.0
(http://www.proxyplus.net/). The proxy is listing for connection on port
4480.

3 The Telnet server is a windows XP system running WAC Server 1.4
(http://www.foxitsoft.com/wac/server_intro.asp).

Network Diagram

=

Client side B Server side
connection Préxy connection

192.16?.10.20

|
Telnet server

192.168.10.24

Workstation

192.168.10.29 !
!
|

Description
To initialize the tunnel the PERL program connect-tunnel was executed with the
following command.

perl connect-tunnel --proxy 192.168.10.20:4480 --tunnel 2323:192.168.10.24:23

This prepares the HTTP tunnel on the client to accept connection on TCP port
2323 on the loopback interface on the client machine and relay though the proxy
(192.168.10.20) on TCP port 4480. The tunnel ends at the telnet server
(192.168.10.24) on TCP port 23 (the standard telnet port).

Once the HTTP tunnel is initialized, all that is left to do is open up a telnet
connection through the tunnel. To do this, launch telnet on the client system and
connect to localhost on TCP port 2323 (the listing port of the tunnel). Connect-
tunnel then transparently wraps the telnet traffic in the HTTP header and passes
the traffic to the proxy server.

The traffic between the client and proxy looks like this.

[client]
CONNECT 192.168.10.24:23 HTTP/1.0
Host: 192.168.10.24:23
User-Agent: libwww-perl/5.51

[proxy]
HTTP/1.0 200 Connection established
Proxy-agent: Proxy+ 3.00

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Welcome to WAC Server 1.4 Build 0725. (C) Foxit Software, 2002-2003

Evaluation Version. Maximum 2 users.
Host: TELNETSERVER, OS: Windows XP

Please use your Windows username and password to logon.
Username:username
[client]
username
[proxy]
Password; ********
[client]
password
[proxy]
Domain:
[client]

[proxy]
c.>

As shown in the above example, the client makes the CONNECT request to the
proxy server and asks it to make a connection to the Telnet server on TCP port
23. The client also reports its user agent as libwww-perl/5.51. The proxy then
responds that the connection is allowed. Then makes the connection to the telnet
server and relays the telnet welcome message to the client. The client then
passes username, password, and domain information to the telnet server. The
telnet server grants access and gives a command prompt.

While the network traffic on the client side of the connection has the HTTP
header, the server side of the connection looks like an ordinary telnet connection.
The following is the capture of the traffic on the server side of the proxy.

Welcome to WAC Server 1.4 Build 0725. (C) Foxit Software, 2002-2003

Evaluation Version. Maximum 2 users.
Host: TELNETSERVER, OS: Windows XP

Please use your Windows username and password to logon.

Username:username
[client]

username
[proxy]

Password:
[client]

password
[proxy]

Domain:
[client]

*kkkkkkhk

[proxy]

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

To any network sniffing device on the server side of the network, it looks like the
proxy, not the client, is initiating the telnet session.

HTTP VPN Tunnels

Description

VPNs or Virtual Private Networks are connection between systems over public
networks, such as the Internet, that uses encryption methods to ensure privacy.
VPNs can refer to single port to port encrypted communications or to protocols
such as IPSEC that are designed to encapsulate all traffic between the two
systems. A HTTP VPN tunnel is where any VPN technique is uses in
conjunction with a simple HTTP tunnel as describe earlier (Figure 4).

Figure 4

y
PR 8XY

Simple HTTP tunnel
Encrypted VPN tunnel

Routed traffic betwieen the two networks

SIIE

==

Client

Remote Server

VPN tunnels have several advantages over simple tunnels. The biggest
advantage is that the communications between the systems are encrypted. This
prevents anyone whom intercepts the commutations along the network path from
being able to decipher the contents. This also protects the traffic from any
intrusion detection systems. Using AppGate’s Mindterm
(http://lwww.appgate.com/mindterm/), for example, a user can easily leverage the
encryption features of SSH to remotely manage a system and transfer files
through a HTTP proxy.

Another advantage of HTTP VPN tunnels, and the largest risk, is that with VPN
tunnels it is possible pass any protocol in either direction, creating a full VPN
connection with a remote site. One example is to wrap a PPTP or point—to-point
tunneling protocol connection inside a simple HTTP tunnel. PPTP is relatively
easy to configure and install on modern Microsoft Windows
(http://lwww.microsoft.com) operating systems such as windows 98/NT/2000/xp.
And, PPTP support is shipped with all theses operating systems. If the user has

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

access to a Linux system, the users could install Amrita VPN
(http://amvpn.sourceforge.net/). “Amrita VPN is an easy-to-use open source VPN
solution that runs on the GNU/Linux platform. The implementation is fully in
userspace and requires no kernel patches or enhancements. It uses openssl
library for strong encryption and authentication through SSLv3"(Amrita
Institutions - Amrita VPN).

“The amvpn client can connect to amvpn server through a proxy. This option may
be required if the amvpn server is sitting behind a firewall. AmritaVPN currently
supports proxy authentication using Basic HT TP authentication” (Amrita
Institutions - Essential Features)

With any HTTP VPN tunnel the network’s perimeter is pushed beyond the
firewalls, IDS, routers and any other network security measure in place. The
security of the local network depends on the security the client’s system and the
remote network it is connected to.

Uses

There are few limitations on what VPN tunnels can be used for. If a full VPN is
established to a remote network all network traffic can freely flow between the
connected networks. A user may set up a VPN to remotely access a home
network, or access the company’s network from home. A malicious user could
set up a VPN to avoid detection while accessing forbidden or illegal remote
network resources like music, movies, and images.

Limiting the risk of HTTP tunnels

HTTP tunnels present a difficult challenge to network security. HTTP tunnels are
a necessary component of the ordinary and useful SSL connections. The easiest
way to reduce the risk of HTTP tunnels being used maliciously is to prevent them
completely. Blocking all HTTPS tulles would prevent legitimate HTTPS traffic as
well. This, however, is not a very good solution. It does not attempt to balance
business need with the security need.

A better solution is to maintain a list of blocked destination at the proxy. Many
proxies are designed with this functionality, and it is likely that destination
restrictions are already maintained or other reasons. Sites that could be added
to the list of non-allowed destinations include to lower risks of HTTP tunnels:

Chat
Logon servers for ICQ
Logon servers for MSN messenger
Logon servers for AOL instant messenger

Home networks
Locally available DSL ISP IP ranges

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Locally available Cable ISP IP ranges
Locally available dialup ISP IP ranges

Remote proxies
Open proxies list such as the ones maintained by at
http://openproxies.com/,
http://www.monkeys.com/upl/index.html, and
http://darkwing.uoregon.edu/%7Ejoe/open-proxies-used-to-
send-spam.html

Along with destination restrictions at the proxy, if possible, port restrictions should
be considered for the proxy server. The simplest way is to only allow connection
to remote sights on ports 80(HTTP) and 443(HTTPS). However, many legitimate
sites uses ports other then the standard ports. So if this solution is implemented
some administration is necessary to add site destinations back to the allowed list
as needed. A method that often requires less administration is to block a list of
well known destination ports (IANA — port numbers).

Block
20: FTP (file transfer protocol)
21: FTP (file transfer protocol)
22: SSH (secure shell)
23: telnet
25: SMTP (mail)
110: POP3
119: NNTP (network news protocol)
137: netbios-ns (windows networking)
138: netbios-dgm (windows networking)
139: netbios-ssn (windows networking)
143: imap (email)
220: imap v3 (email)
445: Microsoft-ds (windows networking)
1214 default Kazaa port
1723: PPTP (point-to-point tunneling protocol)
1080: socks proxy
5190: 1ICQ
5800: VNC (remote desktop)
5900: VNC (remote desktop)
6665-6669: IRC
8000: common proxy port
8080: common proxy port

This list of port number represents the services that pose the largest threats to
network security. But, theses services are not restricted to running on its
assigned or common port. The administrator of the remote server can run the
servers on any port desired. The remote admin could run a service like SSH on

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

port 443, the normal HTTPS port. This would allow users behind a proxy to
connect as though they were going to a normal SSL enabled site, avoiding all the
port restrictions described.

Another way to limit the risk of HTTP tunnels is to monitor proxy and firewall logs.
One signature that a HTTP tunnel being used for nonstandard uses is if the
tunnels have abnormally long connection times. After monitoring connection
lengths at a fortune 500 company, it was found that most SSL web sights have
connection lengths of less than 1 hour. Therefore, watching the logs for
connection lengths greater then 1 or 2 hours and watching for repeat offenders
can flag users who are using HTTP tunnels inappropriately.

Another way monitoring logs can help to limit the use of tunnels is to monitor the
user agent of the client applications that access the proxy. While it is often easy
to configure the user agent of applications like connect-tunnel, since it is a PERL
script, changing the user agent in some application is quite difficult. Once again
this is another way to flag users that might be abusing network privileges.

Conclusion

A proper security policy should take into consideration both the business need to
accomplish work and the need for privacy and security. HTTP tunnels are
necessary for SSL web browsing. However, due to a weakness in the CONNECT
method in the HTTP protocol, arbitrary connection can be made through a HTTP
proxy server. Furthermore, if these simple tunnels are used in conjunction with
other protocols and applications, VPNs can be created between the local and
remote systems. Once a VPN is established the perimeter of the local network is
push to the remote system. The risks to the local machine and network depend
on what applications being used and on the security of the remote systems. This
poses significant risk to the owners of the local network. Steps can be taken to
limit the risk of HTTP tunnels being exploited and still allow appropriate SSL web
traffic. The local proxy administrator can limit destinations by web site and port
number. They can also monitor connection times and flag users that make
repeat long duration HTTP connections. So, while HTTP tunnels poses risks,
they can be limited with proper administration and the business need of secure
web traffic can still be allowed.

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Works Cited

Amrita Innovative Technology Foundation Labs, “Amrita VPN” URL:
http://amvpn.sourceforge.net/ (July 2003)

Amrita Innovative Technology Foundation Labs, “AmritaVPN - A Virtual Private
Networking tool for GNU/Linux.: Amrita VPN Configuration - Essential Features”
URL:http://amvpn.sourceforge.net/amvpn-4.html (July 2003)

Bruhat, Philippe, “Search.cpan.org:Philippe ‘Book’ Bruhat / connect-tunnel-0.03”
March 20, 2003 URL: http://search.cpan.org/author/BOOK/connect-tunnel-0.03/
(July 2003)

CERT Coordination Center, “Vulnerability Note VU#150227: Multiple vendor’s
HTTP proxy default configuration allows arbitrary TCP connections via HTTP
CONNECT method” June 24, 2003 URL:http://www.kb.cert.org/vuls/id/150227
(July 2003)

Farrell, Phillip, “rlogin, rcp, and rsh network programs”
URL: http://pangea.stanford.edu/computerinfo/internet/rcommands.shtml (June
2003)

The Internet Assigned Numbers Authority, “Internet Protocol V4 Address Space”
URL:http://www.iana.org/assignments/ipv4-address-space (June 2003)

The Internet Assigned Numbers Authority, “Port numbers”
URL: http://www.iana.org/assignments/port-numbers (June 2003)

Luotonen, Ari, “Tunneling SSL Through a WWW Proxy” December 14, 1995
URL:http://muffin.doit.org/docs/rfc/tunneling_ssl.html (July 2003)

Network Working Group, “RFC 1918 Address Allocation for Private Internets”
February 1996 URL:http://www.cis.ohio-state.edu/cqi-bin/rfc/rfc1918.html
(June 2003)

Network Working Group, “RFC 2616 Hypertext Transfer Protocol - HTTP/1.1”
June 1999 URL:
http://www.cis.ohio-state.edu/cs/Services/rfc/rfc-text/rfc2616.txt (June 2003)

Network Working Group, “RFC 3330 Special-Use IPv4 Addresses” September
2002 URL:http://www.fags.org/rfcs/rfc3330.html (July 2003)

OpenBSD, “Manual Pages: ssh(1)” September 25, 1999
URL: http://www.openbsd.org/cgi-bin/man.cqgi?query=ssh&sektion=1 (July 2003)

Stunnel.org, “Stunnel.org” URL:http://www.stunnel.org/ (June 2003)

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Webopedia, “SSL-Webopedia”
URL:http://www.webopedia.com/TERM/S/SSL.html (June 2003)

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

