GIAC

CERTIFICATIONS

Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?

Check out the list of upcoming events offering

"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

Page 1 of 12

Name: Bobby Decker
Certification: GSEC
Version: 1.4b Option 1
Date Submitted: 8/27/2003

SSH (Secure Shell) Authentication Methods and Security Control
Abstract

SSH also known as Secure Shell is a software package used to provide secure
connections within an existing computer network. This document will contain
information on the software and protocol history. It will also contain information
on problems an environment may face if SSH is not utilized. It will list the types
of authentication, and provide detail on host and user authentication. There is a
“‘how to” used to describe public key authentication with an SSH agent. This
document will also contain information on providing security control using the
server configuration settings.

SSH History

SSH is both a protocol and software package. “Secure Shell’'s main use is to
replace the telnet, rlogin, rsh, and rcp programs with secure alternatives” (Stein,
p.353). A protocol is a set of rules or regulations used when data is sent from
one computer to another. To eliminate confusion, when SSH is being referred to
as a protocol then the word protocol will be used. If the software package is
being referenced then the word protocol will not be used in conjunction with the
word SSH.

The SSH protocol will ensure authentication, encryption, and integrity during data
transmission. The authentication portion of the protocol will verify that a user is
who they say they are. The data will be encrypted until it reaches its intended
destination. The integrity of the SSH protocol will detect if any of the data has
been changed or altered while being transmitted. SSH has a version one and
version two protocol. The SSH product and the SSH version one protocol were
developed in 1995 at the Helsinki University of Technology in Finland because of
a “password-sniffing attack earlier that year” (Barrett & Silverman, p.10). SSH
was available to everyone that wanted it. In 1996, version two of the SSH
protocol was created using new algorithms. In 1998, a software package utilizing
the SSH version two protocol was released. This new SSH2 software package
was only available for educational and non-profit areas. The SSH2 software
package has now been implemented, maintained, and sold as a commercial
version.

SSH is often used by individuals that are unaware of the software’s capabilities.

This can be good or bad. Itis to the advantage of the individual when they are
unaware of the existence or function of the software package. It will prove to be

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Page 2 of 12

easier to use and understand. It will function as though the user is unaware of its
existence. It may be a disadvantage when users are familiar with the
functionality. They may lack the knowledge needed to use the product
appropriately. They may also use the product with malicious intent.

SSH uses a client/server relationship. One computer system acting as a client
will make a request to another computer system acting as the server. Through
this relationship and the use of SSH the request from the client and reply from
the server will be encrypted. In fact, any communication or data that travels
between the client and server will be encrypted in transit. The data can reside on
the client or server in plain text and it will arrive in plain text. The data will only
be encrypted while it is being transmitted. This means that it is not necessary for
a user to have a working knowledge of encryption or SSH in order to use the
product effectively. Data can reside on a system in plain text, be sent encrypted,
and arrive to another system in plain text.

Threats to an environment without SSH

If a computer network exists and is functioning without SSH, then the
environment will be left exposed and prone to an attack. The installation and
configuration of SSH will not eliminate the exposure to an attack. However, the
product will provide a significant amount of security that will greatly reduce or
eliminate the chance of an attack ever taking place. Without the existence of
SSH or a similar product, a network is left wide open and becomes vulnerable.
Sensitive information would be transmitted in clear text over network cables. For
example, a user name and password could be intercepted on a network cable on
its way to a destination system. If this information is intercepted, then the system
that it was intended for has been compromised. This example refers back to the
information provided earlier as to why SSH was developed back in 1995.

The evaluation and configuration of SSH on a system is the responsibility of the
system administrator. In a networked environment, all of the data being
transmitted has to be evaluated. The operating systems, the users, the system'’s
physical location in a network, and the importance or confidentiality of the data all
have to be taken into consideration. This evaluation or risk assessment will
determine the areas that contain sensitive enough information to warrant the
need for increased security. The system administrator should also be setting up
security policies after a risk analysis has taken place. The security policy may
dictate the requirements needed to implement SSH in their environment. One
way to administer the SSH software package is to determine all of the levels of
security through the risk assessment. If an environment has four levels of
security then the administrator can set up four server configuration file templates.
Each server in a particular security level will receive the appropriate configuration
file template.

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Page 3 of 12

Once SSH has been installed and configured on a system, then one step has
been added to improve that system’s security. The level of security on a
particular system can also be configured and manipulated using SSH. Some
systems may prove to have a greater need for security, and such systems can be
locked down tighter than others based upon the configuration of the SSH server
software.

Types of Authentication

The following list of authentication types can be used while configuring SSH to fit
the needs of a computer environment. Each type of authentication will state the
possible values in italics.

AllowedAuthentications password,hostbased,publickey
DSAAuthentication yes no

KerberosAuthentication yes no

PasswordAuthentication yes no

PubKeyAuthentication yes no

RequiredAuthentications password, hostbased,publickey
RhostsAuthentication yes no
RhostsPubKeyAuthentication yes no
RhostsRSAAthentication yes no

RSAAuthentication yes no

Authentication can be defined as the validation of someone or something’s
identity. When SSH is used to make a connection to another system there are
two authentications that take place. One is host based or server based
authentication and the other is user based authentication. These two types of
authentication, host and user, can be controlled by both the client and the server.
SSH uses its configuration files in order to clearly define all of the authentication
possibilities. SSH2 has a client configuration file called ssh2_config and a server
configuration file called sshd2_config.

Host Authentication

Host based authentication will validate the server information when a request is
made from a client. The client piece of SSH will retain the server information to
make a comparison for each subsequent connection. Each server has its own
host key that is created when SSH is first installed. This host key will remain
unique for each server. Host based authentication helps to prevent man-in-the-
middle attacks and it helps ensure that the client is connecting to the same
server.

When a user makes an initial connection to a system using SSH the user is
prompted.

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

© SANS Institute 2003,

Windows Prompt (Figure 1):
Host Identification E3 |

"-:-..'.’iﬂ “fou are connecting o the host " " Far the first Hrne,

f’ 8 The host has provided you itz identification, a host public key.
& The fingerprint of the host public key i

'ou can zave the host key to the local databaze by clicking Yes.

Y'ou can continue without 2aving the host key by clicking Mo
Y'ou can alzo cancel the connection by clicking Cancel.

Do you want to gave the new host key to the local database?

Hao | Cancel Help

* Screen shot of SSH Inc.

UNIX Prompt (Figure 1.1):
user@systemA [/home/user]
$ ssh systemB
Host key not found from database.
Key fingerprint:
XXXXX-XOOXK-XXXKK XXX -XXXXK-XKKKK-XHHXK-XXXKK XXX XK-XKKKXK
You can get a public key's fingerprint by running
% ssh-keygen -F publickey.pub
on the keyfile.
Are you sure you want to continue connecting (yes/no)? yes

Host key saved to /home/user/.ssh2/hostkeys/key 22 systemB.pub
host key for systemB, accepted by user Mon May 5 2003 12:51:23 -0600

Page 4 of 12

This prompt will inform the user that a connection to this particular system has
not been made by this client before. The user is then given the choice to
continue connecting to the server. If the user continues with the connection to
the system, the servers host key will be stored locally on the client machine.

After the initial connection, if the user accepts the host key, the host

authentication happens behind the scenes. The user will not be prompted for the
host authentication again for that server unless the host key of that server does
not match up with that server’s key that was stored on the client during the initial
connection. If the server’s host key changes then the user will receive a warning

stating that a man-in-the-middle attack might be taking place.

Windows Prompt (Figure 2):

As part of GIAC practical repository.

Author retains full rights.

Page 5 of 12

HOST IDENTIFICATION HAS CHANGED |

WARMING: HOST IDEMTIFICATION HAS CHAMNGED!
1. Either the adminiztrator of the remote host computer has changed the host identification, or
2. The 55H protozol haz been uparaded from 55H1 to 55HZ, or
3. SOMEOME COULD BE EAVESDROPPIMG OM vOU RIGHT MO
[mar-in-the-middle attack]l

It iz MOT RECOMMEMDED to connect to the remaote host computer until pou have
contacted the systerm administrator and found auk why
the host identification has changed.

T he fingerprint of the host public key iz

Do you want to continue with the connection?

ez | Mo I Help

* Screen shot of SSH Inc.

UNIX Prompt (Figure 2.1):
user@systemA [/home/user]
$ ssh systemB
QECQCRECRQCREEEECAEAERECAREEACREAACRARRA@
QECQCRERAEREEAERAARQ@
@ WARNING: HOST IDENTIFICATION HAS CHANGED! @
QECQCRECAQEREEEECACAERECAREEACAEAAERARARA@

@eCRRREEARELELAERERRE
IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY!

Someone could be eavesdropping on you right now (man-in-the-middle attack)!
It is also possible that the host key has just been changed.

Please contact your system administrator.

Add correct host key to "/home/user/.ssh2/hostkeys/key 22 systemB.pub"
to get rid of this message.

Received server key's fingerprint:
XXXXX-XOOXK-XXXKK XXX -XXXXK-XKKKK-XHHXK-XXXKK XXX XK-XKKKXK

You can get a public key's fingerprint by running

% ssh-keygen -F publickey.pub

on the keyfile.

Agent forwarding is disabled to avoid attacks by corrupted servers.

X11 forwarding is disabled to avoid attacks by corrupted servers.

Are you sure you want to continue connecting (yes/no)? yes

Do you want to change the host key on disk (yes/no)? no

The user is then asked if they would like to continue connection to the server. If
they answer “yes” then they are asked if they would like to replace the servers
host key locally with the new key that was detected. If they answer “no” then the
session will be closed.

A man-in-the-middle attack occurs when a client attempts to connect to a server
and the connection is intercepted by a third system. The third system will
masquerade as the destination server in the client/server connection. A true
man-in-the-middle attack happens when the following events take place:

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Page 6 of 12

The client will initiate contact with systemA.

SystemX acting on behalf of systemA intercepts the transmission.
SystemX manipulates the transmission often with malicious intent.
SystemX sends the data to systemA.

The other vulnerability that server authentication will help prevent is a connection
to the wrong server. If a network is compromised, then data can be redirected to
go to the wrong server altogether. In referring to the example above, the client
tries to connect to systemA. If the real systemA is taken off the network or if the
real systemA is being flooded with network requests then systemX can try to
become systemA. With SSH installed the user would be notified about the man-
in-the-middle warning, but in this case the connection would be made only to
systemxX.

It is important to note that the warnings in Figure 2 and Figure 2.1 will not always
prove to be a network security breach. These warnings will appear if the host
keys of a server have been changed. If a user has administrative privileges on a
system then they have the ability to regenerate new server host keys. A system
might be experiencing one of the following: it is being renamed, it is being
imaged, SSH might be uninstalled and then reinstalled, the host key may be
periodically recreated, and the host key might be destroyed. Any one of the
following issue or other issues may change a systems host key, thus generating
a man-in-the-middle warning for the clients that have the old host key stored
locally.

User Authentication

After a client makes a connection to a server and the host authentication takes
place, the user has to be verified. The user authentication is generally in the
form of a user password or user public key.

If a user password is utilized then the user will be prompted for their password
while using the SSH client. The password that is needed to authenticate to the
server is not an SSH password. The password is completely independent of the
SSH protocol and the SSH software. The password that the user needs to
supply is the operating system password. The SSH client provides the means to
get to a system with an encrypted name and password, but the user needs to
have rights and privileges on that system. Once the user provides a password it
is evaluated and access is granted once operating system credentials are
verified.

“The name public key comes from the fact that you can make the encryption key
public without compromising the secrecy of the data or the decryption key”
(Suominen). The public key method of authentication is more secure, but also a
little more cumbersome to administer. The user will generate a key on a client
system. When the key is created the user will be prompted to enter a

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Page 7 of 12

passphrase. The passphrase acts like a password. This passphrase can be
different than most passwords, in that, the user is able to provide a true phrase
that can contain special characters and even spaces. The passphrase is entered
twice to avoid error. When this key generation is complete, there will be a public
key and a private key. The key will reside in the users default profile on the
operating system that the key was created on. In order to use the newly created
key for authentication several steps have to take place.

UNIX steps to utilize a user’s public key for authentication:

1. The user enters the ssh-keygen command on systemA to create their
public and private keys. Once the user provides the passphrase the keys

will exist in their own .ssh2 directory.
user@systemA [/home/user]
$ ssh-keygen key name

2. The user has to create a file called “identification” on systemA that will
contain the name of the private key that was created. This identification

file will allow SSH to determine which private key to use for authentication.
user@systemA [/home/user/.ssh2]
$ more identification
IdKey key_name

3. The user will place the public key on systemB to use public key
authentication. The public key will reside in the user’s .ssh2 directory on
systemB.

4. The user will create a file on systemB called “authorization” that will

contain the name of the public key that was copied over.
user@systemB [/home/user/.ssh2]
$ more authorization
Key key name.pub

5. Once the following steps have been done the user will be able to connect
using the passphrase that was created during the ssh-keygen process.
Note: The user will only be able to authenticate using the public key if the

server is configured to accept a public key connection.
user@systemA [/home/user]
$ ssh systemB
Passphrase for key "/home/user/.ssh2/key _name":

In a UNIX environment the users have the option of using an SSH agent to
store their keys to make multiple connections using the public key
authentication method without providing any password or the passphrase.
This agent will hold multiple keys for the user, and the user will have to
provide the passphrase only one time to store the key into the agent. “Before
your connections can be authenticated without prompts for a pass-phrase you
have to use ssh-add to add the necessary keys to memory” (Suominen).
Once the user’s keys have been added to the agent, any systems that have
the above process set up will allow a remote SSH command without providing
user credentials. Below are the steps needed to add a user key to an agent.

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Page 8 of 12

1. The user has to add the SSH agent into the UNIX shell.
user@systemA [/home/user]
$ exec ssh-agent2 /usr/bin/sh

2. The user has to add the key into the agent. This process will prompt the

user to provide the passphrase for the key.
user@systemA [/home/user]
$ ssh-add2 /home/user/.ssh2/key _name
Adding identity: /home/user/.ssh2/key_name
Need passphrase for /home/user/.ssh2/key _name (1024-bit dsa,
user@systemA).
Enter passphrase:

3. The user can use the ssh-add command with a flag, -I for list, to verify that

the agent is storing the key that the user just added.
user@systemA [/home/user]
$ ssh-add2 -I
Listing identities.
The authorization agent has one key:
key_name: 1024-bit dsa, user@systemA

4. After the key has been added into the agent the user will be able to
connect to any systems that have the combination of the public key and
the “authorization” file. The user will not be prompted for a password or a

passphrase because the key and passphrase are being held by the agent.
user@systemA [/home/user]
$ ssh systemB

user@systemB [/home/user]

Windows Client steps to utilize a user’s public key for authentication:

1. Open up an SSH client.

2. Go to Edit -> Settings.

3. Go to a section within the settings that specify “User Authentication” and
click on keys.

Click on a button that allows a user to generate a new key.

Follow the wizard to create a key and a passphrase and close the settings
box.

6. Connect to a system with the password.

7. Once connected to a system, go back into the settings for user keys and
click on the button that says upload public key. Accept the default values
and click ok.

Exit the system.

At this point the user will be able to connect to the system and specify
“‘public key” as a type of authentication. The user will be prompted to
enter the passphrase that was created in step five.

o R

©®

Remember that the allowed authentication types are controlled by the server.
So, if a system does not allow for public key authentication then this process will
not work.

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Page 9 of 12

Security Control using sshd2_config

“The server drives the authentication by telling the client which authentication
methods can be used to continue the exchange at any given time” (Ylonen). The
sshd2_config file is used on a server to control all SSH connections that are
made to a server. When a client makes a connection to a server using SSH,
then the predefined settings in the configuration file will dictate what is allowed
and not allowed during that client’s connection. When referring to security
controls, | am making reference to who can connect to a system and how a user
can connect to a system. There are several security controls that can be utilized
in the configuration file. Below is a list of some of the keywords that can be used
in the configuration file. The keywords listed are provided with a brief description
of how it can be used.

Port- The default value is twenty-two. This number can be set to any
available port. If this is set to an abstract number then it will be more
difficult to connect to the system making it more secure. When the SSH
daemon is running, it will only be listening for a connection on the port that
is specified.

ListenAddress- With this keyword the user can configure SSH to listen to a
specific network address. If a system has multiple cards that are
connecting to different networks, SSH will only listen to the address of the
card that is specified here.

MaxConnections- This configuration option will dictate how many SSH
connections will be allowed into the system. The default is zero which will
allow unlimited connections up to the system’s available resources.
LoginGraceTime- This keyword can be used to specify how much time a
user has to authenticate into a system successfully. The value represents
how many seconds. To disable this feature the user may enter a zero.
PasswordGuesses- This value will limit the number of failed authentication
attempts to a system. This value for SSH will only be used against failed
password attempts. Therefore, a user will be able to make an unlimited
number of login attempts using the public-key method for authentication.
PermitEmptyPasswords- If this value is set to no it will ensure that a user
will not be able to login to a system with an empty password.

StrictModes- This option can be configured to look at the permissions and
ownership of the user's SSH directories. The files and directories have to
be owned by root or the account owner and the write permissions for the
world cannot be open.

IdleTimeOut- This keyword can be used to terminate a connection that
has been idle for a specific amount of time. This option can be followed
by a zero to be disabled or it can be followed by a number and a letter.
The letter has to be the first letter of one of the following: seconds,
minutes, hours, and weeks.

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Page 10 of 12

AllowedAuthentications- This option will specify which authentication
method will be allowed into the server. These options can include:
publickey, password, and hostbased.

RequiredAuthentications- This option will override the
AllowedAuthentications keyword. For example if there are multiple
options listed for AllowedAuthentications, but the RequiredAuthentications
only lists publickey then the other options cannot be used.

AllowHosts- This option can be used to allow only the hosts that are listed
with this keyword. If this option is used then any hosts that are not
explicitly listed with the keyword will not be given the option to
authenticate into the server. The values can be listed with a common
name or an IP address. Special characters can be used in the
configuration file to specify a range of hosts.

DenyHosts- This keyword will prevent specific hosts or ranges of hosts
from being able to authenticate into a server. If this option is used then all
of the hosts that are not listed will have the ability to authenticate to the
server.

SilentDeny- This keyword is used in conjunction with the AllowHosts and
DenyHosts keywords. If this keyword is set to no which is the default then
the message “Sorry, you are not allowed to connect” (Barrett, p.182) will
be displayed. It will also be displayed in the log file. If the keyword is set
to yes then the user will not see a failed connect message, and it will not
be in the log file.

AllowUsers- If this keyword is used then only the users listed with this
option will be able to authenticate into the system. Any other users that
are not listed with this keyword will not be able to authenticate into the
system. If this option is not used then all users will be allowed to
authenticate into the system.

DenyUsers- This option will deny authentication for the users listed. It will
allow all other users to authenticate into the system.

AllowGroups- This keyword can be used to allow only specific groups into
a system. Many of the users with similar roles are part of the same group.
Instead of using the AllowUsers option, an administrator will be able to
add an entire group. Again if this option is used and users are not part of
the specified groups then they will not be able to authenticate into the
system.

DenyGroups- When this keyword is used, it will ensure that any users in
the groups listed will not be able to authenticate. Any groups and users of
those groups that are not listed with this option will have the ability to
authenticate into the server.

PermitRootLogin- This keyword can be used to control the root account.
In order to protect the root account on a server the setting must be no. If
the user tries to connect to a server as root they will not be able to
authenticate into the system.

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Page 11 of 12

If any of the previous options are changed on the server, the SSH daemon has to
be restarted for the settings to take effect.

If a network is left exposed then it can be compromised. SSH was developed for
this reason. SSH is set up for host based and user based authentication. A
system administrator should be responsible for completing a risk assessment.
The outcome of the risk assessment should dictate a security policy that will be
enforced by the system administrator. The SSH configuration file stored on the
server is an ideal way to control SSH connectivity and functionality for security.
There are many existing networks that have been set up prior to security being
an issue. If SSH or another security product is not used then the network
environment will not contain the authentication, encryption, or integrity that is
needed.

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

Page 12 of 12

Works Cited

Acheson, Steve. “The Secure Shell Frequently Asked Questions.” 9 Mar. 2001.
URL: http://www.employees.org/~satch/ssh/fag/ssh-fag.html (25 Aug. 2003).

ATN Applications Support Group. “Research Application — SSH Secure Shell.” 18
Dec. 2002. URL: http://www.unc.edu/atn/asg/applications/sshsecureshell/ (19
Aug. 2003).

Barrett, Daniel J., Silverman, Richard E. SSH, the Secure Shell: The Definitive
Guide. Sebastopol: O'Reilly & Associates, Inc., 2001.

Garfinkel, Simon. Web Security & Commerce. Cambridge: O’'Reilly & Associates,
Inc., 1997. 218, 461.

Koenig, Thomas. “Ssh (Secure Shell) FAQ- Frequently asked questions.” 6 June
1997. URL: http://www.uni-karlsruhe.de/~ig25/ssh-faq/ (24 July 2003).

Stein, Lincoln D. Web Security: A Step-By-Step Reference Guide. Reading:
Addison Wesley Longman, Inc., 1998. 35, 353.

Suominen, Kimmo. “Getting started with SSH.” 6 Oct. 2002. URL:
http://kKimmo.suominen.com/ssh/ (25 Aug. 2003).

University of Bristol Information Services. “Using SSH secure shell client on a PC
to connect to and transfer files to and from a remote site.” 16 June 2003. URL:
http://www.bris.ac.uk/is/selfhelp/documentation/ssh-i1/ssh-i1.htm (24 July 2003).

University of Minnesota. “SSH secure shell.” 9 July 2003. URL:
http://www.physics.umn.edu/support/software/ssh.html (25 Aug. 2003).

“Using SSH Secure Shell to Connect to Host Computers [Windows].” June 2003.
URL: http://www.itd.umich.edu/itcsdocs/s4304/ (19 Aug. 2003).

Ylonen, Tatu. “SSH Authentication Protocol.” Sept. 2002. URL.:
http://www.ietf.org/internet-drafts/draft-ietf-secsh-userauth-17.txt (19 Aug. 2003).

© SANS Institute 2003, As part of GIAC practical repository. Author retains full rights.

